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Abstract 
 
Extensive evidence suggests that people use base rate information inconsistently 
in decision making. A classic example is the inverse base rate effect (IBRE), 
whereby participants classify ambiguous stimuli sharing features of both common 
and rare categories as members of the rare category. Computational models of 
the IBRE have either posited that it arises from associative similarity-based 
mechanisms or dissimilarity-based processes that may depend upon higher-level 
inference. Here we develop a hybrid model, which posits that similarity- and 
dissimilarity-based evidence both contribute to the IBRE, and test it using 
functional magnetic resonance imaging data collected from human subjects 
completing an IBRE task. Consistent with our model, multivoxel pattern analysis 
reveals that activation patterns on ambiguous test trials contain information 
consistent with dissimilarity-based processing. Further, trial-by-trial activation in 
left rostrolateral prefrontal cortex tracks model-based predictions for dissimilarity-
based processing, consistent with theories positing a role for higher-level 
symbolic processing in the IBRE. 
 
Keywords: Categorization; fMRI; base rates; multivoxel analysis, rostrolateral 
prefrontal cortex; exemplar model  
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Introduction 1	

Does this patient have influenza or Ebola virus? Categorization is a fundamental 2	

process that underlies many important decisions. Categories, such as viruses, 3	

often have different relative frequencies or base rates. Influenza, for example, is 4	

very common and infects millions of people worldwide each year, whereas Ebola 5	

virus tends to have infection rates that are orders of magnitude lower.   6	

 One critical question is how people use such base rate information when 7	

making categorization decisions. Research so far has suggested that people 8	

tend to be, at best, inconsistent in their use of base rate information. Both in 9	

realistic studies with medical professionals and artificial categorization tasks in 10	

the lab, when confronted with examples that share characteristics with both rare 11	

and common categories, people show a tendency to predict the rare category 12	

much more often than the base rates would suggest (Tversky & Kahneman, 13	

1974; Casscells, Schoenberger & Graboy, 1978; Bravata, 2000). In an extreme 14	

case, known as the inverse base rate effect (IBRE), people may even predict 15	

rare categories as more likely than common ones (Medin & Edelson, 1988). For 16	

example, in an IBRE context, a patient presenting with cough (a characteristic 17	

feature of influenza) and unexplained bleeding (a characteristic feature of Ebola), 18	

may be more likely to be diagnosed with Ebola than influenza.  19	

 The mechanisms that lead to base rate neglect are currently 20	

undetermined at both the cognitive and neural levels. Computationally, according 21	

to influential work with similarity-based categorization models (Medin & Edelson, 22	

1988; Kruschke, 1996, 2001), the IBRE arises from differential selective attention 23	
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to features for common and rare categories. Specifically, participants learn to 24	

attend more strongly to features of rare categories, making ambiguous cases 25	

seem more similar to rare categories and thus more likely to be rare category 26	

members. In terms of the flu example, participants may attend more to the 27	

unexplained bleeding feature of the rarer Ebola virus category, and thus predict 28	

Ebola when confronted with a patient with both features.  29	

 Similarity-based category learning models have strong support in the 30	

neurobiological category learning literature. Model-based predictions for how 31	

similar items are to stored category representations have been shown to 32	

correlate with activation in the medial temporal lobes (MTL; Davis, Love & 33	

Preston, 2012a; 2012b). Moreover, at a finer-grained level, multivoxel activation 34	

patterns in the MTL have been shown to contain information associated with 35	

higher-order similarity relationships between category members anticipated by 36	

similarity-based models (Davis & Poldrack, 2014), including those predicted by 37	

differences in selective attention (Mack, Love & Preston, 2016). The dorsolateral 38	

prefrontal cortex (dlPFC) tends to track predictions of choice uncertainty from 39	

similarity-based models, whereas ventromedial PFC (vmPFC) tends to track 40	

estimates of high choice accuracy or model-confidence (Davis, Goldwater & 41	

Giron, 2017).  42	

 Despite the strong cognitive and neural evidence for similarity-based 43	

models, it remains an open question whether they provide a complete account of 44	

IBRE-like phenomena. One alternative that has been proposed is that people’s 45	

choice of rare categories when confronted with conflicting information may stem 46	
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from the reliance on dissimilarity processes, either on their own, or in addition to 47	

similarity-based processes. According to theories that focus on dissimilarity-48	

based processes, people build strong expectations of the common category; thus 49	

they view items containing features inconsistent with these expectations as more 50	

likely to be members of the rare category (Juslin, Wennerholm & Winman, 2001; 51	

Winman et al., 2005). For example, a doctor may have seen thousands of cases 52	

of flu, none with unexplained bleeding, and thus rule out influenza and choose 53	

