
Sparse Tensor Decomposition for Haplotype Assembly of
Diploids and Polyploids∗

Abolfazl Hashemi

Department of Electrical and

Computer Engineering

University of Texas at Austin, USA

abolfazl@utexas.edu

Banghua Zhu

Electronic Engineering Department

Tsinghua University, China

13aeon.v01d@gmail.com

Haris Vikalo

Department of Electrical and

Computer Engineering

University of Texas at Austin, USA

hvikalo@ece.utexas.edu

ABSTRACT
A framework that formulates haplotype assembly as sparse tensor

decomposition is proposed. The problem is cast as that of decom-

posing a tensor having special structural constraints and missing a

large fraction of its entries into a product of two factors, U and V;

tensor V reveals haplotype information while U is a sparse matrix

encoding the origin of erroneous sequencing reads. An algorithm,

AltHap, which reconstructs haplotypes of either diploid or poly-

ploid organisms by solving this decomposition problem is proposed.

Starting from a judiciously selected initial point, AltHap alternates

between two optimization tasks to recover U and V by relying

on a modi�ed gradient descent search that exploits salient struc-

tural properties of U and V. The performance and convergence

properties of AltHap are theoretically analyzed and, in doing so,

guarantees on the achievable minimum error correction scores and

correct phasing rate are established. AltHap was tested in a num-

ber of di�erent scenarios and was shown to compare favorably to

state-of-the-art methods in applications to haplotype assembly of

diploids, and signi�cantly outperform existing techniques when

applied to haplotype assembly of polyploids.

KEYWORDS
haplotype assembly, tensor decomposition, iterative algorithm

1 INTRODUCTION
Fast and accurate DNA sequencing has enabled unprecedented

studies of genetic variations and their e�ect on human health and

medical treatments. Complete information about variations in an in-

dividual’s genome is given by haplotypes, the ordered lists of single

nucleotide polymorphisms (SNPs) on the individual’s chromosomes

[37]. Haplotype information is of fundamental importance for a

wide range of applications. For instance, when the correspond-

ing genes on a homologous pair of chromosomes contain multiple

variants, they could exhibit di�erent gene expression patterns. In

humans, this may a�ect an individual’s susceptibility to diseases

and response to therapeutic drugs, and hence suggest directions

for medical and pharmaceutical research [11]. Haplotype informa-

tion also enables whole genome association studies that focus on

the so-called tag SNPs [19], representative SNPs in a region of the

genome characterized by strong correlation between alleles (i.e., by

high linkage disequilibrium). Moreover, haplotype sequences can

be used to infer recombination patterns and identify genes under

∗
This work is funded by the National Science Foundation under grants CCF 1320273

and CCF 1618427.

positive selection [36]. In addition to the SNPs and minor struc-

tural variations found in a healthy individual’s genome, complex

chromosomal aberrations such as translocations and nonreciprocal

structural changes – including aneuploidy – are present in cancer

cells. Cancer haplotype assembly enables identi�cation of “driver"

mutations and thus helps to understanding the mechanisms behind

the disease and discovery of its genetic signatures.

Haplotype assembly from short reads obtained by high-through-

put DNA sequencing requires partitioning (either directly or in-

directly) the reads into K clusters (K = 2 for diploids, K = 3 for

triploids, etc.), each collecting the reads corresponding to one of

the chromosomes. If the reads were free of sequencing errors,

this task would be straightforward. However, sequencing is erro-

neous – state-of-the-art platforms have error rates on the order

of 10
−3 − 10−2. This leads to ambiguities regarding the origin of

a read and therefore renders haplotype assembly challenging. For

this reason, the vast majority of haplotype assembly techniques

attempts to remove the aforementioned ambiguities by either dis-

carding or altering sequencing data; this has led to the minimum

fragment removal, minimum SNP removal [26], maximum frag-

ments cut [16], and minimum error correction formulations of the

assembly problem [29]. Most of the recent haplotype assembly

methods (see, e.g., [7, 25, 31, 32, 40]) focus on the minimum error

correction (MEC) formulation where the goal is to �nd the smallest

number of nucleotides in reads that need to be changed so that any

read partitioning ambiguities would be resolved. It has been shown

that �nding optimal solution to the MEC formulation of the haplo-

type assembly problem is NP-hard [7, 10, 26]. In [39], the authors

used a branch-and-bound scheme to minimize the MEC objective

over the space of reads; to reduce the search space, they relied on a

bound on the objective obtained by a random partition of the reads.

