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Abstract 
We present an ultra-fast method for comparing personal genomes. We transform the standard 
genome representation (lists of variants relative to a reference) into 'genome fingerprints' that 
can be readily compared across sequencing technologies and reference versions. Because of 
their reduced size, computation on the genome fingerprints is fast and requires little memory. 
This enables scaling up a variety of important genome analyses, including quantifying 
relatedness, recognizing duplicative sequenced genomes in a set, population reconstruction, 
and many others. The original genome representation cannot be reconstructed from its 
fingerprint; the method thus has significant implications for privacy-preserving genome analytics. 
 
Background 
Personal genome sequences contain the information required for assessing genetic risks, 
matching genetic backgrounds between cases and controls in medical research, detecting 
duplicate individuals or close relatives for medical, legal, or historical reasons. Research 
purposes served by personal genome sequencing include classifying individuals by population, 
reconstructing human history, assessing and controlling the quality of the sequence information 
itself, computing kinship matrices to support genome-wide association studies (GWAS), and 
combining data sets for meta-analysis. 

Many of these applications involve comparison of two or more personal genomes. 
However, the size, complexity, and diversity of representations in which they are stored makes 
comparison of personal genomes in their existing forms error-prone and slow, and therefore 
challenging to scale from pairs to the hundreds, thousands, or millions of individuals we will 
soon wish to compare in order to provide improved, personalized medical care. 

Comparison of personal genomes requires cross-referencing on a very large number 
(potentially millions) of variants; this process can be slow enough to make the computation of all 
pairwise comparisons take a prohibitive amount of time. Current approaches to rapid genome 
comparison rely on severely limiting the number of single nucleotide polymorphisms (SNPs) to 
compare. A carefully curated set of 24 autosomal exome SNPs [1] captures up to 38 bits of 
information per genome and thus limits utility to establishing identity and is susceptible to failure 
when data are partially missing. A larger set of 1500 pre-selected SNPs has been used to 
match genomes directly from BAM files [2], with the requirement that these be mapped to the 
same reference genome. Similarly, focusing on tens of thousands of pre-selected SNVs enables 
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multiple fast quality control computations in pedigrees [3]. Another powerful strategy involves 
deep compression of the data, coupled with advanced algorithms for fast querying and retrieval 
[4, 5]. The recent UNICORN method enables independent mapping of individuals onto ancestry 
spaces based on detailed maps of minor allele frequency distributions [6]. These strategies offer 
better speed at the expense of limited applicability, severely reduced accuracy, or strong 
reliance on detailed prior knowledge about the population being studied. 

Perhaps more importantly, the diversity of representations of personal genomes remains 
a problem for each of these methods, which must translate SNPs represented in different ways 
to a common representation in order to assemble the data to compare. This diversity of 
representations arises from the variety of technologies used to determine personal genomes, 
their processing with diverse software pipelines and their representation relative to multiple 
versions of the reference genome. We explore each of these below. 

The billions of base pairs in an individual’s genome can be assayed using a variety of 
techniques, the most complete of which is whole-genome sequencing (WGS). Several WGS 
technologies have been used to determine individual genomic sequences, differing in 
experimental protocols and in specific parameters such as read length and error tolerances; the 
resulting data are processed using diverse computational pipelines. Each technology brings a 
different set of observational biases and error modalities; the resulting observations are 
expressed in a diversity of ‘native’ vendor-specific file formats, and translated to one or more 
standard formats (e.g., variant call format, or VCF) in a variety of ways, leading to a bewildering 
diversity of flavors of semi-standard formats. 

The resulting sequence is compactly represented as a list of differences (variants) from 
a reference genome. Due to the ongoing progress in improving the quality of the human 
reference genome, there are now several different versions (also known as ‘freezes’) in use. To 
date, many thousands of personal genomes have been ascertained, most of them expressed 
relative to the GRCh37 (also known as 'hg19') and GRCh38 ('hg38') freezes, though much 
legacy data exists using GRCh36 ('hg18') coordinates and even earlier versions. The position of 
a genomic variant depends on the reference version used: from one genome freeze to another, 
typically only the position of each variant along the chromosome changes, though in a small 
fraction of the cases a variant may be located in different chromosomes. Any two genomes of 
interest may be expressed relative to different reference genomes, necessitating conversion 
prior to comparison and analysis. 

Even relative to the same reference version, a variant may have more than one 
representation, necessitating additional conversion steps potentially leading to errors. Each 
chromosome has multiple names (e.g., 'NC_000003.12', 'chr3' or just '3' are all used refer to the 
third largest human chromosome), and different representations count the first nucleotide of 
each chromosome as position zero or one. Even with the same naming and numbering 
conventions, some variants can be expressed in more than one way, requiring normalization [7]. 

Sequencing the same genome using different technologies can yield differing results, as 
each technology has its own biases. Even when using the same technology, reference and 
encoding, sequencing the same genome repeatedly can give somewhat different results due to 
the stochastic nature of genome sequencing, to batch effects, or to differences in the 
computational pipelines used. 