Ebola virus based on these expectations. In these cases, it is dissimilarity to 54	

members of the common category that drives choice, rather than the similarity to 55	

rare category members per se.  56	

 Formal models positing dissimilarity processes have so far been explicitly 57	

dual-process oriented. For example, ELMO, a computational model that 58	

incorporates a choice elimination decision based on dissimilarity argues that 59	

such elimination depends on explicit reasoning processes that are separate from 60	

similarity-based processes that arise on other trials (Juslin, Wennerholm & 61	

Winman, 2001). In the present study, we propose a new account based on a 62	

recently proposed dissimilarity-based extension of the generalized context 63	

model, the dissGCM (Stewart & Morin, 2007). This account uses the exact same 64	

basic similarity computations as standard similarity-based models (e.g., 65	

Nosofsky, 1986), but allows similarities and dissimilarities to stored exemplars to 66	

be used as evidence for a category. In terms of the above example, dissimilarity 67	

to influenza can be used as evidence for Ebola (and vice versa).  68	
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 As specified computationally, the dissGCM is agnostic about whether 69	

dissimilarity-based evidence constitutes a different cognitive or neurobiological 70	

mechanism from similarity-based evidence. On one hand, the dissGCM has no 71	

fundamentally different computations from a basic similarity process; as detailed 72	

below, dissimilarity is a simple transformation of similarity. On the other hand, it is 73	

possible that dissimilarity processes require manipulating similarity relationships 74	

between category representations in a more symbolic or abstract manner, as 75	

anticipated by previous dissimilarity theories.  76	

Higher-level cognitive control mechanisms are thought to depend upon a 77	

hierarchy of abstraction in the lateral PFC along the rostral-caudal axis (Badre & 78	

D’Esposito, 2007, 2009). At the apex of this hierarchy is the rostrolateral PFC 79	

(rlPFC), a region often implicated in tasks that require people to generalize 80	

across abstract, symbolic representations. For example, relational reasoning 81	

tasks like Raven’s progressive matrices and rule-based tasks involving abstract 82	

relations are thought to depend on left rlPFC (Christroff et al., 2001; Bunge et al., 83	

2005, 2009; Davis, Goldwater, & Giron, 2017). In addition to its role in 84	

generalizing abstract, relational rules, we have recently found left rlPFC to be 85	

involved in rule evaluation and novel generalization processes for simpler 86	

feature-based rules in categorization tasks (Paniukov & Davis, 2018). In the 87	

present study, dissimilarity-based generalization to novel feature pairings may 88	

depend on rule evaluation processes in the rlPFC more so than simple similarity-89	

based processing, if studies anticipating that dissimilarity-based processes 90	
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depend more upon higher-level symbolic rules are correct (Juslin, Wennerholm, 91	

& Winman, 2001; Winman et al., 2005). 92	

 Here we test the dissGCM by incorporating its predictions into an analysis 93	

of fMRI data collected from participants completing a standard IBRE task (Medin 94	

& Edelson, 1988; Kruschke, 1996). We first examine whether activation patterns 95	

elicited during conflicting trials in the IBRE task are consistent with participants 96	

thinking more about the rare category, as predicted by pure similarity-based 97	

accounts, or thinking more about (dissimilarity to) the common category, as 98	

predicted by the dissGCM. To this end, we use representational similarity 99	

analysis (RSA; Kriegeskorte et al., 2008) to decode which features of the stimuli 100	

are most strongly activated while participants are categorizing the conflicting 101	

items. This analysis is based on recent work in the broader memory literature 102	

establishing that it is possible to decode whether participants are thinking about 103	

or retrieving particular object categories from memory based on their activation 104	

patterns in ventral temporal cortex (Rissman & Wagner, 2012; Haxby, Connolly, 105	

& Guntupalli, 2014). Here we use the real world visual categories faces, scenes, 106	

and objects as stimulus features. These visual categories have a well-defined 107	

representational topography across the cortex (Haxby et al., 2001; Grill-Spector 108	

& Weiner, 2014), allowing us to predict whether participants are thinking about a 109	

particular stimulus feature (faces, scenes, or objects) by computing similarities 110	

between activation patterns elicited for the key IBRE trials and feature-specific 111	

patterns from an independent localizer scan. By crossing the visual stimulus 112	

features with our category structure (Figure 1), we create situations where a rare 113	
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category is associated with one feature type (e.g., a scene) whereas a common 114	

category is associated with another feature type (e.g., an object). The extent to 115	

which each type of information is active can then be compared to determine 116	

whether participants are thinking more about common or rare categories on a 117	

trial, and thus answer whether their neural activation patterns are more 118	

consistent with pure similarity or dissGCM’s combined dissimilarity and similarity 119	

processes.  120	

 121	

 122	

Figure 1. Abstract task design and an example trial. In the headings, I = imperfect predictor, PC = 123	

common perfect predictor, PR = rare perfect predictor. The second row refers to the visual 124	

category used for each stimulus feature: F = face, S = scene, O = object. Each following row 125	

corresponds to a learning trial, with a “1” indicating the presence of the feature and “0” indicating 126	

its absence.  127	
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 In addition to our multivoxel analysis, we also test whether the 128	

dissimilarity-based evidence may tap distinct brain regions, such as the rlPFC, 129	

beyond those involved with similarity-based evidence. To this end, we take trial-130	

by-trial predictions for how much similarity- and dissimilarity-based evidence 131	

contribute to the winning category choice and use these predictions as 132	

regressors in fMRI analysis. We anticipated that the MTL and vmPFC would be 133	

positively associated with similarity-based evidence, whereas dlPFC would be 134	

negatively associated with similarity-based evidence. Contrastingly, we expected 135	

rlPFC to track estimates of dissimilarity-based evidence.  136	

 137	

Model 138	

The dissimilarity generalized context model (dissGCM) is based off of the original 139	

generalized context model (Nosofsky, 1986), but allows for dissimilarity to be 140	

used as evidence for a decision (Stewart & Morin, 2007). The model posits that 141	

people represent stimuli as points in a multidimensional feature space. 142	

Categorization judgments are based off of distances between probe stimuli Si 143	

and stored exemplars Sj along each dimension k:  144	

                    𝑑!" = 𝑤!|𝑆!" − 𝑆!"|!
!

!!!

!/!