Unfortunately, exponential growth of the complexity of this scheme

makes it computationally infeasible even for moderate haplotype

lengths. Integer linear programming techniques have been applied

to haplotype assembly in [9], but the approach there fails at com-

putationally di�cult instances of the problem. More recently, �xed

parameter tractable (FPT) algorithms with runtimes exponential in

the number of variants per read [6, 22] were proposed; these meth-

ods are well-suited for short reads but become infeasible for the

long ones. A dynamic programming scheme for haplotype assem-

bly of diploids proposed in [21] is also exponential in the length of

the longest read. A probabilistic dynamic programming algorithm

that optimizes a likelihood function generalizing the MEC objective

is developed in [25]; this method is characterized by high accuracy

but is signi�cantly slower than the previous heuristics. [31, 32] aim

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

to process long reads by developing algorithms for the exact opti-

mization of weighted variants of the MEC score that scale well with

read length but are exponential in the sequencing coverage. These

methods, along with ProbHap [25], struggle to remain accurate and

practically feasible at high coverages (e.g., higher than 12 [25]).

The computational challenges of optimizing MEC score has mo-

tivated several polynomial time heuristics. In a pioneering work

[28], a greedy algorithm seeking the most likely haplotypes was

used to assemble haplotypes of the �rst complete diploid individual

genome obtained via high-throughput sequencing. To compute

posterior joint probabilities of consecutive SNPs, Bayesian methods

relying on MCMC and Gibbs sampling schemes were proposed

in [4] and [24], respectively; unfortunately, slow convergence of

Markov chains that these schemes rely on limits their practical fea-

sibility. Following an observation that haplotype assembly can be

interpreted as the clustering problem, a max-cut formulation was

proposed in [3]; an e�cient algorithm (HapCUT) that solves it and

signi�cantly outperforms the method in [28] was developed and

has been widely used subsequently. A �ow-graph based approach

in [1], HapCompass, re-examined fragment removal strategy and

demonstrated superior performance over HapCut. Other recent

diploid haplotype assembly methods include a greedy max-cut ap-

proach in [17], convex optimization program for minimizing the

MEC score in [13], and a communication-theoretic interpretation

of the problem solved via belief propagation (BP) in [34]. Note

that deep sequencing coverage provided by state-of-the-art high-

throughput sequencing platforms and the emergence of very long

insert sizes in recent technologies (e.g., fosmid [17]) may enable

assembly of extremely long haplotype blocks but also impose sig-

ni�cant computational burden on the methods above.

Increased a�ordability, capability to provide deep coverage, and

longer sequencing read lengths also enabled studies of genetic vari-

ations of polyploid organisms. However, haplotype assembly for

polyploid genomes is considerably more challenging than that for

diploids; to illustrate this, note that for a polyploid genome with

k haplotype sequences of length m, under the all-heterozygous

assumption there are (k − 1)m di�erent genotypes and at least

2
(m−1)(k − 1)m di�erent haplotype phasings. In part for this rea-

son relatively fewer methods for solving the haplotype assembly

problems in polyploids have been developed. In fact, with the ex-

ception of HapCompass [1], SDhaP [13] and BP [34], the above

listed methods are restricted to diploid genomes. Other recent

techniques capable of reconstructing haplotypes for both diploid

and polyploid genomes include HapTree [5], a Bayesian method to

�nd the maximum likelihood haplotype shown to be superior to

HapCompass and SDhaP (see, e.g., [30] for a detailed comparison),

and H-PoP [40], the state-of-the-art dynamic programming method

that signi�cantly outperforms the schemes developed in [1, 5, 13]

in terms of accuracy, memory consumption, and speed.