Looking to the future, additional (long-read) technologies will enable de novo genome 
assembly to become commonplace; the reference genome representation will change to a 
graph format, further breaking the concept of absolute coordinates; and the number of genomes 
available will soon be in the millions. These trends will deepen, not lessen the complexity of 
genome comparison. 

We present here a new, rapid method for summarizing personal genomes that does not 
require knowledge of the technology, reference and encoding used, and yields 'genome 
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fingerprints' that can be used to facilitate many standard problems in genomics. Thanks to their 
reduced size, computation on the genome fingerprints is orders of magnitude faster and 
requires little memory, enabling comparison of much larger sets of genomes. No individual 
variants or other detailed features of the personal genome can be reconstructed from the 
fingerprint, thereby allowing private information to be more closely guarded and protected by 
decoupling genome comparison from genome interpretation. Fingerprints of different sizes allow 
balancing the speed and accuracy of the comparisons, and due to the high value of estimating 
relatedness, the potential applications of genome fingerprinting range from basic science (study 
design, population studies) to personalized medicine, forensics and genealogy research. 
 
Methods 
Overview 
Our algorithm summarizes a personal genome as a ‘fingerprint’ (Figure 1). Conceptually, any 
variant-oriented representation of a personal genome (e.g. a VCF file or vendor-specific format, 
regardless of encoding or reference genome used) includes a list of variants, including their 
position and reference and alternative alleles, sorted by position. A ‘raw’ fingerprint is a tally of 
consecutive biallelic single-nucleotide variants (SNV) pairs grouped on a combination of these 
two attributes. We then normalize the raw fingerprint to account for systematic differences in 
frequency between groups by allele and by position. The resulting ‘normalized’ fingerprint 
preserves differences at the species level, e.g. between individuals from different populations. 
Averaging the normalized fingerprints of the individuals in a population yields a ‘population’ 
fingerprint, which can be subtracted from an individual’s normalized fingerprint to produce a 
‘population-adjusted’ fingerprint suitable for more sensitive detection of related genomes. 
 
Computation of raw fingerprints 
The first stage in computing genome fingerprints yields a ‘raw’ fingerprint, a 144 x L table of 
SNV pair counts (L, the fingerprint length, is the main parameter of the method, defaulting to 
20). We classify each pair of consecutive SNVs by the combination of reference and alternate 
alleles at both SNVs: this information determines the row in the table. We also consider the 
distance between the SNVs: this information determines the column in the table. When studying 
genomes produced using Complete Genomics and Illumina technologies, we observed 
differences in the distribution of distances between consecutive SNVs, for short distances 
(Supp. Figure 1). These differences largely reflect each vendor pipeline’s encoding of multi-
nucleotide variants; some pipelines represent these as individual SNVs, potentially leading to 
interpretation errors [8]. We thus exclude SNV pairs that are separated by fewer than C base 
pairs (defaulting to 20) from the final fingerprint. To avoid technology-specific artifacts, we 
recommend C at least 5 (see below). 

To compute a raw fingerprint: 
1) Parse the autosomes in the personal genome (e.g., from a VCF file) to identify 

biallelic SNVs as variants with reference allele of length 1 and single alternate allele of length 1, 
both in the case-insensitive alphabet [A C G T]. Ignore all other types of variants: two biallelic 
SNVs separated by other types of variants are still considered consecutive. 

2) For each SNV, join its reference and alternative alleles into one of 12 possible SNV 
keys. For example, reference allele 'G' and alternative allele ‘A’ form key ‘GA’. 

3) Join the keys of consecutive SNVs on the same chromosome to form one of 144 
possible SNV pair keys; for example, consecutive SNVs with keys ‘GA’ and ‘TC’ form the SNV 
pair key ‘GATC’. 

4) Compute the number of base pairs between the two SNVs (the 'distance' between the 
SNVs along the reference genome). If this distance is smaller than C, increment by one the 
corresponding value in the [144 x C] 'close' matrix (Figure 1), and skip the next steps. 
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5) Compute a reduced distance as the distance between the two SNVs, modulo the L. 
6) Increment by one the corresponding value in the [144 x L] 'raw' matrix. 

 
Normalization of fingerprints 
The second stage in computing genome fingerprints performs a normalization of the raw 
fingerprint to account for the different frequencies of transitions and transversions, distance and 
parameter effects (Supp. Figure 2). The normalized fingerprints do not show any remaining 
structure (Supp. Figure 3). 

The normalization is performed in two steps: 
1) Normalization by distance: subtract the mean and divide by the standard deviation of 

each column. 
2) Normalization by SNV pair key: subtract the mean and divide by the standard 

deviation of each row. 
 
Population fingerprints 
We compute a population fingerprint as the average of the normalized fingerprints from the 
individuals in the population. These fingerprints must have been computed using the same 
parameters (C and L). 
 
Adjustment to population 
We compute a population-adjusted fingerprint for an individual by subtracting a population 
fingerprint from the normalized fingerprint of that individual. The individual fingerprint and the 
population fingerprint must have been computed using the same parameters (C and L). Similar 
to normalized fingerprints, population-adjusted fingerprints show no internal structure (Supp. 
Figure 4). 
 