,                            (1) 	

 145	

where r defines the metric of the space, here assumed to be one (city-block). The 146	

wk indicates dimensional attention weights, which have the function of stretching 147	
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the distance along strongly attended dimensions, and are constrained to sum to 148	

one.  149	

 Distances are converted to similarities via an exponential transform:  150	

        𝑠𝑖𝑚!" = 𝑒!!!!" ,	 																																			(2)																															151	
 152	

where c is a specificity parameter that controls the rate at which similarity decays 153	

as a function of distance.  154	

 Like the standard GCM, similarities to all exemplars of each category are 155	

summed into evidence for each category. However, in the dissGCM, evidence 156	

that an item is dissimilar to other categories is also used as evidence for a 157	

category. For example, evidence for Disease 1 includes not only an item’s  158	

similarity to members of Disease 1, but also its dissimilarity to other diseases. 159	

The overall evidence, v, for a category CA, given stimulus Si is:  160	

𝑣!" = 𝑠 𝑡!𝑠𝑖𝑚!" +
!!∈!!

1− 𝑠 𝑡!(1− 𝑠𝑖𝑚!"),               (3)
!!∈¬!!

	

 161	

where s is a free parameter that determines how much the model weights 162	

similarity versus dissimilarity. The parameter tj reflects exemplar-specific memory 163	

strength, which we fix at each exemplar’s true base rate during learning (1 for 164	

rare category exemplars, 3 for common category exemplars). Here, we also 165	

make the assumption that exemplars only contribute evidence (similarity or 166	

dissimilarity) if they have at least one positive feature match with a probe 167	

stimulus.  168	
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 The model makes a prediction for how likely an item is to be classified as 169	

a member of a given category CA by:  170	

                       𝑝𝑟 𝑟𝑒𝑠𝑝 = 𝐶! 𝑆! =
𝑣!" + 𝑏
𝑣!" + 4𝑏

 ,                          (4)	

 171	

where b is a free parameter that reflects the baseline level of similarity for a 172	

category that has zero positive feature matches. More generally, this parameter 173	

ensures that no predicted probabilities are zero or one, which interferes with the 174	

maximum likelihood-based model fits. 175	

 The model was fit to the group response frequencies for each option by 176	

minimizing the -2 * Log Likelihood (G2) using a differential evolution function 177	

optimizer. The overall fit was 4,314.588. The best fitting parameters for each of 178	

the dimension weights were w1 (face 1) = 0.277, w2 (common scene) = 0.665, w3 179	

(rare object) = 0.887, w4 (face 2) = 0.170, w5 (common object) = 0.712, and w6 180	

(rare scene) = 0.879); c = 9.05; s = 0.946; b = 0.023.    181	

 For the model-based neuroimaging analysis, we break the evidence v for 182	

the winning (most probable) category into separate measures indicating the 183	

similarity-based evidence (the summed similarity to the winning category) and 184	

dissimilarity-based evidence (summed dissimilarity to other categories). Likewise, 185	

for the multivoxel analysis we examine how much each category’s exemplars 186	

(common and rare) contribute to the rare response for ambiguous items to 187	

predict how strongly participants should be activating information associated with 188	

each category.  189	

 190	
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Results 191	

Behavioral Results  192	

Learning curves over the 12 learning blocks for common and rare disease item 193	

pairs are shown in Figure 2. All subjects reached greater than 90% accuracy 194	

over the last 4 blocks (M = 98.1%, SD = 2.4%, range = 93.5 – 100%). Mean 195	

choice performance in the first block was above chance (25%) for both common 196	

(M = 63.6%) and rare (M = 43.2%) feature pairs. Consistent with previous IBRE 197	

studies, a mixed effects ANOVA revealed a significant block by feature type 198	

interaction, F (1, 21) = 9.87, p = .005: the common diseases were learned more 199	

quickly than the rare diseases, with prediction accuracy for the common and rare 200	

feature pairs becoming comparable by the fifth learning block.    201	

 202	
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Figure 2. Learning curves. Points 

depict proportions correct for 

common and rare disease 

predictions over the 12 blocks of 

the training phase (mean ± SEM). 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/130716doi: bioRxiv preprint 

https://doi.org/10.1101/130716
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISSIMILARITY PROCESSES IN BASE RATE NEGLECT 
	
	
	

13 

 Choice probabilities and dissGCM-derived predictions for each of the test 203	

items are summarized in Table 1. Consistent with an inverse base-rate effect, 204	

participants were numerically more likely to classify ambiguous test stimuli 205	

(combinations of rare and common features) as members of the relevant rare 206	

category (M = 47.6%) than the relevant common category (M = 43.4%). A one-207	

sample t-test revealed that the percentage of rare responding on ambiguous 208	

trials was significantly higher than the 1/4 base rate for the rare category, t (21) = 209	

