
Parameter estimation in mathematical

models of viral infections using R

Van Kinh Nguyen1 and Esteban A. Hernandez-Vargas 1

1) Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438, Frankfurt am Main, Germany

Corresponding: knguyen@fias.uni-frankfurt.de; vargas@fias.uni-frankfurt.de

Abstract

In recent years, mathematical modeling approaches have played a central role to understand

and to quantify mechanisms in different viral infectious diseases. In this approach, biological-

based hypotheses are expressed via mathematical relations and then tested based on empirical

data. The simulation results can be used to either identify underlying mechanisms, provide

predictions on infection outcomes, or evaluate the efficacy of a treatment.

Conducting parameter estimation for mathematical models is not an easy task. Here we detail

an approach to conduct parameter estimation and to evaluate the results using the free software

R. The method is applicable to influenza virus dynamics at different complexity levels,

widening experimentalists capabilities in understanding their data. The parameter estimation

approach presented here can be also applied to other viral infections or biological applications.

Key Words: viral infection, mathematica l modeling, parameter estimation, influenza

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

mailto:knguyen@fias.uni-frankfurt.de
mailto:vargas@fias.uni-frankfurt.de
https://doi.org/10.1101/130674

1. Introduction

Seasonal epidemics and pandemics of influenza virus infections remain a major health burden

worldwide, causing immense losses in lives, life quality, and economy (1-3). The overwhelming

amount of influenza research has largely improved our understanding, however, holistic

understanding that promotes serious adverse events leading to health complications are largely

fragmented (4).

Figure 1 IAV infection and dynamics. (a) Description of the main phases of IAV infection within a host. After

entering the respiratory tract, each virion binds to a target cell. Then, virions enter the eclipse phase (5-12 hpi),

before starting to replicate and infecting other cells. (b) IAV and IR dynamics. The innate IR is mainly represented

by Type I interferon (IFN-I) and by the natural killer (NK) cells, whereas the adaptive IR is mainly driven by

cytotoxic CD8+T cells (CTLs) and antibodies (Abs). Figure adapted from (4) .

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

Analyses of experimental data on viral infections have predominantly based on statistical

methods. These approaches assist experimentalists to recognize differences and correlations,

but in-depth interpretations of the underlying mechanisms are limited. With mathematical

modeling approaches, one can formulate different hypothesized mechanisms in forms of

mathematical relations. Consequently, parameter estimation procedures are performed to test

the models against empirical data (4-7). This method has been used to study a wide range of

events occur during the progression of influenza infection (4-6,8). For instance, mathematical

models have been used to describe the viral replication cycle, interactions between the virus

and the host, and the outcomes of the infection (Figure 1). Additionally, simulation results can

reveal not only the basic characteristics of the infection dynamics but also practical knowledge

in controlling the infection (4-6,9).

Conducting parameter estimation for mathematical models, however, is a demanding task. This

requires familiarizing with different concepts of mathematics, optimization, programming

language, and sometimes costly software toolboxes. Nevertheless, these technical problems

should not prevent biologists and virologists from exploring their data potentials. Thus, in this

chapter, we introduce an adaptable and state-of-the-art protocol for parameter estimation and

evaluation. To this end, we focused on ordinary differential equations (ODEs) to model the

infection dynamics. The target-cell limited model presented in (10,11) is adopted owing to its

role as the core component of more than a hundred publications in virus research, e.g., influenza

(4,5,7,9,12), HIV (13,14), and Ebola (15) among others.

This chapter covers chronologically the steps portrayed in Figure 2. Briefly, experimental data

need to be prepared in standard formats. Model equations need to be defined with relevant

components and corresponding model parameters. Based on that, a cost function that defines

how matching the model and the data is written in the R programming language (16). To this

end, the root mean square errors function is considered. The function, the data, and the model

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

can be then fed into an optimizer algorithm to find the best set of parameters that provide the

best agreement between the model and the data. The global optimization named Differential

Evolution (17) is used here to adjust the model parameters. Setting conditions of the optimizer

and the plausible range of the parameters of interests need to be defined. When contradictory

hypotheses exist, model comparison among them can be done at this point with information

criteria. Then, model predictions can be performed with the obtained parameters. Further model

evaluation steps are developed using the best model to obtain confidence intervals or to detect

potential drawbacks of the obtained parameters.

