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ABSTRACT 
 
Computational drug repositioning methods can scalably nominate approved drugs for new 

diseases, with reduced risk of unforeseen side effects. The majority of methods eschew 

individual-level phenotypes despite the promise of biomarker-driven repositioning. In this study, 

we propose a framework for discovering serendipitous interactions between drugs and routine 

clinical phenotypes in cross-sectional observational studies. Key to our strategy is the use of a 

healthy and non-diabetic population derived from the National Health and Nutrition Examination 

Survey, mitigating risk for confounding by indication. We combine complementary diagnostic 

phenotypes (fasting glucose and glucose response) and associate them with prescription drug 

usage. We then sought confirmation of phenotype-drug associations in un-identifiable member 

claims data from Aetna using a retrospective self-controlled case analysis approach. We identify 

bupropion hydrochloride as a plausible antidiabetic agent, suggesting that surveying otherwise 

healthy individuals cross-sectional studies can discover new drug repositioning hypotheses that 

have applicability to longitudinal clinical practice. 

 

INTRODUCTION 

Identifying new indications for previously approved drugs, known as drug repositioning, is an 

attractive alternative to the traditional drug discovery paradigm as previously approved drugs 

have substantially lower risk of unforeseen adverse events​1​. Computational drug repositioning 

builds on this premise by pre-screening for promising repositioning candidates, with current 

methods primarily relying on molecular data ​2–5​ and/or the biological literature ​6–10​. While these 

methods have been successful in predicting plausible repositioning candidates, a key challenge 

in computational repositioning is to provide direct evidence of candidate efficacy in humans, 

rather than relying on surrogate biomarkers or indirect evidence. 
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One alternative is to consider a single or a few quantitative phenotypes’ association with drug 

prescription history. In doing so, one can not only be certain that the phenotypes chosen are 

clinically relevant to a disease of interest, but also readily access effect sizes for power 

considerations in future clinical studies. While such a strategy is appealing, even a study limited 

to a single disease may be confounded due to shared disease etiology​11​, off-label drug usage ​12​, 

and variable effects of drugs due to disease severity. We propose a novel framework in which 

the association between drugs and quantitative phenotypes is assessed in a 

non-institutionalized population who do not have the target disease for repositioning. 

 

To demonstrate the potential of this strategy, we search for putative modulators of glycemic 

health  in a normoglycemic and US-representative population of participants from the 

2005-2012 National Health and Nutrition Examination Survey (NHANES). We evaluated 

associations between 134 prevalent drugs and two diabetes diagnostic phenotypes, fasting 

blood glucose and glucose after following a 2-hour oral glucose tolerance challenge (or, glucose 

response). By combining findings from two glycemic phenotypes, we identified a single potential 

antidiabetic candidate associated with lower glycemic phenotypes, the antidepressant 

bupropion. Notably, other commonly used antidepressants did not show multimodal antidiabetic 

potential. To replicate the association, we designed a retrospective self-controlled study in a 

normoglycemic cohort derived from un-identifiable member claims data provided by Aetna, and 

again verified that bupropion, but not other commonly prescribed antidepressants, was 

associated with lower levels of fasting blood glucose after exposure to the drug. 
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RESULTS 

Association of bupropion with complementary diabetes phenotypes in a normoglycemic 

population 

After excluding participants with a reported history of diabetes, abnormal fasting blood glucose 

(including diabetes and prediabetes, according to American Diabetes Association guidelines, >= 

100 mg/dL), and who were currently prescribed an antidiabetic drug, we obtained a final 

NHANES-derived cross-sectional cohort size of 5,371 (see Table 1 for demographic 

characteristics of the cohort). Using the normoglycemic cohort, we performed comprehensive 

association testing between prescription drug use and either fasting blood glucose or blood 

glucose following an oral glucose tolerance test, adjusting for age, sex, race, and body mass 

index. Of the 134 prescription drugs with power (out of 1,133 total drugs tracked) to detect an 

association, the antidepressant bupropion was significantly and negatively associated with both 

glycemic phenotypes (survey-correct multivariate linear regression β < 0, FDR < 0.2, Figure 1A). 