Fingerprint comparison 
To compare two fingerprints, concatenate the rows of each fingerprint matrix into a vector and 
compute the Spearman correlation between the two vectors. This same procedure is 
appropriate for comparing two normalized fingerprints or two population adjusted fingerprints, 
whether adjusted to the same or different populations. 
 
Binary fingerprints 
We also evaluated a minimal version of the genome fingerprints, in the shape of a binary string 
of length 144, as follows (Supp. Figure 5). We (a) compute a raw fingerprint matrix with L=2, 
and (b) for each row in the matrix, corresponding to a SNV pair key, add to the binary fingerprint 
a 1 if the value of the second column is larger than the value in the first column. There is no 
need to normalize binary fingerprints. To compare two binary fingerprints, we count how many 
bits are identical between the two, divide by the number of bits (144) and square the resulting 
fraction. 
 
Evaluation of resilience of genome fingerprints 
Different reference versions. To evaluate the resilience of the fingerprinting method to different 
versions of the reference genome, we computed fingerprints (L=20 and binary) for a set of 69 
genomes sequenced by Complete Genomics, Inc. (http://www.completegenomics.com/public-
data/69-genomes/); these genomes were mapped to both GRCh36 (hg18) and GRCh37 (hg19). 
We then computed all pairwise correlations, which include a) each genome on both references, 
b) combinations of different genomes on the same reference and c) combinations of different 
genomes with different references. 
Format and normalization. To evaluate the resilience of the fingerprinting method to 
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transformation from vendor-specific formats to standard representations, we studied 2436 CGI 
genomes delivered in 'var' format and 1618 CGI genomes delivered in 'masterVar' format. The 
var format reports each allelic observation in a separate line, while the masterVar format 
represents each locus in one line (in similarity with the VCF format). We used custom parsers to 
transform these vendor-specific genome representations to VCF format, and normalized them 
using vt normalize [7]. We then compared genome fingerprints computed from the original (var 
or masterVar) representations and from the normalized VCF representations. We performed 
these computations with L=20 and with binary fingerprints. 
Significant filtering and post-processing. To evaluate the resilience of the fingerprinting method 
to complex post-processing procedures, we studied 154 genomes from the 1000 Genomes 
Project for which individual WGS data are available from the International Genome Sample 
Resource (http://www.internationalgenome.org/announcements/complete-genomics-data-
release-2013-07-26/). The genomes were analyzed using Complete Genomics' analysis 
pipeline versions 2.2.0.19 through 2.2.0.26 and reported in masterVar format. We compared for 
each genome fingerprints computed from the masterVar representation and from the version 
extracted from the multi-sample VCFs in release 20130502 (filenames: 
ALL.chrNN.phase3_shapeit2_mvncall_integrated_v5.20130502.genotypes.vcf.gz). We 
performed these computations with L=20, L=200, and binary fingerprints. 
Sequencing technology effects. To evaluate the resilience of the fingerprinting method to 
differences between technologies, we computed fingerprints for several versions of the 
“platinum” NA12878 genome, some of them sourced from the Genome In A Bottle consortium 
(downloaded from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/analysis/). These 
assemblies were sequenced using multiple versions of CGI’s technology and Illumina, 
processed using various pipeline versions, mapped to GRCh36, GRCh37 and GRCh38 (Figure 
2). We performed these comparisons with L=5, L=20, L=120, and binary fingerprints.  
Missing data. To evaluate the resilience of the fingerprinting method to missing data, we 
performed a simulation in which we degraded a genome to increasing degrees and compared 
the resulting fingerprints to the original. We computed a series of fingerprints for the same 
genome by varying the probability of not observing each individual variant, excluding 1, 5, 10, 
15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 95, and 99% of the variants at random (Figure 3). 
We performed this simulation with L=10, L=20, L=50, L=120, and binary fingerprints. 
 
Pedigree study 
We studied WGS data from 35 individuals in a large family (Figure 4). All genomes were 
sequenced by Complete Genomics, Inc. from blood (n=25) or saliva (n=10) samples, and 
processed using pipeline version 2.5.0.20. The genome data and a description of the family 
pedigree were donated by the private family. We categorized all pairwise relationships within the 
family as sibling, parent/child, half-sibling, aunt/uncle, grandparent, cousin, second cousin, 
second cousin once removed, unrelated, and other. The last category included more complex 
relations, e.g., child and grandchild of half-siblings. We computed for each individual a series of 
genome fingerprints using L in the range 2-200. For each L we computed all pairwise 
correlations, then computed their average and standard deviation stratified by the relationship 
categories listed above. 
 