In this paper, we propose a uni�ed framework for haplotype

assembly of diploid and polyploid genomes based on sparse tensor

decomposition; the framework essentially solves a relaxed version

of the NP-hard MEC formulation of the haplotype assembly prob-

lem. In particular, read fragments are organized in a sparse binary

tensor which can be thought of as being obtained by multiplying

a matrix that contains information about the origin of erroneous

sequencing reads and a tensor that contains haplotype information

of an organism. The problem then is recast as that of decomposing

a tensor having special structural constraints and missing a large

fraction of its entries. Based on a modi�ed gradient descent method

and after unfolding the observed and haplotype information bear-

ing tensors, an iterative procedure for �nding the decomposition is

proposed. The algorithm exploits underlying structural properties

of the factors to perform decomposition at a low computational

cost. In addition, we analyze the performance and convergence

properties of the proposed algorithm and determine bounds on

the minimum error correction (MEC) scores and correct phasing

rate (CPR) – also referred to as reconstruction rate – that the al-

gorithm achieves for a given sequencing coverage and data error

rate. To the best of our knowledge, this is the �rst polynomial time

approximation algorithm for haplotype assembly of diploids and

polyploids having explicit theoretical guarantees for its achievable

MEC score and CPR. The proposed algorithm, referred to as AltHap,

is tested in applications to haplotype assembly for both diploid and

polyploid genomes (synthetic and real data) and compared with

several state-of-the-art methods. Our extensive experiments re-

veal that AltHap outperforms the competing techniques in terms

of accuracy, running time, or both. It should be noted that while

state-of-the-art haplotype assembly methods for polyploids assume

haplotypes may only have biallelic sites, AltHap is capable of recon-

structing polyallelic haplotypes which are common in many plants

and some animals, are of particular importance for applications

such as crop cultivation [35], and may help in reconstruction of

viral quasispecies [33]. Moreover, unlike several state-of-the-art

haplotype assembly methods that have complexity which scales

exponentially with either read length (e.g., [9]) or coverage (e.g.,

[25]), AltHap’s iterative steps are linear in both; this makes AltHap

well-suited for haplotype assembly from long sequencing reads and

deep coverage data. Indeed, we con�rm this claim by performing

extensive experiment using simulated datasets.

2 MATHEMATICAL MODEL AND PROBLEM
FORMULATION

We brie�y summarize notation used in the paper. Bold capital

letters refer to matrices and bold lowercase letters represent vectors.

Tensors are denoted by underlined bold capital letters, e.g., M. M::1

and M denote the frontal slice and the mode-1 unfolding of a third-

order tensor M, respectively. For a positive integer n, [n] denotes

the set {1 . . . ,n}. The condition number of rank-k matrix M is

de�ned as κ = σ1/σk where σ1 ≥ · · · ≥ σk > 0 are singular values

of M. SVDk (M) denotes the rank k approximation (compact SVD)

of M computed by power iteration method [2, 27].

Let H = {h1, . . . , hk } denote the set of haplotype sequences

of a k-ploid organism, and let R be an n ×m SNP fragment ma-

trix where n denotes the number of sequencing reads and m is

the length of haplotype sequences. R is an incomplete matrix

that can be thought of as being obtained by sampling, with er-

rors, matrix M that consists of n rows; each row of M is a se-

quence randomly selected from among k haplotype sequences.

Since each SNP is one of four possible nucleotides, we use the al-

phabet A = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} to describe

the information in the haplotype sequences; the mapping between

nucleotides and alphabet components follows arbitrary convention.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 1. Representing haplotype sequences and sequencing reads
using tensors. Tensor V ∈ Am×k contains haplotype information
while matrix U ∈ {0, 1}n×k assigns each of the n horizontal slices
of M to one of the k haplotype sequences, i.e., the i th row of U is an
indicator of the origin of the i th read.