Bupropion was associated with -2.5 mg/dL (95% CI: [-4.4, -0.6]) lower fasting blood glucose, 

and -10.4 mg/dL (95% CI: [-16.8, -4]) lower blood glucose following an oral glucose tolerance 

test (see Table S1 for demographic characteristics of the bupropion exposed subset). We also 

tested the association between both phenotypes and two commonly used antidepressants, 

duloxetine and escitalopram, with sufficient populations of exposed individuals. Neither 

duloxetine or escitalopram had significant effects on both glycemic phenotypes, suggesting that 

the association with bupropion is specific (see Table 2 for antidepressant results, and Table S2 

for a full list of drugs with one significant glycemic association). 

Replication in a retrospective self-controlled study 

To replicate the association of bupropion with improved fasting blood glucose, we performed a 

self-controlled study of fasting blood glucose using un-identifiable member claims data from the 
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Aetna Insurance Company, containing information from 50 million individuals over 9 years. We 

extracted three non-diabetic populations with exposure either to bupropion or to one of two 

control antidepressants, duloxetine, and escitalopram (see Table 1 for demographic 

characteristics of each drug-exposed cohort). Age, sex, and race were not significantly different 

between drug-exposed cohorts (ANOVA, p > 0.1 for age, sex, and race). Within each 

drug-exposed cohort, we identified individuals with a fasting glucose measurement up to a year 

before being exposed (glucose measurements are typically performed on an annual basis​13​), 

and within two months after being exposed (with a buffer of 8 days to reach steady-state drug 

concentration). Within each drug, we selected dosage forms with at least 198 individuals for 

well-powered association testing. For bupropion, the only dosage form with sufficient individuals 

was 150mg sustained release with 383 individuals (of 11 total dosage forms), for duloxetine only 

60mg was powered with 717 individuals (of 5 total dosage forms), and for escitalopram only 

10mg was powered with 206 individuals (of 3 total dosage forms). We found that only bupropion 

150mg sustained release was associated with significantly decreased fasting blood glucose 

(mean difference -1.88 mg/dL, 95% CI: [-2.91, -0.85], p < 0.001, see Table 3). 

 

DISCUSSION 

In this study, we describe preliminary results from a novel quantitative phenotype-based drug 

repositioning methodology. Our methodology uses a combination of complementary quantitative 

phenotypes to efficiently reduce the number of potential repositioning candidates. Our method 

enables straightforward follow up in prospective investigations, and provides estimation of the 

population sizes required to detect modulation of disease-relevant phenotypes by a candidate 

drug. Furthermore, we perform all association testing in a non-diseased and otherwise 

nation-wide representative population to avoid common sources of confounding. 

4 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/130799doi: bioRxiv preprint 

https://paperpile.com/c/QBQhLL/sokn
https://doi.org/10.1101/130799
http://creativecommons.org/licenses/by/4.0/


 

To demonstrate our complementary phenotype-based approach, we predicted repositioning 

candidates with the potential to modulate diabetes health using a 5,137 person non-diabetic 

cohort in NHANES. Fasting blood glucose and glucose following an oral glucose tolerance test 

capture related, but distinct etiological components of diabetes health, and impairment in either 

test implies distinct disease etiology (hepatic and muscular insulin resistance respectively).​14​ By 

combining these two phenotypes we identified a single candidate, the antidepressant bupropion, 

associated with improved glycemic status across multiple etiological pathways in diabetes. 

 

Bupropion is well-known as a treatment for obesity comorbid with diabetes, both alone ​15,16​ and 

in combination with naltrexone ​17​, as well as a monotherapy for comorbid depression and 

diabetes​18​. What is unclear from the previous studies, however, is the degree to which the 

observed effects were caused by improvement in body mass index (BMI) or depression, which 

subsequently led to improvement in glycemic status (confounding by indication). In contrast, we 

explicitly address confounding by adiposity, depression status, and glycemic status: (1) by 

explicitly adjusting for BMI in all associations, (2) by testing other commonly used 

antidepressants associations with improved glycemic health, as measured by fasting glucose 

and glucose response, and (3) by testing for associations in a non-diabetic and normoglycemic 

cohort, decreasing the likelihood of more complex confounding scenarios, such as a single 

upstream process controlling both depression status and diabetic health (e.g. statins lower 

low-density lipoprotein levels, which in turn lowers heart attack and stroke risk simultaneously). 

