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Abstract 

In recent years, mathematical modeling approaches have played a central role to understand 

and to quantify mechanisms in different viral infectious diseases. In this approach, biological-

based hypotheses are expressed via mathematical relations and then tested based on empirical 

data. The simulation results can be used to either identify underlying mechanisms, provide 

predictions on infection outcomes, or evaluate the efficacy of a treatment.  

Conducting parameter estimation for mathematical models is not an easy task. Here we detail 

an approach to conduct parameter estimation and to evaluate the results using the free software 

R. The method is applicable to influenza virus dynamics at different complexity levels, 

widening experimentalists capabilities in understanding their data. The parameter estimation 

approach presented here can be also applied to other viral infections or biological applications. 
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1. Introduction 

Seasonal epidemics and pandemics of influenza virus infections remain a major health burden 

worldwide, causing immense losses in lives, life quality, and economy (1-3). The overwhelming 

amount of influenza research has largely improved our understanding, however, holistic 

understanding that promotes serious adverse events leading to health complications are largely 

fragmented (4).  

 

Figure 1 IAV infection and dynamics. (a) Description of the main phases of IAV infection within a host. After 

entering the respiratory tract, each virion binds to a target cell. Then, virions enter the eclipse phase (5-12 hpi), 

before starting to replicate and infecting other cells. (b) IAV and IR dynamics. The innate IR is mainly represented 

by Type I interferon (IFN-I) and by the natural killer (NK) cells, whereas the adaptive IR is mainly driven by 

cytotoxic CD8+T cells (CTLs) and antibodies (Abs). Figure adapted from (4) . 
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Analyses of experimental data on viral infections have predominantly based on statistical 

methods. These approaches assist experimentalists to recognize differences and correlations, 

but in-depth interpretations of the underlying mechanisms are limited. With mathematical 

modeling approaches, one can formulate different hypothesized mechanisms in forms of 

mathematical relations. Consequently, parameter estimation procedures are performed to test 

the models against empirical data (4-7). This method has been used to study a wide range of 

events occur during the progression of influenza infection (4-6,8). For instance, mathematical 

models have been used to describe the viral replication cycle, interactions between the virus 

and the host, and the outcomes of the infection (Figure 1). Additionally, simulation results can 

reveal not only the basic characteristics of the infection dynamics but also practical knowledge 

in controlling the infection (4-6,9). 

Conducting parameter estimation for mathematical models, however, is a demanding task. This 

requires familiarizing with different concepts of mathematics, optimization, programming 

language, and sometimes costly software toolboxes. Nevertheless, these technical problems 

should not prevent biologists and virologists from exploring their data potentials. Thus, in this 

chapter, we introduce an adaptable and state-of-the-art protocol for parameter estimation and 

evaluation. To this end, we focused on ordinary differential equations (ODEs) to model the 

infection dynamics. The target-cell limited model presented in (10,11) is adopted owing to its 

role as the core component of more than a hundred publications in virus research, e.g., influenza 

(4,5,7,9,12), HIV (13,14), and Ebola (15) among others. 

This chapter covers chronologically the steps portrayed in Figure 2. Briefly, experimental data 

need to be prepared in standard formats. Model equations need to be defined with relevant 

components and corresponding model parameters. Based on that, a cost function that defines 

how matching the model and the data is written in the R programming language (16). To this 

end, the root mean square errors function is considered. The function, the data, and the model 
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can be then fed into an optimizer algorithm to find the best set of parameters that provide the 

best agreement between the model and the data. The global optimization named Differential 

Evolution (17) is used here to adjust the model parameters. Setting conditions of the optimizer 

and the plausible range of the parameters of interests need to be defined. When contradictory 

hypotheses exist, model comparison among them can be done at this point with information 

criteria. Then, model predictions can be performed with the obtained parameters. Further model 

evaluation steps are developed using the best model to obtain confidence intervals or to detect 

potential drawbacks of the obtained parameters. 

 

Figure 2.  A typical parameter estimation process in mathematical modeling. Dashed lines indicate optional 

steps and those are not presented in the scope of this chapter. 