8.11, p < .001.  210	

                    Behavior                                  DissGCM 
Test Item D1 D2 D3 D4 D1 D2 D3 D4 
F1+S1 .972 .018 .008 .003 .971 .014 .008 .008 
F1+O1 .031 .962 .008 0. .063 .901 .018 .018 
F2+O2 .005 0. .987 .008 .008 .008 .972 .013 
F2+S2 .023 .008 .069 .901 .018 .018 .059 .905 
F1 .667 .295 .023 .015 .667 .283 .025 .025 
F2 .107 .038 .550 .305 .027 .027 .640 .307 
S1 .848 .061 .008 .083 .955 .015 .015 .015 
O1 .008 .908 .069 .015 .040 .880 .040 .040 
O2 .008 .069 .908 .015 .012 .012 .965 .012 
S2 .023 .053 .008 .916 .032 .032 .032 .904 
S1+O1 .414 .487 .073 .027 .419 .496 .042 .042 
O2+S2 .035 .047 .453 .465 .038 .038 .460 .464 
F1+O2 .131 .238 .631 0. .156 .174 .658 .013 
F1+S2 .264 .062 .008 .667 .178 .237 .023 .563 
F2+S1 .608 .031 .138 .223 .657 .013 .155 .175 
F2+O1 .008 .674 .302 .016 .024 .567 .170 .239 
O1+O2 .008 .514 .475 .004 .040 .444 .477 .040 
S1+S2 .397 .065 .011 .527 .400 .040 .040 .520 

 211	

      Table 1. Observed and dissGCM-predicted response probabilities for the test phase. The      212	

      feature combinations presented at test are listed in the leftmost column: F = face, S = scene,   213	

      O = object. In the headings, D1 – D4 correspond to the four possible category responses  214	
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      (diseases). Bold, italicized values indicate results for the key ambigous stimuli in which a   215	

      scene was paired with an object.  216	

 217	

Multivoxel Results  218	

Test Phase. The primary goal of the multivoxel analysis was to decode, for the 219	

ambiguous stimuli, whether participants were thinking more about the common or 220	

rare category when they make the choice to classify the stimulus as rare. 221	

Specifically, for the bold italicized stimuli listed in Table 1, we tested whether 222	

participants’ activation patterns were more similar to localizer activation patterns 223	

associated with scenes when a scene was the common feature (and object was 224	

rare) and more similar to those of objects when an object was the common 225	

feature (and scene was rare).  226	

 The prediction that information associated with the common category 227	

should be more active on ambiguous trials is derived from the dissGCM. The 228	

model posits that the higher probability for a rare response is based on the 229	

contribution that dissimilarity to the common category makes to the evidence for 230	

the rare category. Indeed, in the fitted version of the model, the evidence for rare 231	

contributed by similarity to the rare category exemplar was nearly half the 232	

evidence contributed by dissimilarity to the common category exemplar (rare = 233	

0.088; common = 0.153, in the dissGCM’s attention weighted similarity units).  234	

 Neural similarities to both visual stimulus categories on the ambiguous 235	

test trials are depicted in Figure 3. Consistent with the dissGCM’s predictions, a 236	

linear mixed effects model revealed that when participants made a rare choice, 237	
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their activation patterns were most similar to whichever visual stimulus category 238	

(scenes or objects) was associated with the common category, t (21) = 2.78, p = 239	

.011. Interestingly, there was no significant difference between pattern similarity 240	

for rare and common features when participants made a common response, t 241	

(21) = 0.45, p =.653. This pattern, whereby participants tended to only 242	

differentially activate patterns associated with common features when they made 243	

a rare response, manifested in a significant interaction, t (42) = -2.22, p = .032.  244	

 245	

 246	

 Figure 3. Neural similarity to visual stimulus categories for ambiguous trials in which 247	

 participants made common (left) and rare (right) responses (mean ± SEM). The white 248	

 squares indicate similarity for trials in which an object or scene was the common category 249	

 feature. Black squares indicate similarity for trials in which an object or scene was the 250	

 rare category feature.  251	

 252	

 253	
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Learning Phase. Beyond our primary questions about test phase activation, 254	

multivoxel analysis of the learning phase can provide additional information about 255	

how participants were processing stimuli in the present task. Generally, both 256	

similarity-based models and dissimilarity-based models like the dissGCM predict 257	

that features which are most informative about the correct category will contribute 258	

more to categorization decisions during learning. With respect to multivoxel 259	

predictions, this means that activation patterns elicited during learning should 260	

contain more information about the predictive features (objects or scenes) than 261	

non-predictive features (faces), and both of these types of information should be 262	

activated more strongly than non-present features. Figure 4 depicts mean pattern 263	

similarities for predictive, non-predictive, and non-present visual stimulus 264	

categories during the learning phase for both common and rare disease trials. As 265	

anticipated, a one-way within-subjects ANOVA collapsed across trial type 266	

revealed that neural similarity to the visual category was the strongest for 267	

perfectly predictive features (M = .065), followed by the non-predictive but 268	

present features (M = -.050) and the non-present features (M = -.145), F (2, 42) = 269	

41.0, p < .001. This finding, whereby activation patterns elicited for stimuli during 270	

learning are most similar to predictive features, is consistent with recent studies 271	

using MVPA to measure dimensional selective attention in categorization and 272	

reinforcement learning (Mack et al., 2013; 2016; Leong et al., 2017; O’Bryan et 273	

al., 2018). 274	

  Although the greater contribution of predictive features to multivoxel 275	

activation patterns during learning is a straightforward prediction that is 276	
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consistent with any model, a further question is how such activation patterns 277	

during learning contribute to later test performance. As with the test phase, 278	

dissimilarity-based theories make the somewhat counterintuitive prediction that it 279	

is specifically what people learn about the common category that is driving later 280	

choices of the rare category. One way to test this using activation patterns 281	

elicited during learning is to examine how the activation of rare and common 282	

information patterns is associated with the extent to which individual participants 283	

exhibit the inverse base rate effect later during the test phase. Consistent with 284	

dissimilarity-based accounts, we found that greater activation of neural patterns 285	

associated with the common features during learning was correlated with a 286	

higher proportion of rare choices on the ambiguous test trials, r = .550, t (20) = 287	