In the future, we hope to follow up on the promise of bupropion as a multimodal antidiabetic, 

and propose clinical studies to understand its efficacy not only in healthy participants, but also in 

pre-diabetics and diabetics, alone and in combination with the current standard of care. 
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Another key benefit of our method is the ability to design clinical studies derived from our 

potential discoveries; we demonstrated this benefit by performing a retrospective self-controlled 

study using un-identifiable member claims data from Aetna. By designing an experiment by 

which patients serve as their own control, we avoid time-invariant confounding ​19​. We 

successfully replicated that bupropion alone among the antidepressants considered is 

associated with lower fasting blood glucose. Despite escitalopram’s significant improvement of 

glucose response in the NHANES cohort, we did not observe a significant impact on fasting 

blood glucose in the self-controlled study. This result underscores the importance of combining 

multiple quantitative phenotypes to achieve high specificity in repositioning candidates. 

Furthermore, to enable future clinical trials, quantitative phenotype-driven studies should 

carefully select phenotypes with the goal of not only identifying repositioning candidates with 

high specificity, but also with clinical study design in mind, considering both clinical relevance 

and statistical power. 

 

While we have discussed the potential of combining complementary quantitative phenotypes for 

drug repositioning, we do note that it has some limitations. Chief among these is the 

requirement that non-diseased individuals are assayed for quantitative phenotypes. While 

common diseases by necessity have associated routine diagnostics, for example fasting blood 

glucose and glucose tolerance for diabetes or lipid levels and blood pressure for cardiovascular 

disease, repositioning for rarer diseases may require non-standard tests. We expect that this 

limitation will diminish over time with the development of birth cohorts (e.g. ALSPAC​20​ among 

others), and large biobanking initiative (e.g. UK Biobank​21​ among others), most of which include 

clinical phenotyping of all participants to complement a variety of ‘omic measurements. A 

6 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/130799doi: bioRxiv preprint 

https://paperpile.com/c/QBQhLL/1Qy7
https://paperpile.com/c/QBQhLL/V7XE
https://paperpile.com/c/QBQhLL/Wenn
https://doi.org/10.1101/130799
http://creativecommons.org/licenses/by/4.0/


second potential limitation is the requirement for multiple complementary quantitative 

phenotypes that are associated with the disease of interest for repositioning. For diseases 

where such phenotypes are not available, further biomarker identification may be required 

before using our repositioning strategy. We note that any quantitative phenotype-based 

methodology would likely require disease-associated phenotypes before producing meaningful 

and interpretable results. Lastly, because we assess all associations between drugs and 

phenotypes in a non-diseased population, it will be important to verify any repositioning 

candidates that arise from this method in disease sufferers. 

STUDY HIGHLIGHTS 

What is the current knowledge on the topic? ​Observationalstudies are emerging as ways to 

search for repositioning candidates, yet are fraught with bias and do not consider quantitative 

phenotypes. 

 

What question did this study address? ​Is it possible to use health monitoring surveys and 

longitudinal administrative population databases  coupled with continuous phenotypes to search 

for and replicate new repositioning candidates?  

 

What this study adds to our knowledge? ​We present a novel approach for drug repositioning 

that harnesses health monitoring surveys and multiple clinical trait phenotypes to avoid 

confounding bias and increase specificity  of evidence for repositioning discovery.  

 

How might this change drug discovery, development, and/or therapeutics? ​Our method 

enhances the  repositioning process using quantitative phenotyping from humans, poteally 

closing the gap between computational and clinical drug repositioning. 
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METHODS 

Cross-sectional study cohort 

The cross-sectional study cohort was derived from a combination of four independent waves of 

the continuous National Health and Nutrition Examination Survey (NHANES): the 2005-2006, 

2007-2008, 2009-2010, and the 2011-2012 surveys​22​. NHANES is a cross-sectional survey 

conducted by the United States Centers for Disease Control and Prevention (US CDC), wherein 

a large number of participants are recruited to answer a number of questions pertaining to their 

medical, psychosocial, and sociodemographic histories. A subset of respondents also receive 

extensive anthropometric and laboratory testing, including a variety of routine clinical measures. 