Population reconstruction 
We computed fingerprints (L=20, L=120, and binary) for each of the 2504 genomes in the 1000 
Genomes Project data set from the version extracted from the multi-sample VCFs in release 
20130502 (filenames: 
ALL.chrNN.phase3_shapeit2_mvncall_integrated_v5.20130502.genotypes.vcf.gz). For 
comparison, we analyzed the same data by principal components analysis (PCA) as follows. 
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We identified SNPs with a minor allele frequency of 5% or more, removed SNPs in complete 
linkage disequilibrium with a SNP to the left (i.e. a smaller chromosomal position), retained 5% 
at random (298,454 SNPs) and counted occurrences of the minor allele (0, 1, or 2) in each 
genome to form a 2504 x 298,454 genotype matrix M. We performed PCA using the R function 
call prcomp(M,center=TRUE,scale=TRUE). (Figure 5) 
 
Evaluation of fingerprints for population classification 
We computed a population fingerprint for each of the annotated populations studied by the 1000 
Genomes Project. To identify the population closest to each individual, we compared each 
individual’s normalized fingerprint to the population fingerprints (using Spearman correlation, as 
described for comparing individual fingerprints). Each individual was considered classified as 
belonging to the closest population. To avoid bias, we excluded each individual from the 
computation of their own population fingerprint. 

 
Population-adjusted fingerprints 
We computed a population-adjusted fingerprint for each individual in the 1000 Genomes data 
set by subtracting the population fingerprint (excluding the individual) from the individual’s 
normalized fingerprint. We computed all pairwise Spearman correlations and identified outliers 
using the absolute deviation around the median [9] with false discovery rate of 5%. 
 
Results 
A novel genome encoding method 
We developed a novel algorithm for computing ‘fingerprints’ from genome data; the algorithm is 
akin to locality-sensitive hashing [10]. These fingerprints are rapidly computed, only need to be 
computed once per genome (not once per comparison), and can be rapidly compared to 
determine whether two genome sequences are derived from the same individual, closely related 
individuals, or unrelated individuals. Moreover, the original genome representation cannot be 
reconstructed from the fingerprint, and fingerprints can be shared when privacy concerns 
prevent sharing the genome itself. 

Importantly, the fingerprints can be computed starting from any of several file formats, 
with a variety of encodings and relative to any reference version, and the resulting fingerprints 
are directly comparable without further conversion. 

Based on characteristics of consecutive pairs of SNVs (see Methods), our algorithm 
computes two small matrices of numbers for each genome (Figure 1), one of which ('close') 
holds potentially useful information about the technology used to generate the genome, and the 
other ('raw') represents the genome itself. The latter is then normalized and potentially adjusted 
to the relevant population fingerprint. Each of these matrix versions has its own utility. 

The main parameter of our algorithm, L, determines the size of the fingerprint. Smaller 
fingerprints (e.g., L=20) are useful for fast genome comparisons to determine identity, while 
larger fingerprints (e.g., L=120, L=200) retain more information and better support detailed 
analyses like population reconstruction. 
 
A minimal fingerprint 
We further sought to create a minimal genome fingerprint. Using the smallest meaningful table 
(L=2), we created a fingerprint of just 144 bits for each genome. Each bit represents, for each of 
the 144 possible SNV pair keys (e.g., 'GAGT'), whether the distance (the number of intervening 
base pairs) between the consecutive SNVs is more frequently an odd or an even number. This 
simple hash function yields a 'binary barcode' of a genome (Supp. Figure 5) with negligible 
storage and memory footprints, trivially comparable to similarly computed 'barcodes' by counting 
binary matches. 
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Computation on genome fingerprints is fast 
Computation of genome fingerprints is very fast, typically requiring 15-45 seconds per genome, 
depending on the file format. The computation requires a single-pass read of the genome and 
depends principally on the time it takes to read the file (I/O bound). It is also trivially 
parallelizable: computation of one genome fingerprint does not depend on the results of similar 
computations for other genomes. It is also possible to compute partial raw fingerprints from 
sections of the genome, e.g., individual chromosomes; such partial fingerprints can then be 
trivially summed yielding the raw fingerprint for the whole genome. 

Thanks to the small size of the fingerprint matrices, fingerprint comparisons are 
extremely fast. We performed all-against-all comparisons in a set of 11,726 genomes. The 
nearly 69 million comparisons required 10 CPU hours (0.5 milliseconds per comparison) with 
L=20, and under half a CPU hour (25 microseconds per comparison) for binary fingerprints. 
Fingerprint comparisons are also independent and trivially parallelizable. 
 