Figure 2. A typical parameter estimation process in mathematical modeling. Dashed lines indicate optional

steps and those are not presented in the scope of this chapter.

2. Materials

The following materials are needed:

1. Experimental data: For illustration purpose, we consider a synthetic in vitro data set of

influenza A virus infection with the viral dynamics and the sampling scheme resemble

that in (18). Approximately 106 host cells are assumed to support influenza virus

infection. Based on practical lab limitations, the viral load is assumed to be the only

measurement, thus, viral titers were measured regularly (in TCID50) at day 1, 2, 3, 5, 7,

9 post infection. At each time point, there are five replications. The data used in this

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

chapter can be found in this external hyperlink. The first term in each row represents

the sampling date and the second is the viral load. Note that viral titers were already

converted into log base 10 scales (see Notes 1).

2. Mechanistic model(s): The proposed mathematical model depends on the data at hand

and the hypothesis to be addressed. Here, we are interested in having the estimates of

the rates of infection, infected cell death, viral replication, and viral clearance. Thus, a

widely used model for viral infection so-called the target-cell limited model (10) can be

used (Figure 3).

Figure 3. Schematic of the target-cell limited model. This model assumes that viral infection is limited

only by the availability of the uninfected cells. The roles of the immune systems are neglected. The

uninfected cells (U) are infected by the viruses and become infectious (I), consequently, these infectious

cells are able to release virus particles (V). The viruses can continue to infect the remain susceptible

cells.

The model includes three compartments: uninfected cells (U), infected cells (I), and

viral titers (V). The model reads in the following three differential equations:

𝑑𝑈

𝑑𝑡
= −𝛽𝑈𝑉,

𝑑𝐼

𝑑𝑡
= 𝛽𝑈𝑉 − 𝛿𝐼,

𝑑𝑉

𝑑𝑡
= 𝑝𝐼 − 𝑐𝑉.

The left term of the equations represents the change of the variables respect to the time.

The parameters β, δ, p, and c represent the rates of effective infection, infected cell

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://figshare.com/s/842b71f9c1bda1212a24
https://doi.org/10.1101/130674

death, viral replication, and viral clearance, respectively. It is considered that the virus

(V) infects susceptible cells (U) with a rate β. Infected cells are cleared with a rate δ.

Once cells are productively infected (I), they can release virus at rate p and virus

particles are cleared at rate c.

3. A computer with any of the following operating systems: Windows, Linux, or Mac OS.

4. R software: a free, open-source, and high-level programming language (16),

downloading from https://www.r-project.org.

5. Required R’s packages include deSolve (19) (solving differential equations) and

DEoptim (20) (performing the Differential Evolution algorithm) can be installed in R

by running the following commands §

install.packages("deSolve"); library("deSolve") # Notes 2

install.packages("DEoptim"); library("DEoptim")

Anything follows the character ‘#’ is a comment and is not processed in R

For the rest of the chapter, fix-width font-style letters denote R codes.

3. Methods

3.1. Preparing data

The experimental data stored in Excel sheet are most often not ready for analyses in R. Comma-

Separated-Values (.csv) is a universal format that can be read in any software. This can be

achieved by:

1. Deleting all irrelevant data (notes, comments, etc.) in the Excel sheet,

2. Naming variables (columns) with computer-friendly format, i.e., no spaces or special

characters, starting only with characters not with numbers,

3. Choosing Save As, in file format field choose Comma Separated (see Notes 3, 4).

§ Copy and paste the commands, press Enter (required internet connection).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://www.r-project.org/
https://doi.org/10.1101/130674

Then, reading the data into R can be done by running:

myData <- read.csv(“/path/to/myData.csv”) # Notes 2, 5

myData # View data

The data have two variables (each in different column), including V (viral titters in log base

10) and the time (in days). For simplicity, we can also input directly the data as follow:

Time in day

time <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7,

7, 7, 7, 9, 9, 9, 9, 9)

Viral titres in log 10

V <- c(2.36, 3.23, 2.69, 2.57, 2.37, 4.87, 4.41, 5.04, 3.76, 4.16, 5.20,

5.43, 5.55, 5.60, 6.12, 4.96, 4.54, 4.65, 5.06, 4.80, 3.67, 3.22, 3.35,

2.84, 3.76, 1.61, 1.80, 2.00, 1.69, 2.22)

myData <- data.frame(time = time, V = V)