2. Materials 

The following materials are needed: 

1. Experimental data: For illustration purpose, we consider a synthetic in vitro data set of 

influenza A virus infection with the viral dynamics and the sampling scheme resemble 

that in (18). Approximately 106 host cells are assumed to support influenza virus 

infection. Based on practical lab limitations, the viral load is assumed to be the only 

measurement, thus, viral titers were measured regularly (in TCID50) at day 1, 2, 3, 5, 7, 

9 post infection. At each time point, there are five replications. The data used in this 
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chapter can be found in this external hyperlink. The first term in each row represents 

the sampling date and the second is the viral load. Note that viral titers were already 

converted into log base 10 scales (see Notes 1). 

2. Mechanistic model(s): The proposed mathematical model depends on the data at hand 

and the hypothesis to be addressed.  Here, we are interested in having the estimates of 

the rates of infection, infected cell death, viral replication, and viral clearance. Thus, a 

widely used model for viral infection so-called the target-cell limited model (10) can be 

used (Figure 3).  

 

Figure 3.  Schematic of the target-cell limited model. This model assumes that viral infection is limited 

only by the availability of the uninfected cells. The roles of the immune systems are neglected. The 

uninfected cells (U) are infected by the viruses and become infectious (I), consequently, these infectious 

cells are able to release virus particles (V). The viruses can continue to infect the remain susceptible 

cells. 

The model includes three compartments: uninfected cells (U), infected cells (I), and 

viral titers (V). The model reads in the following three differential equations: 

𝑑𝑈

𝑑𝑡
= −𝛽𝑈𝑉,

𝑑𝐼

𝑑𝑡
= 𝛽𝑈𝑉 − 𝛿𝐼,

𝑑𝑉

𝑑𝑡
= 𝑝𝐼 − 𝑐𝑉.

 

The left term of the equations represents the change of the variables respect to the time. 

The parameters β, δ, p, and c represent the rates of effective infection, infected cell 
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death, viral replication, and viral clearance, respectively. It is considered that the virus 

(V) infects susceptible cells (U) with a rate β. Infected cells are cleared with a rate δ.  

Once cells are productively infected (I), they can release virus at rate p and virus 

particles are cleared at rate c. 

3. A computer with any of the following operating systems: Windows, Linux, or Mac OS. 

4. R software: a free, open-source, and high-level programming language (16), 

downloading from https://www.r-project.org. 

5. Required R’s packages include deSolve (19) (solving differential equations) and 

DEoptim (20) (performing the Differential Evolution algorithm) can be installed in R 

by running the following commands §

install.packages("deSolve"); library("deSolve")  # Notes 2 

install.packages("DEoptim"); library("DEoptim") 

# Anything follows the character ‘#’ is a comment and is not processed in R 

For the rest of the chapter, fix-width font-style letters denote R codes. 

3. Methods 

3.1. Preparing data 

The experimental data stored in Excel sheet are most often not ready for analyses in R. Comma-

Separated-Values (.csv) is a universal format that can be read in any software. This can be 

achieved by: 

1. Deleting all irrelevant data (notes, comments, etc.) in the Excel sheet, 

2. Naming variables (columns) with computer-friendly format, i.e., no spaces or special 

characters, starting only with characters not with numbers, 

3. Choosing Save As, in file format field choose Comma Separated (see Notes 3, 4). 

                                                 
§ Copy and paste the commands, press Enter (required internet connection). 
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Then, reading the data into R can be done by running: 

myData <- read.csv(“/path/to/myData.csv”)  # Notes 2, 5 

myData  # View data 

The data have two variables (each in different column), including V (viral titters in log base 

10) and the time (in days). For simplicity, we can also input directly the data as follow: 

# Time in day 

time <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7, 

7, 7, 7, 9, 9, 9, 9, 9) 

 

# Viral titres in log 10 

V <- c(2.36, 3.23, 2.69, 2.57, 2.37, 4.87, 4.41, 5.04, 3.76, 4.16, 5.20, 

5.43, 5.55, 5.60, 6.12, 4.96, 4.54, 4.65, 5.06, 4.80, 3.67, 3.22, 3.35, 

2.84, 3.76, 1.61, 1.80, 2.00, 1.69, 2.22) 

myData <- data.frame(time = time, V = V) 