Genome fingerprints are resilient 
Fingerprints are resilient to reference versions. Mapping raw sequence data to different 
reference versions can yield disparate variant calls. The absolute coordinates for most observed 
variants will differ between references; a fraction of the variants will differ also in other aspects 
including reference allele, variant allele and even chromosome assignment and strand. We 
studied a set of 69 genomes that were mapped to two reference versions and evaluated the 
effect of reference version on fingerprint comparison. With L=20, the Spearman correlation 
between fingerprints derived from genomes mapped to GRCh36 and GRCh37 ranged from 
0.989 to 0.991, while fingerprints derived from different genomes in this set ranged from 0.222 
to 0.685 (see example in Figure 2). Binary fingerprints yielded lower correlations that 
nevertheless clearly separated self-comparisons (0.853-0.986) from comparisons of different 
individuals (0.243-0.742). Genomes mapped to different references therefore yield highly 
comparable fingerprints.  
Fingerprints are resilient to format differences. Genome sequencing vendors may deliver results 
in non-standard file formats that best convey technology-specific characteristics of the data; the 
variants themselves may be represented in inconsistent ways. Considering two vendor-specific 
file formats (Complete Genomics' var and masterVar), we evaluated the effect on fingerprinting 
of standardizing the genome data representation by transforming to the standard VCF format 
and by normalization of variants [7]. With L=20, the correlation between fingerprints derived 
from var files and from their normalized VCF counterparts was 0.9911 +/- 0.0008. For 
masterVar files, the correlation was 0.9982 +/- 0.0015. Binary fingerprints yielded marginally 
lower correlations: 0.9262 +/- 0.0313 for var files and 0.9688 +/- 0.0211 for masterVar files. We 
found that this transformation yields nearly identical fingerprints. 
Fingerprints are resilient to complex post-processing. The 1000 Genomes Project applied a 
number of post-processing steps to the collection of 2504 genomes to normalize variant calls 
and exclude spurious or unreliable variants. Thus, for each genome in the data set there are at 
least two versions: the initial, unprocessed individual genome, and the harmonized version in 
the context of the large study. We evaluated whether fingerprint comparison is resilient to this 
complex post-processing procedure (see example in Figure 2). With L=20, the correlation 
between initial and post-processed versions was 0.798 +/- 0.010. We observed nearly identical 
results with L=200: 0.798 +/- 0.008. The lowest observed correlation for an individual genome 
was 0.776, well above the correlations observed for different individuals, even those closely 
related. As expected, binary fingerprints were more strongly affected by the post-processing 
procedure, yielding correlations of 0.660 +/- 0.057. Here, the lowest observed correlation for an 
individual was 0.463, significantly below the highest correlation observed between binary 
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fingerprints of two related individuals (0.742). 
Fingerprints are resilient to technology differences. We compared fingerprints computed from 
various versions of the same genome (NA12878) as ascertained using different technologies, 
mapped with different pipelines and using different references (Figure 2). Using fingerprints with 
L>=20, all comparisons yielded correlations higher than 0.8. Shorter fingerprints (L=5) yielded 
correlations above 0.75 (not shown). As expected, binary fingerprints were more sensitive to 
technology differences. 
Fingerprints are resilient to missing data. We evaluated whether fingerprint comparison is 
resilient to missing data by simulation. For a variety of fingerprint sizes, we degraded a personal 
genome by excluding a fraction of the variants prior to computing fingerprints. For most 
fingerprint sizes, we observed a monotonic and equivalent decrease in Spearman correlation 
between the degraded genome fingerprints and the original, undegraded genome fingerprint. 
Given the 0.8 lowest correlation observed for different versions of the same genome, we 
conclude that the fingerprinting method is resilient to up to 30% missing data (Figure 3). As 
expected, the less informative binary fingerprint is less resilient (up to 5% missing data). 
 
Fingerprint similarity reflects degree of relationship 
We compared pairwise genome fingerprint correlations with known family relationships in a 
large pedigree (Figure 4). The family relationships spanned the range from close (e.g., siblings) 
to distant (e.g., second cousins once removed) and also included unrelated individuals (joining 
the family by marriage). We observed that fingerprint correlations decrease with increasing 
degree of relationship. This demonstrates that our genome fingerprinting method is locality-
sensitive. We also observed that L>=20 is sufficient for distinguishing most relationship levels 
on average. Larger fingerprints have lower standard deviations (Supp. Figure 6), improving 
resolution and the confidence of close relationship. The genomes of all individuals in this 
pedigree were sequenced using the same technology and processed using similar pipeline 
versions and the same reference version; this setup is typical for research studies. Combining 
data obtained using multiple technologies and processing pipelines could reduce the ability to 
confidently distinguish between relationship levels. 

Of note, fingerprints derived from siblings tend to be more highly correlated than 
fingerprints of parents and their offspring. In both cases the degree of relationship is the same, 
but the identity by descent (IBD) pattern differs: parents and offspring share 100% of the 
genome in IBD1 state, while siblings share (on average) 50% of the genome in IBD1 state and 
25% in IBD2 state. This increases the probability that sibling pairs will share heterozygous 
variants, especially heterozygous rare variants, as compared with parent/child pairs. For similar 
reasons, fingerprints of half siblings are more correlated than fingerprints of relatives of the 
same average degree (grandparental and avuncular relationships). 
 
Fast reconstruction of population structure 
We tested the utility of genome fingerprints for population studies. We computed fingerprints for 
the 2504 individuals from 1000 Genomes Project and used PCA to reconstruct the known 
population structure (Figure 5) in a fraction of the time required to perform the same task using 
standard methods and with much smaller memory requirements. The quality of the 
reconstruction depended on fingerprint size: while binary fingerprints yielded only a first 
approximation, fingerprints with L=20 yielded good separation at the continental level, and 
fingerprints with L=120 yielded excellent population structure reconstruction. PCA applied to 
fingerprints of different values of L provided results highly correlated with results from PCA 
applied to variants, with convergence to the same principal component axes as either the 
number of variants or the L increased. For a sufficient amount of data in either form, correlation 
between corresponding principal components was > 0.99 for the first 5 to the first 10 
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components. This strongly suggests PCA of either kind of data provides equivalent information 
regarding population structure. 