3.2. Writing the model and the cost function

1. The target-cell limited model can be written in R format as follows:

myModel <- function(t,state,parameters) {

 with(as.list(c(state,parameters)),{

 # Filling in the equations # see Notes 6

 dU = - myBeta*U*V

 dI = myBeta*U*V - myDelta*I

 dV = myP*I - myC*V

 # Outputs of the model # see Notes 7

 list(c(dU, dI, dV))

 })

}

In short, the model is named as myModel. The three components U, I and V, called states

in modelling terms, are written in separate lines with leading letter d. The right-hand

side of the equations are the same as the model equations, except the variable names are

spelled out (see Notes 6). We also define what is important in the model for later uses,

including

myStates <- c(U = 10^6, I = 0, V = 10) # see Notes 8

myParams <- c("myBeta","myDelta","myP","myC") # list of parameters

myV <- "V" # the component in the model observed in data

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

and the time scale for the model. This can be arbitrarily chosen but it should cover the

range of the observed time scale. Here we record the model outputs approximately every

15 minutes during ten days.

modelTime <- seq(from = 0, to = 10, by = 0.01) # see Notes 9

2. The root mean square errors (RMSE) measures the magnitude of the difference between

the output from the model (V) and the experimental data. Here it is calculated as

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(log10 𝑦𝑖 − log10 𝑦̂)2

𝑛

𝑖

where n is the sample size, 𝑦𝑖 is a data point, and 𝑦̂ is the value produced from the model

when we plug in a set of parameter values and calculate the value of V at the time point

observing 𝑦𝑖 . In R language, the cost function can be written as

myCostFn <- function(x) {

 parms <- x[1:length(myParams)]

 names(parms) <- myParams

 yhat <- ode(myStates, modelTime, myModel, 10^parms)

 yMatch <- yhat[yhat[,1] %in% myData$time,] # see Notes 9

 nm <- rle(myData$time)$lengths

 x <- myData[, myV]- rep(log10(yMatch[, myV]), times = nm)

 rmse <- sqrt(mean(x^2))

 return(rmse)

} # see Notes 15

3.2.1 Defining parameter boundaries, optimizer conditions and running

optimizer

1. Based on literature, we define ranges of plausible parameter values. For example, the

elimination half-life (𝑡1
2⁄) of influenza is unknown, however this cannot be considered

either in seconds or in a century time scale. Converting this time into the clearance rate

c is done by the formula 𝑡1
2⁄ = ln(2) /𝑐. Note that the boundaries are transformed to

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

log base 10 scale and that the numbers subject to one’s own expertise. We let the reader

check the boundaries of the four parameter β, δ, p, and c below.

lower = log10(c(1e-7, 1e-2, 1e+0, 1e-1)) # see Notes 10 and 11

upper = log10(c(1e-3, 1e+2, 1e+2, 1e+2))

2. Standard optimizer settings are often not sufficient for complex models. We can force

the optimizer to work more exhaustively by increasing the number of trials

(combination of itermax and steptol) and decreasing the relative tolerance named as

reltol (measurement of the error relative to the size of each solution component).

myOptions <- DEoptim.control(itermax = 10000, steptol = 50, reltol = 1e-8) #

see Notes 12

3. At this point, we are ready to fit the model by calling the optimizer with the inputs

including the cost function, the lower and upper bound, and the options as follows:

fit <- do.call("DEoptim", list(myCostFn, lower, upper, myOptions)) # see

Notes 13, 14, 15

The simulation time took approximately five minutes on an Intel Core i7, 8Gb RAM

computer. The algorithm evaluates different combinations of the parameters in the

provided ranges, comparing them by the RMSE. The process is repeated until the

algorithm can not find a combination of parameters that has a significant improvement

compared to the current parameter set.

4. Visualization of the results can be done with the following commands (Figure 4)

(bestPar <- fit$optim$bestmem) # parameter estimates in log 10 scale

names(bestPar) <- myParams

out <- ode(myStates, modelTime, myModel, 10^bestPar)

plot(out[, "time"], log10(out[, "V"]), type = "l") # in log 10

points(myData$time, myData$V) # superimposing observed data points

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

Figure 4. Fitted model and the observed data.