2.95, p = .008. Alternatively, we found no relationship between activation of 288	

neural patterns associated with the rare features during learning and choice 289	

proportions on IBRE trials, r = .158, t (20) = .713, p = .483. Figure 5 depicts the 290	

associations between neural similarity to common and rare features during 291	

learning and base-rate neglect. 292	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/130716doi: bioRxiv preprint 

https://doi.org/10.1101/130716
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISSIMILARITY PROCESSES IN BASE RATE NEGLECT 
	
	
	

18 

 293	

 294	

             Figure 5. Associations between multivoxel pattern similarity to common (left) and rare 295	

 (right) features during the learning phase and individual differences in base-rate neglect. 296	

 The y-axis represents the proportion of rare responses made by each subject on 297	

 ambiguous test trials. ‘**’ = p < 0.01. 298	
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Figure 4. Multivoxel pattern similarity to 

each feature type during the learning 

phase (mean ± SEM). The left panel is 

for trials predictive of a common disease, 

and the right for trials predictive of a rare 

disease. Red points represent perfect 

predictors, purple points represent 

imperfect predictors (faces), and blue 

points represent non-present features. 
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Model-based Univariate Results  299	

By revealing a link between activation of common feature patterns and the IBRE, 300	

our multivoxel results suggest that dissimilarity-based evidence contributes to 301	

choice behavior in the present task. However, it remains an open question 302	

whether such dissimilarity processes involve distinct neural or cognitive 303	

mechanisms beyond those thought to underlie basic similarity processes.  304	

 To test whether similarity- and dissimilarity-based evidence rely on 305	

different brain regions, we modeled univariate voxel-wise activation using trial-306	

by-trial estimates of similarity- and dissimilarity-based evidence derived from the 307	

dissGCM (Figure 6). We found activation in the MTL and vmPFC that was 308	

positively correlated with similarity-based evidence, whereas the dlPFC and 309	

posterior parietal cortex were negatively correlated with similarity-based 310	

evidence. These results are consistent with findings from other model-based 311	

fMRI studies suggesting that the MTL is involved in similarity-based retrieval 312	

(Davis, Love & Preston, 2012a, 2012b), and that the vmPFC and dlPFC track 313	

higher-confidence or higher-uncertainty categorization decisions, respectively 314	

(DeGutis & D’Esposito, 2007; Seger et al., 2015; Davis, Goldwater & Giron, 315	

2017; O’Bryan et al., 2018). Contrastingly, dissimilarity-based evidence was 316	

positively correlated with activation in the left rlPFC, consistent with our 317	

hypothesis that this type of evidence might encourage more symbolic processes 318	

believed to underlie the rlPFC’s contribution to category learning (Davis, 319	

Goldwater & Giron, 2017; Paniukov & Davis, 2018). No clusters were 320	

significantly negatively associated with dissimilarity-based evidence. 321	
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 332	

 333	

Figure 6. Results from the model-based 

univariate analysis. A) Depicts activation 

that tracks similarity-based contributions to 

choice. Red depicts activation positively 

correlated with similarity-based 

contributions whereas blue depicts 

negatively correlated activation. B) Depicts 

brain regions that are positively correlated 

with dissimilarity-based contributions to 

choice.  
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Table 2. Activated clusters and peaks for the fMRI results in Figure 6. 334	

Contrast Regions Peak 
t-value 

Peak MNI 
Coordinates (x,y,z) 

Number of 
voxels 

Cluster p 

Similarity > 0      
 Rostral and 

ventral medial 
prefrontal cortex 

7.76 0, 54, -2 2268 p < .001 

 Middle temporal 
gyrus 

5.74 64, -6, -14 1050 p = .016 

 Precentral gyrus 7.65 42, -16, 62 1031 p < .001 
 Precentral gyrus 4.81 0, -30, 58 463 p = .008 
 Middle temporal 

gyrus 
4.98 -62, -2, -16 322 p = .016 

 Parietal 
operculum 
cortex 

5.74 -34, -30, 18 282 p = .027 

 Hippocampus 5.25 -22, -18, -16 271 p = .019 
 Lateral occipital 

cortex (inferior) 
4.68 50, -72, 12 157 p = .039 

Similarity < 0      
 Superior Parietal 

& Lateral 
occipital cortex 
(superior) 

8.43 -44, -46, 58 5123 p < .001 

 Middle frontal 
gyrus 

7.01 -52, 12, 36 2491 p < .001 

 Dorsal medial 
PFC 

9.00 -2, 18, 46 917 p < .001 

 Cerebellum 6.11 28, -64, -28 769 p = .002 
 Middle frontal 

gyrus 
6.23 32, 2, 62 730 p = .002 

 Middle frontal 
gyrus 

5.89 44, 36, 30 391 p = .009 

 Inferior temporal 
gyrus 

6.09 -54, -52, -12 375 p = .009 

 Inferior temporal 
gyrus 

6.53 60, -52, -10 271 p = .016 

 Cerebellum 6.08 -28, -60, -32 186 p = .031 
 Thalamus 4.88 

 
-10, -18, 10 175 p = .038 

Dissimilarity > 0      
 Occipital cortex 7.55 12, -78, 12 1372 p < .001 
 Fusiform and 

Lateral occipital 
cortex (inferior) 

6.82 42, -60, -18 865 p = .002 

 Fusiform and 
Lateral occipital 
cortex (inferior) 