Importantly, the population reconstruction workflow using fingerprints is simple and 
requires no prior knowledge. The standard workflow requires creating multi-sample VCFs 
(which in turn requires normalizing variants), filtering out unreliable variants (which requires prior 
knowledge), filtering by allele frequency (requiring population frequencies), paying attention to 
linkage disequilibrium, making assumptions about variants not observed in some samples and, 
finally, selecting a suitably sized subset of variants to balance resolution with memory and 
computational requirements. In contrast, using genome fingerprints it is possible to reconstruct 
population structure by computing fingerprints directly from the unprocessed individual genomes 
and combining the fingerprints into a matrix ready for analysis with PCA or any other method of 
choice. 
 
Utility for fast and simple population assignment 
Individuals from the same population share some evolutionary history, and therefore some of 
the SNV pairs counted in computing genome fingerprints. It is thus useful to summarize the 
fingerprints of a population, both to estimate the “center” of the population’s fingerprints and 
their variability around that center (population diversity). Such “population fingerprints” have a 
variety of uses, including population assignment for individuals. We implemented a simple and 
very rapid method in which we first compute fingerprints (L=120) for each population in the 1000 
Genomes data set by simply averaging the fingerprints of the genomes in each population. We 
then compute the correlation between the fingerprint of a query genome and the fingerprint of 
each population: the genome is assigned to the population with which it is most strongly 
correlated. We tested this method by “leave one out” cross-validation. The correct population 
was identified as the best match for 2047 of 2504 query genomes (82% of cases). Some of the 
populations in the 1000 Genomes data set are very closely related and difficult to separate; for 
many practical purposes (e.g., selecting appropriate allele frequencies) using such closely 
related populations yields equivalent results. Accepting the 2nd or 3rd best population matches 
increased the success rate to 96% and 98%, respectively. At the continental resolution (5 
regions: AFR, AMR, EAS, EUR, SAS), the best match was correct for all but 42 admixed AMR 
genomes. 
 
Utility of population-adjusted fingerprints 
Fingerprints can be manipulated in a familiar way to perform different distance-based analyses. 
Population fingerprints, for example, are simple averages of a group that capture the features 
common to the group with respect to distance, but without corresponding interpretations that 
could be used for racial profiling or stereotyping. Population adjusted fingerprints allow analysis 
of relationships within a population, beyond the features shared among the population. This 
allows close relationships to be distinguished from membership in the same population and may 
help increase resolution of population structure reconstruction. We adjusted the L=120 
fingerprints for the 2504 individuals in the 1000 Genomes data set relative to their stated 
population of origin and performed all pairwise comparisons (Figure 6). Of note, these 
correlation values among population adjusted fingerprints are not comparable with those 
observed among normalized fingerprints in the family study (Figure 4). The similarity between 
unrelated individuals derived from the same population (e.g., Figure 4) is removed by 
adjustment to the population average. Thus, population-adjusted fingerprints for unrelated 
individuals show no significant correlation. 

We observed 143 pairs of individuals from the same population with correlations higher 
than expected (at 5% false discovery rate) and two outlier pairs linking individuals of the ITU 
and STU populations (Supp. Table 1), consistent with previous reports [11]. The highly 
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correlated pairs correspond to a variety of degrees of relationship, from full siblings to cousins. 
In several cases they form networks of related individuals, e.g., a Gujarati Indian trio with a 
cousin of one of the parents (Figure 6, upper inset) and a Sri Lankan Tamil pair of full siblings 
and three cousins (Figure 6, lower inset). 
 
Discussion 
We have presented a novel algorithm for computing ‘fingerprints’ of individual genomes, and 
various examples of their potential applications. Genome fingerprints are reduced 
representations that retain information about distances (between genomes) but not functional 
features, enabling ultrafast comparison of genomes. Importantly, the fingerprints need to be 
computed just once per genome, not once per comparison. They can also be computed directly 
from any representation of the genome, regardless of technology, reference version, formatting 
and encoding choices, and even significant levels of missing data. These features provide for 
the first time the ability to rapidly compute the level of similarity between genomes regardless of 
such representational differences. 

We described an implementation of the method for whole-genome data and various 
aspects of comparing whole-genome fingerprints, pairwise and in large sets. Fingerprints can 
similarly be computed for exome data. The fingerprint computed from an individual’s exome 
would not be directly comparable to the fingerprint derived from the same individual’s whole 
genome; it is though possible and very efficient to approximate exome data from whole-genome 
data, by simple subsetting using bedtools [12]. 

Even our unoptimized software for pairwise comparison of genomes via fingerprints 
takes less than a millisecond; using a compiled language or specialized hardware acceleration 
could potentially significantly improve on this simple implementation. These speeds are already 
orders of magnitude faster than afforded by current methods, and enable orders of magnitude 
more comparisons to be routinely performed. As expected from the highly lossy data reduction 
involved in generating genome fingerprints, their comparison for various applications yields 
results that are somewhat inferior to direct computation on the entire dataset of all observed 
variants. The fast approximation afforded by genome fingerprints will be good enough for some 
applications, and will prioritize more detailed computations where precise results are required. 
Widespread adoption of this methodology could revolutionize the field of comparative genomics 
by enabling comparisons on a scale not now attempted due to the time and effort required. 