3.3. Model comparison with Akaike information criteria (AIC)

AIC is a criterion of choice when coming to comparing models (21,22). More complex

models (more parameters) tend to provide a better fit, thus the AIC gives a penalty to

the number of parameters to avoid overfitting (23). The smaller the AIC the better the

model. In this context, a function to calculate can be defined as:

myAIC <- function(fit, np=NULL, rms=NULL, n=NULL) {

 if (is.null(n)) stop("How many observations were used? n=#")

 if (is.null(np)) np <- length(fit$optim$bestmem)

 if (is.null(rms)) rms <- fit$optim$bestval

 return(2*np + n*log(rms))

}

Computing the AIC by simply run:

myAIC(fit, n = 30)

where fit is the fitted model and n is the sample size used for fitting (see Notes 16).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

3.4. Likelihood profile of the model parameters

Because of the complexity of the model and the scarce of experimental data, it might be

impossible to identify the parameters with less uncertainty (24,25). The profiling of model

parameters is used to inform the identifiability of parameters or to calculate the parameter’s

confidence interval. For each parameter, a sequence extending both sides of the estimated

parameter to the boundaries is generated. For each value, the optimization is done by keeping

the parameter value fixed while reoptimizing the other parameters.

1. Define the profiling function as below:

myProfile <- function(lower, upper, bestPar) {

 pro.ll <- NULL

 for (v in 1:length(bestPar)) {

 # Creating parameter sequence

 tmpl <- seq(lower[v], bestPar[[v]], length.out = 100)

 tmpl <- tmpl[order(tmpl, decreasing = TRUE)[cumsum(1:13)]]

 tmpr <- seq(bestPar[[v]], upper[v], length.out = 100)

 tmpr <- tmpr[cumsum(1:13)]

 pars <- sort(unique(c(lower[v], tmpl, bestPar[[v]], tmpr, upper[v])))

 ppl <- NULL

 # Run optimization for each and record the parameters and RMSE

 for (p in pars) {

 DEargs <- list(myCostFn, replace(lower, v, p), replace(upper, v,

p), myOptions)

 fit <- do.call("DEoptim", DEargs)

 ppl <- c(ppl, fit$optim$bestval)

 }

 pro.ll[[v]] <- cbind(pars, ppl)

 }

 return(pro.ll)

}

For efficiency, the parameter sequences were chosen such that it is dense close to the

estimated values and is sparse towards the boundaries.

2. The profiling can now be executed simply by executing the following

outProfiles <- myProfile(lower, upper, bestPar)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

For each of the parameters, the previous function calculates 26 discrete points to form

the likelihood profile. In total, more than a hundred optimizations will be run which

could take hours or even days depending on the power of the computer (see Note 17).

3. Plotting the profile of the first parameters can be done by executing

par(mfrow = c(2, 2))

sapply(1:4, function(x) plot(outProfiles[[x]], xlab = myParams[x], ylab =

'RMSE'))

3.5. Bootstrapping parameters

Bootstrapping is a statistical method for assigning measures of accuracy, such as confident

interval, to the parameter estimates (26-28). Here a nonparametric approach using Monte Carlo

resampling is employed. First, we resample the data with replacement to have a sample of equal

size to the original data. The parameters are then estimated from the resampling. The procedure

is repeated many times to get bootstrap distributions of the parameters.

1. Define bootstrapping function as below

myBoot <- function(numboot = 1000, numpar = 4) {

 # numpar: number of parameters in the model

 # numboot: number of bootstrap samples

 results <- matrix(NA, numboot, numpar)

 original <- myData

 sampling <- function(x) sample(original$V[original$time==x],

length(original$V[original$time==x]), replace = 1)

 for (i in 1:numboot) {

 message("Bootstrapping sample ", i)

 tmp <- sapply(unique(original$time), sampling)

 myData <- cbind(original$time, as.vector(tmp))

 DEarguments <- list(myCostFn, lower, upper, myOptions)

 fit <- do.call("DEoptim", DEarguments)

 results[i,] <- fit$optim$bestmem

 }

 results <- as.data.frame(results)

 colnames(results) <- myParams

 return(results)

}

2. Running bootstrapping now can be done by executing

bootResults <- myBoot() # see Notes 17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

If you need to change the number of bootstrap samples, simply input the parameter

numboot, e.g., myBoot(10000). Plotting histogram of the bootstrap samples can be done

with the commands:

par(mfrow = c(2,2))

sapply(1:4, function(x) hist(bootResults[, x]))

3. 95% confidence intervals can be calculated from bootstrap sample with the percentile

method as:

apply(bootResults, 2, quantile, probs = c(.025,.975))

The functions and R codes presented in this section will work for other models and data sets as

long as the same procedure and naming convention have been carried out.