5.97 -36, -52, -18 575 p = .003 

 Middle frontal 
gyrus 

5.00 54, 16, 34 255 p = .020 

 Frontal Pole 
(rostrolateral 
PFC) 

5.93 -42, 52, -6 130 p = .047 

 335	
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Discussion 336	

The present study employed model-based fMRI to test how similarity and 337	

dissimilarity contribute to the inverse base rate effect (IBRE) and how these 338	

types of evidence relate to neural mechanisms that support category learning. 339	

The dominant theory behind the IBRE suggests that it arises from attentional 340	

processes that make ambiguous items containing features of rare and common 341	

categories seem more similar to members of the rare category. Here we find 342	

support for the hypothesis that dissimilarity-based evidence also contributes to 343	

the IBRE: people may categorize the ambiguous stimuli as members of the rare 344	

category not only because of their similarity to the rare category, but also 345	

because of their dissimilarity to members of the common category.  346	

 The dissGCM, an extension of the GCM that allows for the use of 347	

dissimilarity-based evidence in categorization behavior, predicted two novel 348	

observations in the neuroimaging data. First, as predicted by the dissGCM’s 349	

relative contribution of similarity- and dissimilarity-based evidence during the 350	

ambiguous trials, multivoxel analysis suggested stronger activation of patterns 351	

associated with features of the common category when participants classified 352	

ambiguous stimuli as rare. Second, model-based univariate analysis revealed 353	

that measures of similarity- and dissimilarity-based evidence had unique neural 354	

topographies. Similarity-based evidence was positively correlated with regions of 355	

the hippocampus and vmPFC and negatively correlated with dlPFC. Dissimilarity- 356	

based evidence was positively correlated with the left rlPFC.  357	
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 The present results raise several important questions about the cognitive 358	

and neural mechanisms underlying people’s use of base rate information. 359	

Previous theories arguing for dissimilarity-like processes as explanations of IBRE 360	

have argued that they arise from mechanisms rooted in higher-level propositional 361	

logic that fundamentally differ from the similarity-based mechanisms posited by 362	

dominant theories (Juslin, Wennerholm & Winman, 2001). As illustrated by the 363	

dissGCM, such dissimilarity-based processes can be viewed as simple 364	

extensions of similarity-based processing and need not depend on the existence 365	

of a functionally separate categorization system. At the same time, our 366	

neuroimaging results suggest dissimilarity, but not similarity-based evidence may 367	

arise from processing in rlPFC regions that are known to be involved with higher-368	

level reasoning and problem solving (Christoff et al., 2001; Bunge et al., 2005, 369	

2009). One possibility for reconciling these theories is that the dissimilarity-based 370	

evidence involves more abstract or symbolic feature processing than pure 371	

similarity processes, and this additional processing taps rlPFC regions. This is 372	

consistent with our recent model-based fMRI results which demonstrate that 373	

rlPFC tracks measures of relational encoding in category learning, but otherwise 374	

this type of category learning may rely on the same basic similarity-based 375	

mechanisms as simpler feature-based learning (Davis, Goldwater, & Giron, 376	

2017).  377	

 By establishing that the rlPFC is engaged when participants incorporate 378	

dissimilarity-based evidence into categorization decisions, our research adds to a 379	

growing literature aiming to pinpoint a domain-general computational role for this 380	
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region. A common thread among tasks shown to engage the rlPFC is that they 381	

tend to involve combining across disparate representations to form the basis for 382	

a decision – whether those representations are comprised of confidence 383	

estimates and subjective value (De Martino et al., 2013), visual features and their 384	

relations (Bunge et al., 2004, 2009; Davis, Goldwater, & Giron, 2017), or 385	

expected rewards and their relative uncertainties (Boorman et al., 2009; Badre et 386	

al., 2012). Likewise, in the case of the current study, the evidence that an 387	

ambiguous stimulus is similar to a given category must be combined with the 388	

evidence that the stimulus is dissimilar to the other possible categories. Although 389	

the dissGCM instantiates dissimilarity as a simple transformation of similarity, the 390	

involvement of rlPFC when participants place more reliance on dissimilarity-391	

based evidence may be attributable to increasing demands for integrating 392	

evidence across several abstract representations. A decision based on pure 393	

similarity-based evidence would require no such integration. This hypothesis 394	

accords with recent findings implicating the rlPFC in evaluative processes for 395	

categorization tasks that require candidate rules to be weighed over the course 396	

of several trials, relative to matching tasks where a rule can be known with 397	

certainty following a single correct trial (Paniukov & Davis, 2018).  398	

 One question that has arisen repeatedly in the literature on the IBRE is 399	

whether it reflects an inherent irrationality in decision making. When viewed 400	

through the lens of basic similarity-based attentional processes (e.g., Medin & 401	

Edelson, 1988; Kruschke, 1996, 2001), the IBRE appears to arise from very 402	

simple learning mechanisms that are not particularly tied to higher-level 403	
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rationality, and rare choices seem to indicate a lack of knowledge of the base 404	

rates. Indeed, in a separate model fit, we attempted to fit the standard similarity-405	

based GCM to the key pattern on the ambiguous trials. However, the standard 406	

GCM was only able to predict a greater proportion of rare choices if accurate 407	

knowledge of the exemplar base-rates was eliminated (all values of tj = 1 or fit as 408	

free parameters). In contrast, accurate knowledge of the category base rates 409	

directly contributes to the greater dissimilarity-based evidence against the 410	

common category. Thus from the dissGCM perspective, participants are perfectly 411	

knowledgeable about the base rates in the present task, but they use this 412	

knowledge in a way not anticipated by pure similarity-based models. However, 413	

whether this use of dissimilarity-based evidence constitutes irrationality is a 414	

deeper question that cannot be answered based purely on the present results.  415	