For this study, several variables were obtained for each respondent, including: (1) self-reported 

history of diabetes (field DIQ010 from the respective DIQ questionnaire datasets), (2) fasting 

blood glucose and fasting time, as well as glucose taken at 2-hours post oral glucose tolerance 

test (field LBXGLU and PHASFSTHR, LBXGLT respectively from the respective GLU laboratory 

datasets)  (3) self-reported prescription drug usage at the time of interview (including generic 

drug names and drug category, as defined in the Lexicon Plus® database, Cerner Multum, Inc, 

see Figure 1A). Respondents without completed information for any of these fields were 

excluded from further analysis. To obtain a non-diabetic final cohort for association testing, 

respondents were filtered to include those with no reported history of diabetes, no use of 

antidiabetic medications at the time of interview, and normal glycemic status (fasting blood 

glucose less than 100 mg/dL according to American Diabetes Association guidelines​13​). 

Drug-phenotype association in the cross-sectional study cohort 

Multivariate linear regression was performed to individually test the association of usage of 

1,133 drugs (1.16 [1.11, 1.22], mean [95%CI] drugs per participant) and either fasting blood 
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glucose or blood glucose taken at 2-hours post oral glucose tolerance test (controlling for age, 

sex, race, body mass index [BMI]), and number of hours fasted). Regression coefficients and 

significance were estimated using the ​survey​ package in ​R​ to account for the stratified design of 

NHANES​23​. To avoid erroneous associations, drugs with less than 12 prescribed individuals 

were removed from further analysis (see ​24​ for rationale). For the remaining 134 drugs, 

regression coefficients and significance were obtained and corrected for multiple testing using 

the False Discovery Rate (FDR) method ​25​. Drugs with significant (FDR < 0.2), negative 

associations with both fasting blood glucose and blood glucose following a 2-hour post oral 

glucose tolerance test were considered candidate antidiabetic agents (Figure 1A). 

Longitudinal validation cohort and self-controlled analyses 

The longitudinal validation cohorts were derived from un-identifiable member claims data from 

Aetna, spanning 8 years (2008-2016) with over 50 million lives in all 50 states. To obtain 

drug-specific non-diabetic cohorts the following restrictions were made: (1) patients did not have 

any instance of diabetes diagnosis (ICD-9 codes 250-250.93), (2) patients were prescribed one 

of the study drugs (bupropion, duloxetine, or escitalopram), (3) patients were enrolled in an 

insurance plan for at least one year before the first prescription date for the respective study 

drug, (4) patients had a fasting blood glucose measurement up to one year before starting the 

respective study drug (“pre” measurement), and between 8 and 60 days after starting (“post” 

measurement) (Figure 1B). Timepoints were chosen to enable the collection of at least two 

glucose measurements (typically taken annually per American Diabetes Association 

recommendations), and for individuals to have reached steady-state concentrations of study 

drug (typically ~1 week) while still minimizing time-dependent variation. 

Following cohort creation, self-controlled analysis was performed for each dose of each study 

drug using a paired t-test between the pre- and post-glucose measurements as previously 
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described ​19​. More recent methods have proposed additional corrections to the simple paired 

t-test method; however, these methods examine longer time periods of exposure (which allows 

for additional confounders to accumulate), and a population containing cases in addition to 

healthy controls​26​. In contrast, the method described here relies on a very short analysis 

window. Dosage forms of study drugs with fewer than 198 participants were removed from 

further analysis due to power considerations (assuming a small effect size, Cohen’s d equal to 

0.2, requiring power of 80% or greater, see ​27​ for details). Study drugs with significant (t-test 

p-value < 0.05) and negative associations (improved glucose response) with the pre- to 

post-drug regimes were considered replicated agents. 
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FIGURES 

 

Figure 1. Quantitative-phenotype based repositioning overview. ​ A) NHANES (cross-sectional) 
quantitative-phenotype based repositioning workflow. B) Conceptual diagram of claims data-based 
replication efforts. 
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TABLES 
 
Table 1. ​Demographic breakdown of NHANES (cross-sectional) and un-identifiable member 
claims data from Aetna (longitudinal) cohorts 

  Claims Data 

 NHANES Bupropion 
(150mg SR) 

Duloxetine 
(60mg) 

Escitalopram 
(10mg) 

N 5,371 386 717 206 

Age (Mean [95% CI]) 36.7 [36, 
37.3] 