We have shown that regardless of the technology, genome freeze, or encoding used for 
specific personal genomes, the corresponding fingerprints enable rapid testing of whether two 
genome representations are derived from the same person or from closely related individuals, 
rapid identification of the closest among a specified set of candidate populations, and 
acceleration of population structure studies. Genome fingerprints are also lightweight and 
restricted to distance information, and therefore suitable for databasing on a broader scale than 
the personal genomes themselves. Such databases would enable rapid testing of whether a 
new personal genome has already been observed, rapidly ensuring that a data set includes only 
unrelated individuals, and rapid testing for the presence of shared genomes in two or more 
studies, all of which are common steps in the planning and construction of cohorts of genomes 
for more sensitive, functional analysis. Distances between fingerprints also provide an unbiased 
scale for selecting pairs of individuals at comparable distances, for example to select individuals 
from a control set matched to a set of cases at a consistent evolutionary distance. 

Genome fingerprints are highly resilient to a variety of important technical issues, 
including different reference versions, variant normalization and post-processing, different 
sequencing technologies, and different variant sampling efficiencies (missing data). We 
observed that significant post-processing of genome data in a large cohort, as done by the 1000 
Genomes Project, can lead to reduced similarities with the unprocessed versions of the same 
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genomes. Several processing steps may contribute to this effect: exclusion of problematic 
‘blacklisted’ regions, imputation of missing values, changes in genotypes determined through 
‘joint calling’, and the increased chance of observing multi-allelic variants - which are excluded 
from our analysis. 

We evaluated the value of the most compact form of fingerprint, binary fingerprints. 
Despite their simplicity and compactness, binary fingerprints are typically sufficient to establish 
whether two genome representations are derived from the same individual, and even to 
distinguish between closely related and unrelated individuals; however, they do not retain 
enough information to make these determinations when comparing mixtures of unprocessed 
and highly post-processed versions of genomes. 

Our fingerprinting algorithm is a fully deterministic form of locality-sensitive hashing [10], 
a class of algorithms which has been successfully applied to large-scale sequence comparisons 
[13], protein classification [14], metagenome clustering [15] and the detection of gene-gene 
interactions [16]. Locality sensitive hashing methods based on indexing substrings have been 
used to compare genomes, typically of different species, and other sequence data types. By 
encoding single-nucleotide differences from a reference sequence, our method focuses on 
representing distances among individuals of the same species, for whom the base (reference) 
sequence is identical and need not be indexed as k-mers. Accordingly, the main application of 
our method is to detect relationships at various levels - from identity to population structure. 

We chose to focus on the most common and well-defined type of genome variation - 
SNVs. Other types of variation, including short insertions and deletions (indels), larger structural 
variants, and copy-number variants) are significantly less common than SNVs, and are 
frequently either represented differently in different genomes, not detected, or not reported: we 
therefore chose to exclude them for the sake of simplicity and consistency in analysis. Our 
results demonstrate that SNV-based fingerprints contain enough information to support many 
genome comparison tasks; the other types of variation are not necessary to estimate 
evolutionary distances within a species, and could be detrimental for the above reasons. 

For each SNV, we only consider the nature of the reference allele and the alternate 
allele as observed in the individual. Our current implementation considers only positions in 
which an alternate allele is observed, regardless of zygosity: heterozygous SNVs and 
homozygous-alternate SNVs are treated equally. We evaluated also alternative versions of the 
method in which SNVs with different zygosity are weighted differently. Some of these alternative 
versions will be useful in particular contexts, e.g., for fingerprinting genomes in a fully reference-
free fashion by considering only heterozygous SNVs. For each pair of consecutive SNVs, we 
consider the distance separating them along the reference genome. This is unaffected by any 
intervening indels or other complex variants in the individual. 

We also chose to include only SNVs observed in autosomes. Inclusion of variants in the 
sex chromosomes leads to distorted similarity values. For example, due to shared variants on 
the X chromosome, a female child would appear to be more closely related to her mother than 
to her father, or to be as closely related to her grandfather as to her grandfather’s sister. 

Most importantly, our algorithm successfully distributes genome information onto a 
matrix representation that preserves distances without preserving individual, functionally 
interpretable variants. While some algorithmic aspects of our method may seem somewhat 
arbitrary, it is simple and efficient to compute. Prior applications of locality sensitive hashing to 
genomics have demonstrated the utility of quite arbitrary-seeming algorithms. For example, the 
kernel of a locality sensitive hashing approach to genome-scale assembly of single-molecule 
sequencing data uses the XORShift pseudo-random number generator to transform k-mer 
hashes into comparable ‘sketches’ [14]. The lack of relationship between the mathematical 
transformation used in our algorithm and evolutionary processes is therefore an advantage that 
enables genetic distance information to be separated from genetic interpretability, rather than a 
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disadvantage. 
The focus on local patterns of SNVs offers an additional advantage of our method. To 

date, the reference genome has been represented as a collection of linear sequences 
(chromosomes) with absolute coordinates. One disadvantage of this method is that the absolute 
coordinates change from version to version; another is that the linear representation is not 
flexible enough to represent the rich diversity in structural variation observed within our species. 
The genomics community is now developing a new, graph-based reference genome format, 
which will further devalue the use of global sequence coordinates as the method for matching 
sequence variants. We expect that genome fingerprints can be computed from graph-based 
genome representations, which will be highly comparable to fingerprints we currently compute 
from linear-reference representations. 