3.2. Writing the model and the cost function 

1. The target-cell limited model can be written in R format as follows:  

myModel <- function(t,state,parameters) {  

  with(as.list(c(state,parameters)),{ 

   # Filling in the equations   # see Notes 6 

    dU = - myBeta*U*V        

    dI = myBeta*U*V - myDelta*I  

    dV = myP*I - myC*V 

    # Outputs of the model    # see Notes 7 

    list(c(dU, dI, dV))      

  }) 

} 

In short, the model is named as myModel. The three components U, I and V, called states 

in modelling terms, are written in separate lines with leading letter d. The right-hand 

side of the equations are the same as the model equations, except the variable names are 

spelled out (see Notes 6). We also define what is important in the model for later uses, 

including 

myStates <- c(U = 10^6, I = 0, V = 10)   # see Notes 8 

myParams <- c("myBeta","myDelta","myP","myC")  # list of parameters 

myV      <- "V"  # the component in the model observed in data 
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and the time scale for the model. This can be arbitrarily chosen but it should cover the 

range of the observed time scale. Here we record the model outputs approximately every 

15 minutes during ten days. 

modelTime  <- seq(from = 0, to = 10, by = 0.01)  # see Notes 9 

2. The root mean square errors (RMSE) measures the magnitude of the difference between 

the output from the model (V) and the experimental data. Here it is calculated as 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(log10 𝑦𝑖 − log10 𝑦̂ )2

𝑛

𝑖

 

where n is the sample size, 𝑦𝑖  is a data point, and 𝑦̂ is the value produced from the model 

when we plug in a set of parameter values and calculate the value of V at the time point 

observing 𝑦𝑖 . In R language, the cost function can be written as 

myCostFn <- function(x) { 

    parms        <- x[1:length(myParams)] 

    names(parms) <- myParams 

    yhat      <- ode(myStates, modelTime, myModel, 10^parms) 

    yMatch    <- yhat[yhat[,1] %in% myData$time, ]  # see Notes 9 

    nm        <- rle(myData$time)$lengths 

    x         <- myData[, myV]- rep(log10(yMatch[, myV]), times = nm) 

    rmse      <- sqrt(mean(x^2)) 

    return(rmse) 

}  # see Notes 15 

3.2.1 Defining parameter boundaries, optimizer conditions and running 

optimizer 

1. Based on literature, we define ranges of plausible parameter values. For example, the 

elimination half-life (𝑡1
2⁄ ) of influenza is unknown, however this cannot be considered 

either in seconds or in a century time scale. Converting this time into the clearance rate 

c is done by the formula 𝑡1
2⁄ = ln(2) /𝑐. Note that the boundaries are transformed to 
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log base 10 scale and that the numbers subject to one’s own expertise. We let the reader 

check the boundaries of the four parameter β, δ, p, and c below. 

lower = log10(c(1e-7, 1e-2, 1e+0, 1e-1))  # see Notes 10 and 11 

upper = log10(c(1e-3, 1e+2, 1e+2, 1e+2)) 

2. Standard optimizer settings are often not sufficient for complex models. We can force 

the optimizer to work more exhaustively by increasing the number of trials 

(combination of itermax and steptol) and decreasing the relative tolerance named as 

reltol (measurement of the error relative to the size of each solution component). 

myOptions <- DEoptim.control(itermax = 10000, steptol = 50, reltol = 1e-8)  # 

see Notes 12 

3. At this point, we are ready to fit the model by calling the optimizer with the inputs 

including the cost function, the lower and upper bound, and the options as follows: 

fit <- do.call("DEoptim", list(myCostFn, lower, upper, myOptions))  # see 

Notes 13, 14, 15 

The simulation time took approximately five minutes on an Intel Core i7, 8Gb RAM 

computer. The algorithm evaluates different combinations of the parameters in the 

provided ranges, comparing them by the RMSE. The process is repeated until the 

algorithm can not find a combination of parameters that has a significant improvement 

compared to the current parameter set. 