4. Notes

1. The log-scale viral titers were used not only because of its conventional usage in

reporting viral load, but the log-scale also assumes implicitly that viral load is normally

distributed in log scale. This assumption simplifies the maximum likelihood problem to

least squares (26), and thus the use of the RMSE as a cost function in the optimization.

2. R is a case-sensitive language. Check spelling carefully and whether the letters are

properly capitalized.

3. To avoid unnecessary errors, CSV data files should be filled from the first row and first

column, i.e., the first row for variable names and first column contains data of the first

variable. R can read a wide range of data types and even directly from Excel, but specific

functions are needed.

4. Double-checking data with decimal separators. Differences in locales of the operating

system lead to wrong interpretation of number when saving as CSV. For example, a

number stored in Excel as 3,141.2 would be potentially treated as two numbers: 3 and

141.2. This can be detected by visualizing the data in R or inspecting the CSV file

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

directly to see how the data are interpreted. To avoid, numeric cells in Excel should be

format without “Use 1000 separator” option enabled.

5. On the operating system of Windows, the path to the data file needs a special treatment

in R, e.g., a file located in

C:\Users\ABC\Downloads\myData.csv

needs to be supplied to R as

C:\\Users\\ABC\\Downloads\\myData.csv

This is because a backslash is also an escape character in R.

6. If you see an error that says

non-numeric argument to binary operator

it is most likely that the name you gave to a model parameter already existed in R’s

default environments, e.g., an expression as –Beta could lead to an error while –myBeta

would not.

7. As noted by the deSolve package’s author (19), the order of the return values in deSolve

model function is important. They need to strictly follow the order listed by the model

equations written above it.

8. The model initial conditions are the values of each variable in the model at day zero.

Although we optimize the model parameters in log scale, the model works in normal

scale, and hence the initial conditions. Here, the initial number of the target cells was

approximated at 106 from based on the experiment reports, the initial number of infected

cells was zero. The initial viral titers were set at 10 TCID50. This value was arbitrarily

chosen at a value below the detection level of 50 TCID50. To our knowledge, there is

not any conclusive method to define this number while its value can affect the parameter

accuracy (24). Smoothing and extrapolating approaches have been used (15) and seem

to provide a reasonable estimate of the initial viral titers (24).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

9. Because the model runs in a smoother time scale than the observed data, we calculated

only the differences among the matched data points by the observed time. However,

solving the ODEs are not always easy when we are evaluating large combinations of

the parameters, some of which might not make sense at all. Thus, there might be cases

when the exact time points cannot be computed but only its nearby neighbor. Matching

these time points could lead to unexpected results. It is safer to truncate the numeric

time points when matching the model time points and the data time points by replacing

yhat[,1] %in% myData$time

with

as.character(yhat[,1]) %in% as.character(myData$time)

10. Some model parameters have analytical meanings but no equivalent experimental

values. For example, the parameter  represents the reaction rate between the virus and

the target cells, which depends on the concentration of the virus and the number of target

cells. In these cases, the parameter’s range was defined to cover several orders of

magnitude. Further insights into the choice of parameter ranges can be revealed by

computing the parameter’s likelihood profile in section 3.4 (15,24,29).

11. Some model parameters can be determined experimentally. For example, the viral

clearance rate c could be approximated by monitoring only the virus in vitro (30). In

this case, we can reduce the burden on the optimizer and minimize the changes to the

code by providing the same upper and lower bound for the parameter c at the formerly

determined values, e.g.,

lower = log10(c(1e-7, 1e-2, 1e+0, 1e-1))

upper = log10(c(1e-3, 1e+2, 1e+2, 1e-1))

12. The differential evolution algorithm can be speed up considerably with parallel mode

enable with the option such as (17):

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

myOptions <- DEoptim.control(parallelType = 1, packages = c("deSolve"),

parVar = c("myModel","myStates", "lower", "upper", "modelTime", "myData"),

itermax = 10000, steptol = 50, reltol = 1e-8)

However, successful application of this for all calculations are not guarantee. Certain

understandings about parallelization computing in R are needed to avoid

miscalculations, e.g., wrong data or variables are used in calculation.