 The IBRE exemplifies a case in cognitive neuroscience where 416	

independent models that predict essentially the same behavioral patterns make 417	

very different assumptions about the cognitive processes, and accordingly, brain 418	

states, involved in producing the behavior. Our findings from the test phase 419	

represent a critical step forward in an emerging area of research using 420	

multivariate fMRI to reveal that qualitatively distinct brain states may reflect the 421	

use of multiple response strategies in the face of identical stimuli (e.g., Mack et 422	

al., 2013). Consistent with past research using MVPA to decode learned 423	

selective attention (Mack et al., 2013, 2016; Leong et al., 2017; O’Bryan et al., 424	

2018), multivoxel patterns associated with predictive features were more strongly 425	

activated than imperfectly predictive features during the learning phase. Using 426	
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the same approach to decode which information participants were focusing on 427	

during ambiguous test trials, we found stronger activation of patterns associated 428	

with common compared to rare stimulus features, but importantly, this pattern 429	

only emerged in cases where participants chose the rare category. Although 430	

these results are consistent with a dissimilarity-based process where activating 431	

knowledge of the common feature provides contrastive evidence against the 432	

well-established common category, understanding the precise cognitive 433	

mechanisms that contribute to these response-dependent activation patterns 434	

remains a direction for future research. One possibility is that common choices 435	

stem from habitual response patterns that involve feature matching and require 436	

little active deliberation, and hence less activation of featural information in the 437	

associated multivoxel activation patterns, whereas more actively weighing the 438	

evidence for each category engages a “strategic guessing” process that involves 439	

ruling out the most unlikely option (Juslin, Wennerholm, & Winman, 2001). 440	

 Interestingly, while our findings argue against the prediction from 441	

similarity-based models that the IBRE arises because rare features become 442	

more similar to their associated category, the observed parameters from the 443	

model fits are consistent with a key part of similarity theory – that there is greater 444	

selective attention allocated to the rare feature dimension. Indeed, the rare 445	

feature dimensions outweighed the common features for both sets of categories 446	

in our data. However, these larger attention weights did not seem to drive greater 447	

neural similarity to the rare feature dimension in our multivoxel results. 448	

Accordingly, it is possible that our multivoxel results are not driven directly by 449	
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simple feature-based attention, but instead indicate some combination of 450	

attention and memory-based retrieval of the category exemplars. This hypothesis 451	

coincides with findings from the memory literature, which have found that 452	

memory-based retrieval of non-present, associated stimuli can be detectable in 453	

activation patterns (e.g., Zeithamova, Dominick & Preston, 2012; for review, see 454	

Rissman & Wagner, 2012). Future studies may wish to combine multivoxel 455	

pattern analysis with eye-tracking (e.g., Leong et al., 2017) to better understand 456	

the unique contributions that attention and memory make to the present results.  457	

 In conclusion, using model-based fMRI analysis, we found evidence that 458	

extreme cases of base rate neglect such as the IBRE may arise from a 459	

combination of similarity- and dissimilarity-based processes. Accordingly, 460	

measures of neural activation suggest that people may be more strongly relying 461	

on evidence about how dissimilar an item is to common categories when faced 462	

with ambiguous stimuli. Further, dissimilarity processes have a unique cortical 463	

topography that includes the rostrolateral PFC, a region believed to be involved 464	

with more symbolic feature processing.  465	

 466	

Materials and Methods 467	

Twenty-four healthy right-handed volunteers (age range 18 – 58; 13 women) 468	

participated in the study for $35. All protocols were approved by the Texas Tech 469	

University IRB. Two participants were excluded, one for falling asleep and the 470	

other for excessive head motion.  471	

 472	
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Behavioral Protocol  473	

The study consisted of three phases, localizer, learning, and test. The localizer 474	

phase consisted of two scanning runs in which participants classified images 475	

based on whether they contained a face, an object, or a scene. Each image was 476	

presented for 2.5 s during which participants were asked to respond “Scene (1), 477	

Face (2), or Object (3)?” Each trial was separated with random fixation drawn 478	

from a truncated exponential distribution with mean = 3 s. Over the duration of 479	

the localizer phase, subjects categorized 38 examples of each stimulus type. The 480	

face, object, and scene images used were black-and-white squares presented on 481	

a white background with black text. The stimuli used during the localizer runs 482	

were presented in a random order, and did not include any of the images used 483	

for the experimental task. 484	

 In the learning phase, participants learned a classic IBRE category 485	

structure based on Medin and Edelson (1988; See Figure 1). The features used 486	

for the stimuli included examples of faces, objects, and scenes not shown in the 487	

localizer phase. Participants were given an epidemiological cover story asking 488	

them to predict whether hypothetical patients would contract a disease based on 489	

the people they have been in contact with (faces), the objects they have used 490	

(objects), and the places they have been (scenes). On each trial of the learning 491	

phase, participants would see a stimulus for 3 s and were asked to answer 492	

“Disease 1, 2, 3, or 4?” This was followed by random fixation, feedback (1.75 s) 493	

in which they were told whether they were right or wrong and the correct answer, 494	

and additional fixation. The same distribution was used to generate fixations as in 495	
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the localizer phase. Faces were always assigned to the imperfectly predictive 496	

feature dimensions, whereas objects and scenes were perfectly predictive and 497	

associated with only one disease (Figure 1). To ensure that no visual stimulus 498	

category differed in overall frequency, one common disease always was 499	

associated with objects and the other scenes, and likewise for rare diseases. 500	