4. Visualization of the results can be done with the following commands (Figure 4) 

(bestPar <- fit$optim$bestmem)  # parameter estimates in log 10 scale 

names(bestPar) <- myParams 

out <- ode(myStates, modelTime, myModel, 10^bestPar) 

plot(out[, "time"], log10(out[, "V"]), type = "l")  # in log 10 

points(myData$time, myData$V) # superimposing observed data points 
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Figure 4. Fitted model and the observed data. 

3.3. Model comparison with Akaike information criteria (AIC) 

AIC is a criterion of choice when coming to comparing models (21,22). More complex 

models (more parameters) tend to provide a better fit, thus the AIC gives a penalty to 

the number of parameters to avoid overfitting (23). The smaller the AIC the better the 

model. In this context, a function to calculate can be defined as: 

myAIC <- function(fit, np=NULL, rms=NULL, n=NULL) { 

    if (is.null(n)) stop("How many observations were used? n=#") 

    if (is.null(np)) np <- length(fit$optim$bestmem) 

    if (is.null(rms)) rms <- fit$optim$bestval 

    return(2*np + n*log(rms)) 

} 

Computing the AIC by simply run: 

myAIC(fit, n = 30) 

where fit is the fitted model and n is the sample size used for fitting (see Notes 16). 
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3.4. Likelihood profile of the model parameters 

Because of the complexity of the model and the scarce of experimental data, it might be 

impossible to identify the parameters with less uncertainty (24,25). The profiling of model 

parameters is used to inform the identifiability of parameters or to calculate the parameter’s 

confidence interval. For each parameter, a sequence extending both sides of the estimated 

parameter to the boundaries is generated. For each value, the optimization is done by keeping 

the parameter value fixed while reoptimizing the other parameters. 

1. Define the profiling function as below:  

myProfile <- function(lower, upper, bestPar) { 

 pro.ll <-  NULL 

 for (v in 1:length(bestPar)) { 

     # Creating parameter sequence 

     tmpl <- seq(lower[v], bestPar[[v]], length.out = 100) 

     tmpl <- tmpl[order(tmpl, decreasing = TRUE)[cumsum(1:13)]] 

     tmpr <- seq(bestPar[[v]], upper[v], length.out = 100) 

     tmpr <- tmpr[cumsum(1:13)] 

     pars <- sort(unique(c(lower[v], tmpl, bestPar[[v]], tmpr, upper[v]))) 

     ppl  <- NULL 

     # Run optimization for each and record the parameters and RMSE 

     for (p in pars) { 

         DEargs  <- list(myCostFn, replace(lower, v, p), replace(upper, v, 

p), myOptions)  

         fit     <- do.call("DEoptim", DEargs) 

         ppl     <- c(ppl, fit$optim$bestval) 

     } 

     pro.ll[[v]] <- cbind(pars, ppl) 

 } 

  return(pro.ll) 

} 

For efficiency, the parameter sequences were chosen such that it is dense close to the 

estimated values and is sparse towards the boundaries. 

2. The profiling can now be executed simply by executing the following 

outProfiles <- myProfile(lower, upper, bestPar) 
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For each of the parameters, the previous function calculates 26 discrete points to form 

the likelihood profile. In total, more than a hundred optimizations will be run which 

could take hours or even days depending on the power of the computer (see Note 17). 

3. Plotting the profile of the first parameters can be done by executing 

par(mfrow = c(2, 2)) 

sapply(1:4, function(x) plot(outProfiles[[x]], xlab = myParams[x], ylab = 

'RMSE')) 

3.5. Bootstrapping parameters 

Bootstrapping is a statistical method for assigning measures of accuracy, such as confident 

interval, to the parameter estimates (26-28). Here a nonparametric approach using Monte Carlo 

resampling is employed. First, we resample the data with replacement to have a sample of equal 

size to the original data. The parameters are then estimated from the resampling. The procedure 

is repeated many times to get bootstrap distributions of the parameters. 