13. If we observed no changes in the cost function output (bestval) after several iterations,

or even after reaching the maximum number of iterations (itermax), it means that the

optimization failed. We can try to adjust the parameter boundaries to a more probable

region based on literature and the parameter’s meaning.

14. As noted by the author (19), if you see an error as

DLSODA- Above warning has been issued ## times.

it means that the ODEs solver could not proceed with the current set of parameters. The

most likely reason is that the parameter range was too wide, leading to extreme values

to be evaluated. It can be avoided by narrowing down the parameter ranges to a more

plausible region.

15. The implementation of the cost function in this chapter was a simplified version. More

sophisticated error handling codes can be added to show what kind of error took place

and how to handle it. This helps to speed up the process as well as prevents unexpected

results that we are unaware of. This is done by the typical try-catch syntax, e.g.,

myCostFn <- function(x) {

 # Pick par., assign names and

 parms <- x[1:length(myParams)]

 names(parms) <- myParams

 # solve the ODEs

 yhat <- ode(myStates, modelTime, myModel, 10^parms)

 # Check if current par. makes sense

 checkBad <- function(x) {

 return(any(x < 0 | is.na(x)))

 }

 tryCatch(

 {

 yhat <- ode(myStates, modelTime, myModel, 10^parms)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

 badSet <- checkBad(yhat)

 if (badSet) {

 rmse <- 1e+8

 return(rmse)

 } else {

 yMatch <- yhat[yhat[,1] %in% myData$time,]

 nm <- rle(myData$time)$lengths

 x <- myData[, myV]- rep(log10(yMatch[, myV]), times =

nm)

 rmse <- sqrt(mean(x^2))

 return(rmse)

 }

 }, error = function(e) {

 rmse <- 2e+8

 return(rmse)

 }

)

}

16. When a small sample size (n) is used or a large number of parameters are estimated (k),

a corrected version of AIC should be used (23), i.e., AICC = AIC  2k(k  1)  (nk1).

17. Many parts of the codes can be speeded up by vectorizing and parallelizing the

calculations, e.g., using mcapply, snow package. But different implementations are

needed for Windows compared to Linux and Mac OS. Here, using base R codes the

calculations can be applied to all operating systems.

18. Many innovative optimizing algorithms exist and continue to be improved. However,

there is not any algorithm that can improve the estimation quality in the scarce and

sparse of data (24). Therefore, it is recommended to seek for improvements in extra data

sources instead of in variations of the other optimization techniques.

19. Using R-script editor is straightforward. However, a text editor tailored for

programming will minimize coding errors and speed up considerably the process.

Popular freeware editors for R include, but not limit to, R Studio, Sublime Text,

Notepad++, Atom.

20. A complete R code as described in this chapter can be found at

https://figshare.com/s/9f0c50984e470693839e

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

5. References

1. Global Surveillance during an Influenza Pandemic. 2009.

2. Potter CW. A history of influenza. Journal of Applied Microbiology. Blackwell Science

Ltd; 2001;91(4):572–9.

3. World Health Organization, Programme WGI. WHO global technical consultation:

global standards and tools for influenza surveillance, Geneva, Switzerland, 8-10 March

2011. Geneva : World Health Organization; 2011.

4. Boianelli A, Nguyen VK, Ebensen T, Schulze K, Wilk E, Sharma N, et al. Modeling

influenza virus infection: A roadmap for influenza research. Viruses. 2015;7(10):5274–

304.

5. Smith AM, Perelson AS. Influenza A virus infection kinetics: quantitative data and

models. WIREs Syst Biol Med. 2010;3(4):429–45.

6. Canini L, Perelson AS. Viral kinetic modeling: state of the art. Journal of

Pharmacokinetics and Pharmacodynamics. 2014;41(5):431–43.

7. Beauchemin CA, Handel A. A review of mathematical models of influenza A infections

within a host or cell culture: lessons learned and challenges ahead. BMC Public Health.

BioMed Central Ltd; 2011;11:S7.

8. Duvigneau S, Sharma-Chawla N, Boianelli A, Stegemann-Koniszewski S, Nguyen VK,

Bruder D, et al. Hierarchical effects of pro-inflammatory cytokines on the post-influenza

susceptibility to pneumococcal coinfection. Scientific Reports. 2016;6.