Public sharing of genome data has been limited by multiple personal privacy and 
confidentiality considerations. A central risk is the possibility of identifying genetic 
predispositions to certain diseases or other traits that could affect the individual’s ability to 
obtain or maintain employment, insurance or financial services, or may carry social stigma, or 
could lead to other negative effects. Quantifying this risk is difficult since the ability to interpret 
genomic variants will expand over time with additional research. Our method enables sharing 
enough information about a genome to enable the comparison tasks, without concomitantly 
revealing the information needed for predicting phenotype. As such, our method decouples 
genome comparison from interpretation. This property has important implications for privacy-
preserving genome analytics. Identifying genomes harboring a specific variant can be of interest 
both in the presence of associated phenotype, as facilitated through the Matchmaker Exchange 
[18], or in its absence, to ascertain novelty and frequency ([19] and the Beacon Network, 
http://ga4gh.org/#/beacon). Genome fingerprints support the complementary task of 
matchmaking via identification of closely related individuals, without exposing variant 
information, in similarity with the UNICORN method [6] but with a much simpler algorithm that 
doesn’t require extensive prior modeling of variant frequencies, nor samples to be expressed 
relative to the same reference. Genome fingerprints can furthermore be used to compare 
genomes from populations not previously studied. 

Finally, as growing contingents of private individuals get access to their own genetic 
data, there is increasing public interest in efficient and private analysis of personal genomic 
variation, not just for interpreting variants and their combinations, but also for identifying related 
individuals. As such, our method has strong potential for empowering citizen science.  
 
Availability 
Documentation, code, sample datasets and more are available at: 
http://db.systemsbiology.net/gestalt/genome_fingerprints 
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Figures 
Figure 1. Overview of method. Pairs of consecutive SNVs in the input file (upper right) are 
encoded into a table (upper left) by SNV key and by distance. A section of the table, informative 
about technology, is segregated (‘close’ matrix, lower left). The rest of the table is folded using 
the modulo function to generate the raw fingerprint (‘raw’ matrix, lower center), which is then 
normalized and adjusted to the closest population (lower right). 
 
Figure 2. Comparison of several versions of the same genome. We compared six versions of 
the genome of the same individual (NA12878), one of them (GS00363-DNA_C04) processed in 
three different ways. The values above the diagonal of the matrix represent pairwise Spearman 
correlations between fingerprints with L=20, while numbers under the diagonal represent 
comparisons of binary fingerprints. Color scale from 0.5 (red) through 0.75 (white) to 1.0 (blue). 
CGI: Complete Genomics, Inc. ILM: Illumina. LFR: long fragment read. 1000g: 1000 Genomes 
Project. ** highlights the post-processing of the Illumina-based genome sequence as done by 
the 1000 Genomes Project. 
 
Figure 3. Resilience to missing data. We simulated increasing fractions of missing data and 
computed the correlation between the resulting fingerprint and the fingerprint derived from the 
full data. For fingerprints with L=10, L=20, L=50, and L=120, the method was resilient to up to 
30% data loss. The binary fingerprint was resilient to up to 5% data loss. 
 
Figure 4. Fingerprint correlation reflects degree of relatedness. Each trace represents the 
average correlation between fingerprints of individuals in each relatedness group, as a function 
of L. The number of pairs in each class is shown between parentheses. Inset: family structure; 
green icons represent individuals whose genomes were sequenced. Not shown: 169 additional 
pairs with complex relationships. 
 
Figure 5. Reconstruction of population structure of the 1000 Genomes Project data set. Each 
panel shows the principal component analysis (PCA) of the 2504 individuals using ~300,000 
SNPs (upper left), genome fingerprints with L=120 (upper right), L=20 (lower left), and binary 
fingerprints (lower right). Individuals are color coded according to their population as per the key 
to the right. EAS, SAS, EUR, AMR and AFR: East Asian, South Asian, European, Admixed 
American and African, respectively. PC1 and PC2: first two principal components. 
 
Figure 6. Identification of close relationships in the 1000 Genomes Project. Distribution of 
correlations of population-adjusted fingerprints for all pairwise comparisons, stratified by 
whether the two individuals being compared are in the same population, in different populations 
from the same continental region, or from different continental regions. Close relationships are 
clearly identified as outliers. FS: full siblings. PO: parent/offspring. HS: half siblings. AV: 
avuncular. CO: cousins. Upper inset: example of a Gujarati Indian (GIH) family trio with a cousin 
of one of the parents, recognized through fingerprint comparisons. Thick edges represent PO 
relationships. Lower inset: example of a Sri Lankan Tamil (STU) pair of siblings and three 
cousins, identified through fingerprint comparisons. The thick edge represents the FS 
relationship. 
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