56.3 [55.1, 
57.5] 56 [54.8, 57.2] 58.3 [57.1, 59.5] 

Sex  
(% Female [95% CI]) 

0.58 [0.57, 
0.6] 

0.71 [0.66, 
0.75] 0.82 [0.79, 0.85] 0.71 [0.65, 0.77] 

Race 
% White [95% CI] 
% Black [95% CI] 
% Latino [95% 
CI] 
% Other Race 
[95% CI] 

 
0.65 [0.63, 

0.67] 
0.12 [0.1, 

0.14] 
0.17 [0.15, 

0.18] 
0.06 [0.04, 

0.08] 

--- --- --- 

 
 
Table 2. ​Antidepressant association with diabetes health in NHANES (cross-sectional) 

Drug Name 
Participants 
Prescribed 
(of 5,371) 

Observed effect on  
fasting glucose 

(mg/dL) 
[95% CI] 

FDR 

Observed effect on 
glucose tolerance 

(mg/dL) 
[95% CI] 

FDR 

Bupropion 38 -2.5 [-4.4, -0.6] 0.12 -10.4 [-16.8, -4] 0.07 

Escitalopram 43 -2 [-3.8, -0.1] 0.26 -13.6 [-22.4, -4.9] 0.08 

Duloxetine 24 -1 [-4, 3] 0.84 -8 [-21, 6] 0.63 
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Table 3. ​Un-identifiable member claims data from Aetna (longitudinal) confirmation analysis of 
selected antidepressants 

Drug Name (Dosage) Sample Size 

Mean difference in  
fasting glucose 

(mg/dL) 
[95% CI] 

P-Value 

Bupropion (150mg 
SR) 386 -1.88 [-2.91, -0.85] < 0.001 

Duloxetine (60mg) 717 0.64 [-0.15, 1.44] N. S. 

Escitalopram (10mg) 206 0.36 [-1.06, 1.77] N.S. 

 
 
Table S1.​ Demographic breakdown of bupropion-exposed NHANES (cross-sectional) 
participants 

 Bupropion-exposed NHANES subset 

N 38 

Age (Mean [95% CI]) 44 [42.3, 45.7] 

Sex  
(% Female [95% CI]) 0.84 [0.78, 0.89] 

Race 
% White [95% CI] 
% Black [95% CI] 
% Latino [95% CI] 
% Other Race 
[95% CI] 

 
0.918 [0.916, 0.920] 
0.021 [0.019, 0.024] 

0 
0.061 [0.059, 0.063] 

Overweight 
(% [95% CI]) 0.48 [0.38, 0.57] 
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Table S2. ​NHANES (cross-sectional) results for drugs associated with decreased fasting 
glucose and glucose response 

Drug Name 
Observed effect on  

fasting glucose (mg/dL) 
[95% CI] 

FDR 
Observed effect on 

glucose tolerance (mg/dL) 
[95% CI] 

FDR 

Bupropion -2.5 [-4.4, -0.6] 0.12 -10.4 [-16.8, -4] 0.07 

Escitalopram -2 [-3.8, -0.1] 0.26 -13.6 [-22.4, -4.9] 0.08 

Phenylephrin
e 0.3 [-1.6, 2.2] 0.89 -14.4 [-24.1, -4.8] 0.09 

Setraline 0.1 [-1.5, 1.8] 0.91 -9.7 [-15.1, -4.3] 0.04 

Ethinyl 
Estradiol -1.8 [-2.9, -0.7] 0.04 9.3 [4.1, 14.6] 0.04 

Acyclovir -7.2 [-10.9, -3.5] 0.02 -17.7 [-32.5, -2.8] 0.21 

Levothyroxine -1.2 [-2.2, -0.2] 0.20 -0.4 [-5.1, 4.4] 0.96 

Levongestrel -2 [-3.6, -0.4] 0.15 8.3 [-2.2, 18.8] 0.51 

Gabapentin -2.5 [-4.4, -0.6] 0.12 -3.6 [-26.7, 19.5] 0.94 

Norgestimate -3.3 [-5.7, -0.9] 0.12 6.7 [-5.5, 18.9] 0.64 

Etonogestrel -6.2 [-10.1, -2.3] 0.06 -9.4 [-18.3, -0.5] 0.26 
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