9. Hernandez-Vargas EA, Wilk E, Canini L, Toapanta FR, Binder SC, Uvarovskii A, et al.

Effects of Aging on Influenza Virus Infection Dynamics. Journal of Virology. 2014;

88(8):4123–31.

10. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS. Kinetics of Influenza

A Virus Infection in Humans. Journal of Virology. 2006;80(15):7590–9.

11. Nowak M, May RM. Virus Dynamics : Mathematical Principles of Immunology and

Virology: Mathematical Principles of Immunology and Virology. Oxford University

Press, UK; 2000.

12. Pawelek KA, Huynh GT, Quinlivan M, Cullinane A, Rong L, Perelson AS. Modeling

Within-Host Dynamics of Influenza Virus Infection Including Immune Responses. Antia

R, editor. PLoS Comput Biol. 2012;8(6): e1002588–13.

13. Wu H, Zhu H, Miao H, Perelson AS. Parameter Identifiability and Estimation of

HIV/AIDS Dynamic Models. Bull Math Biol. 2008;70(3):785–99.

14. Hernandez-Vargas EA, Middleton RH. Modeling the three stages in HIV infection.

Journal of Theoretical Biology. 2013; 320:33–40.

15. Nguyen VK, Binder SC, Boianelli A, Meyer-Hermann M, Hernandez-Vargas EA. Ebola

virus infection modeling and identifiability problems. Frontiers in Microbiology. 2015;

6:7590–7511.

16. R Core Team. R: A Language and Environment for Statistical Computing. Vienna,

Austria; 2015.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

17. Storn R, Price K. Differential Evolution -- A Simple and Efficient Heuristic for global

Optimization over Continuous Spaces. Journal of Global Optimization. 1997;11(4):341–

59.

18. Toapanta FR, Ross TM. Impaired immune responses in the lungs of aged mice following

influenza infection. Respir Res. BioMed Central; 2009 18;10(1):340–19.

19. Soetaert K, Cash J, Mazzia F. Solving Differential Equations in R. Berlin, Heidelberg:

Springer Science & Business Media; 2012.

20. Mullen K, Ardia D, Gil D, Windover D, Cline J. DEoptim: An R Package for Global

Optimization by Differential Evolution. Journal of Statistical Software. 2011;40(6):1–

26.

21. Sakamoto Y, Ishiguro M, Kitagawa G. Akaike information criterion statistics. D Reidel

Pub Co; 1986.

22. Gelman A, Hwang J, Vehtari A. Understanding predictive information criteria for

Bayesian models. Statistics and Computing. Springer US; 2014;24(6): 997–1016.

23. Kenneth P Burnham DA. Model Selection and Multimodel Inference: A Practical

Information-theoretic Approach. Springer New York; 2003;1–515.

24. Nguyen VK, Klawonn F, Mikolajczyk R, Hernandez-Vargas EA. Analysis of Practical

Identifiability of a Viral Infection Model. PLoS ONE. 2016;11(12): e0167568.

25. Raue A, Kreutz C, Theis FJ, Timmer J. Joining forces of Bayesian and frequentist

methodology: a study for inference in the presence of non-identifiability. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

The Royal Society; 2013;371(1984):20110544–4.

26. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. New York,

NY: Springer Science & Business Media; 2009.

27. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of

Statistical Accuracy. 2010;1–23.

28. Liepe J, Kirk P, Filippi S, Toni T, Barnes CP, Stumpf MPH. A framework for parameter

estimation and model selection from experimental data in systems biology using

approximate Bayesian computation. Nature Protocols. 2014;9(2):439–56.

29. Raue A, Becker V, Klingmüller U, Timmer J. Identifiability and observability analysis

for experimental design in nonlinear dynamical models. Chaos. 2010;20(4):045105–9.

30. Pinilla LT, Holder BP, Abed Y, Boivin G, Beauchemin CAA. The H275Y

Neuraminidase Mutation of the Pandemic A/H1N1 Influenza Virus Lengthens the

Eclipse Phase and Reduces Viral Output of Infected Cells, Potentially Compromising

Fitness in Ferrets. Journal of Virology. 2012;86(19):10651–60.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted April 25, 2017. ; https://doi.org/10.1101/130674doi: bioRxiv preprint

https://doi.org/10.1101/130674