Participants were randomly assigned to one of two conditions to balance which 501	

images were presented together during learning and test, and disease labels 502	

were randomized across participants. Within-pair stimulus position (left or right) 503	

was randomized on each trial, and the presentation order of feature pairs was 504	

randomized within each block for every participant. The learning phase was 505	

spread over three scanning runs, and four blocks of the stimulus set were 506	

presented per run, resulting in a total of12 blocks and 96 trials for the learning 507	

phase. The progression of a learning trial is depicted in the bottom panel of 508	

Figure 1. 509	

 During the test phase, participants completed trials with both new and old 510	

exemplars and classified them as “Disease 1, 2, 3, or 4?”, but no longer received 511	

feedback. New items included all possible single and two-feature combinations of 512	

the perfectly predictive features (see Table 1, Results). Trials were 3 s and 513	

separated by random fixation as described above. Like the learning phase, the 514	

test phase occurred over three consecutive scanning runs. Presentation order of 515	

the test items was randomized for each of the three runs, with participants rating 516	

two test sets per run, resulting in a total of 156 test trials.  517	

 518	
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Image Acquisition 519	

Imaging data were acquired on a 3.0 T Siemens Skyra MRI scanner at the Texas 520	

Tech Neuroimaging Institute. Structural images were acquired in the sagittal 521	

plane using MPRAGE whole-brain anatomical scans (TR = 1.9 s; TE = 2.44 ms; 522	

θ = 9°; FOV = 250 x 250 mm; matrix = 256 x 256 mm; slice thickness = 1.0 mm, 523	

slices = 192). Functional images were acquired using a single-shot T2*-weighted 524	

gradient echo EPI sequence (TR = 2.5 s; TE = 25 ms; θ = 75°; FOV= 192 x 192 525	

mm; matrix = 64 x 64; slice thickness = 3 mm).  526	

 527	

fMRI Analysis and Preprocessing 528	

Functional data were preprocessed and analyzed using FSL 529	

(www.fmrib.ox.ac.uk/fsl). Anatomical images were preprocessed using 530	

Freesurfer (autorecon1). Functional images were skull stripped, motion 531	

corrected, prewhitened, and high-pass filtered (cutoff: 60 s). For the model-532	

based univariate analysis, functional images were spatially smoothed using a 6 533	

mm FWHM Gaussian kernel. No smoothing was performed on functional data 534	

used for the multivoxel analysis. First-level statistical maps were registered to 535	

the Montreal Neurological Institute (MNI)-152 template using 6-DOF boundary-536	

based registration to align the functional image to the Freesurfer-processed 537	

high-resolution anatomical image, and 12-DOF affine registration to the MNI-152 538	

brain. 539	

 The model-based univariate analysis employed a standard three-level 540	

mixed effects model carried out in FSL’s FEAT program. The first-level model 541	
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included an EV for stimulus presentation and two model-based parametric 542	

modulators: Similarity- and Dissimilarity-based evidence, computed from the 543	

dissGCM. Both parametric modulators were centered and scaled (z-scored) 544	

within run. Calculation of these regressors is described in the Model section. 545	

Additional explanatory variables (EVs) of no interest included motion parameters, 546	

their temporal derivatives, EVs to censor volumes exceeding a framewise 547	

displacement of 0.9mm (Siegel et al., 2014), and an EV to account for trials in 548	

which participants failed to make a behavioral response. Final statistical maps 549	

were corrected for multiple comparisons using a non-parametric cluster-mass-550	

based correction with a cluster-forming threshold of t (21) = 3.52 (p < .001, one-551	

tailed).  552	

 RSA was conducted using the PyMVPA toolbox (Hanke et al., 2009) and 553	

custom Python routines. In this analysis, we measured how much participants 554	

were activating scene, object, and face information on individual test phase trials 555	

by calculating mean correlation distance (1 – Pearson’s r) between activation 556	

patterns on each test trial and those elicited for each visual category during the 557	

localizer phase. For interpretative ease, the distances were converted to 558	

similarities using exp(- distance), and then standardized (z-scored) within 559	

participants. Activation patterns were estimated for each trial using a Least 560	

Squares All procedure (Mumford et al., 2012), and anatomically restricted to two 561	

ventral temporal ROIs that were maximally responsive to scene and object 562	

information in the localizer data. Specifically, pattern estimates were spatially 563	

localized in visual stimulus category-specific ROIs by creating 6-mm spheres 564	
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around subjects’ peak activation within anatomically defined regions in the 565	

Harvard-Oxford Atlas associated with category selectivity (objects: left inferior 566	

posterior temporal gyrus; scenes: bilateral parahippocampal gyrus; Ishai et al., 567	

1999; Lewis-Peacock & Postle, 2008; Lewis-Peacock et al., 2012; Grill-Spector & 568	

Weiner, 2014). The last trial of each run was automatically discarded from the 569	

multivoxel analysis to ensure stable estimation of the activation patterns for all 570	

trials. Additional explanatory variables (EVs) of no interest included motion 571	

parameters, their temporal derivatives, and EVs to censor volumes exceeding a 572	

framewise displacement of 0.9mm. Source data and scripts used to create all 573	

figures and tables (e.g., R code, PyMVPA scripts, statistical maps for the model-574	

based fMRI analysis) are freely available online at https://osf.io/atbz7/. 575	
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