1. Define bootstrapping function as below 

myBoot <- function(numboot = 1000, numpar = 4) { 

 # numpar: number of parameters in the model 

 # numboot: number of bootstrap samples 

 results <- matrix(NA, numboot, numpar) 

 original <- myData 

 sampling <- function(x) sample(original$V[original$time==x], 

length(original$V[original$time==x]), replace = 1) 

 for (i in 1:numboot) { 

  message("Bootstrapping sample ", i) 

  tmp    <- sapply(unique(original$time), sampling) 

  myData <- cbind(original$time, as.vector(tmp)) 

  DEarguments <- list(myCostFn, lower, upper, myOptions) 

  fit <- do.call("DEoptim", DEarguments) 

  results[i, ] <- fit$optim$bestmem 

 } 

 results <- as.data.frame(results) 

 colnames(results) <- myParams 

 return(results) 

} 

2. Running bootstrapping now can be done by executing 

bootResults <- myBoot()  # see Notes 17 
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If you need to change the number of bootstrap samples, simply input the parameter 

numboot, e.g., myBoot(10000). Plotting histogram of the bootstrap samples can be done 

with the commands: 

par(mfrow = c(2,2)) 

sapply(1:4, function(x) hist(bootResults[, x]) ) 

3. 95% confidence intervals can be calculated from bootstrap sample with the percentile 

method as: 

apply(bootResults, 2, quantile, probs = c(.025,.975)) 

The functions and R codes presented in this section will work for other models and data sets as 

long as the same procedure and naming convention have been carried out. 

4. Notes 

1. The log-scale viral titers were used not only because of its conventional usage in 

reporting viral load, but the log-scale also assumes implicitly that viral load is normally 

distributed in log scale. This assumption simplifies the maximum likelihood problem to 

least squares (26), and thus the use of the RMSE as a cost function in the optimization. 

2. R is a case-sensitive language. Check spelling carefully and whether the letters are 

properly capitalized. 

3. To avoid unnecessary errors, CSV data files should be filled from the first row and first 

column, i.e., the first row for variable names and first column contains data of the first 

variable. R can read a wide range of data types and even directly from Excel, but specific 

functions are needed. 

4. Double-checking data with decimal separators. Differences in locales of the operating 

system lead to wrong interpretation of number when saving as CSV. For example, a 

number stored in Excel as 3,141.2 would be potentially treated as two numbers: 3 and 

141.2. This can be detected by visualizing the data in R or inspecting the CSV file 
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directly to see how the data are interpreted. To avoid, numeric cells in Excel should be 

format without “Use 1000 separator” option enabled. 

5. On the operating system of Windows, the path to the data file needs a special treatment 

in R, e.g., a file located in 

C:\Users\ABC\Downloads\myData.csv 

needs to be supplied to R as 

C:\\Users\\ABC\\Downloads\\myData.csv 

This is because a backslash is also an escape character in R. 

6. If you see an error that says 

non-numeric argument to binary operator 

it is most likely that the name you gave to a model parameter already existed in R’s 

default environments, e.g., an expression as –Beta could lead to an error while –myBeta 

would not. 

7. As noted by the deSolve package’s author (19), the order of the return values in deSolve 

model function is important. They need to strictly follow the order listed by the model 

equations written above it. 

8. The model initial conditions are the values of each variable in the model at day zero. 

Although we optimize the model parameters in log scale, the model works in normal 

scale, and hence the initial conditions. Here, the initial number of the target cells was 

approximated at 106 from based on the experiment reports, the initial number of infected 

cells was zero. The initial viral titers were set at 10 TCID50. This value was arbitrarily 

chosen at a value below the detection level of 50 TCID50. To our knowledge, there is 

not any conclusive method to define this number while its value can affect the parameter 

accuracy (24). Smoothing and extrapolating approaches have been used (15) and seem 

to provide a reasonable estimate of the initial viral titers (24).  
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9. Because the model runs in a smoother time scale than the observed data, we calculated 

only the differences among the matched data points by the observed time. However, 

solving the ODEs are not always easy when we are evaluating large combinations of 

the parameters, some of which might not make sense at all. Thus, there might be cases 

when the exact time points cannot be computed but only its nearby neighbor. Matching 

these time points could lead to unexpected results. It is safer to truncate the numeric 

time points when matching the model time points and the data time points by replacing  

yhat[,1] %in% myData$time 

with  

as.character(yhat[,1]) %in% as.character(myData$time) 

10. Some model parameters have analytical meanings but no equivalent experimental 

values. For example, the parameter  represents the reaction rate between the virus and 

the target cells, which depends on the concentration of the virus and the number of target 

cells. In these cases, the parameter’s range was defined to cover several orders of 

magnitude. Further insights into the choice of parameter ranges can be revealed by 

computing the parameter’s likelihood profile in section 3.4 (15,24,29). 

11. Some model parameters can be determined experimentally. For example, the viral 

clearance rate c could be approximated by monitoring only the virus in vitro (30). In 

this case, we can reduce the burden on the optimizer and minimize the changes to the 

code by providing the same upper and lower bound for the parameter c at the formerly 

determined values, e.g., 

lower = log10(c(1e-7, 1e-2, 1e+0, 1e-1)) 

upper = log10(c(1e-3, 1e+2, 1e+2, 1e-1)) 

12. The differential evolution algorithm can be speed up considerably with parallel mode 

enable with the option such as (17):  
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myOptions <- DEoptim.control(parallelType = 1, packages = c("deSolve"), 

parVar = c("myModel","myStates", "lower", "upper", "modelTime", "myData"), 

itermax = 10000, steptol = 50, reltol = 1e-8) 

However, successful application of this for all calculations are not guarantee. Certain 

understandings about parallelization computing in R are needed to avoid 

miscalculations, e.g., wrong data or variables are used in calculation. 

13. If we observed no changes in the cost function output (bestval) after several iterations, 

or even after reaching the maximum number of iterations (itermax), it means that the 

optimization failed. We can try to adjust the parameter boundaries to a more probable 

region based on literature and the parameter’s meaning. 

14. As noted by the author (19), if you see an error as 

DLSODA-  Above warning has been issued ## times. 

it means that the ODEs solver could not proceed with the current set of parameters. The 

most likely reason is that the parameter range was too wide, leading to extreme values 

to be evaluated. It can be avoided by narrowing down the parameter ranges to a more 

plausible region. 

15. The implementation of the cost function in this chapter was a simplified version. More 

sophisticated error handling codes can be added to show what kind of error took place 

and how to handle it. This helps to speed up the process as well as prevents unexpected 

results that we are unaware of. This is done by the typical try-catch syntax, e.g., 

myCostFn <- function(x) { 

 # Pick par., assign names and 

    parms        <- x[1:length(myParams)] 

    names(parms) <- myParams 

 # solve the ODEs 

    yhat      <- ode(myStates, modelTime, myModel, 10^parms) 

    # Check if current par. makes sense 

    checkBad  <- function(x) { 

        return( any(x < 0 | is.na(x)) ) 

    } 

    tryCatch( 

    { 

        yhat   <- ode(myStates, modelTime, myModel, 10^parms) 
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        badSet <- checkBad(yhat) 

        if ( badSet ) { 

            rmse <- 1e+8 

            return(rmse) 

        } else {             

            yMatch <- yhat[yhat[,1] %in% myData$time, ] 

      nm     <- rle(myData$time)$lengths 

      x      <- myData[, myV]- rep(log10(yMatch[, myV]), times = 

nm) 

      rmse   <- sqrt(mean(x^2)) 

      return(rmse) 

        } 

    }, error = function(e) { 

            rmse <- 2e+8 

            return(rmse) 

        } 

    ) 

} 

16. When a small sample size (n) is used or a large number of parameters are estimated (k), 

a corrected version of AIC should be used (23), i.e., AICC = AIC  2k(k  1)  (nk1). 

17. Many parts of the codes can be speeded up by vectorizing and parallelizing the 

calculations, e.g., using mcapply, snow package. But different implementations are 

needed for Windows compared to Linux and Mac OS. Here, using base R codes the 

calculations can be applied to all operating systems.  

18. Many innovative optimizing algorithms exist and continue to be improved. However,  

there is not any algorithm that can improve the estimation quality in the scarce and 

sparse of data (24). Therefore, it is recommended to seek for improvements in extra data 

sources instead of in variations of the other optimization techniques. 

19. Using R-script editor is straightforward. However, a text editor tailored for 

programming will minimize coding errors and speed up considerably the process. 

Popular freeware editors for R include, but not limit to, R Studio, Sublime Text, 

Notepad++, Atom. 

20. A complete R code as described in this chapter can be found at 

https://figshare.com/s/9f0c50984e470693839e 
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