The reads can now be organized into an n ×m × 4 SNP fragment

tensor which we denote by R. The (i, j, :) �ber of R, i.e., a one-

dimensional slice obtained by �xing the �rst and second indices of

the tensor, represents the value of the jth SNP in the ith read. Let Ω
denote the set of informative �bers of R, i.e., the set of (i, j, :) such

that the ith read covers the jth SNP. De�ne an operator PΩ(.) as

[PΩ(R)]i j : =
{
Ri j : (i, j, :) ∈ Ω
0, otherwise.

(1)

PΩ(R) is a tensor obtained by sampling, with errors, tensor M ∈
An×m

having n copies of k encoded haplotype sequences as its

horizontal slices. More speci�cally, we can write M = UV>, where

V ∈ Am×k
contains haplotype information, i.e., the jth vertical

slice of V, V:j :, is the encoded sequence of the jth haplotype, and

U ∈ {0, 1}n×k is a matrix that assigns each of n horizontal slices of

M to one of k haplotype sequences, i.e., the ith row of U, ui , is an

indicator of the origin of the ith read. Let Φ = {e1, . . . , ek }, where

el ∈ Rk is the l th standard basis vector having 1 in the l th position

and 0 elsewhere. The rows of U are standard unit basis vectors in

Rk , i.e., ui ∈ Φ, ∀i ∈ [n]. This representation is illustrated in Fig. 1

where the (1, 1, :) �ber of V speci�ed with dashed lines is mapped

to the (1, 1, :) �ber of M which in turn implies that in the example

described in Fig. 1 we have u1 = e1.

DNA sequencing is erroneous and hence we assume a model

where the informative �bers in R are perturbed versions of the

corresponding �bers in M with data error rate pe , i.e., if the (i, j, :) ∈
Ω �ber in M takes value el ∈ A, Ri j : with probability 1−pe equals

el and with probability pe takes one of the other three possibilities.

Thus, the observed SNP fragment tensor can be modeled as R =
PΩ(M + N) where N is an additive noise tensor de�ned as

Ni j : =

{
0, w.p 1 − pe

U(A\{Mi j :}) −Mi j :, w.p pe ,
(2)

where the notationU(A\{Mi j :}) denotes uniform selection of a

vector from A\{Mi j :}. The goal of haplotype assembly can now

be formulated as follows: Given the SNP fragment tensor R, �nd the
tensor of haplotype sequences V that minimizes the MEC score.

Next, we formalize the MEC score as well as the correct phasing

rate, also known as reconstruction rate, the two metrics that are

used to characterize performance of haplotype assembly schemes

(see, e.g., [9, 14, 18, 21]). For two alleles a1, a2 ∈ A ∪ {0}, we de�ne

a dissimilarity function d(a1, a2) as

d(a1, a2) =
{
1, if a1, a2 , 0 and a1 , a2
0, otherwise.

(3)

The MEC score is the smallest number of �bers in R that need to

be altered so that the resulting modi�ed data is consistent with the

reconstructed haplotype V, i.e.,

MEC =

n∑
i=1

min

p=1, ...,k

m∑
j=1

d(Ri j :,Vjp :). (4)

The correct phasing rate (CPR), also referred to as the reconstruction

rate, can conveniently be written using the dissimilarity function

d(., .). Let Vt
denote the tensor of true haplotype sequences. Then

CPR = 1 − 1

mk

©­«min

M

m∑
i=1

k∑
j=1

d(M(V)i j :,Vt
i j :)

ª®¬ , (5)

whereM is a one-to-one mapping from lateral slices of V to those

of Vt
, i.e., a one-to-one mapping from the set of reconstructed

haplotypes to the set of true haplotypes.

We now describe our proposed relaxation of the MEC formu-

lation of the haplotype assembly problem. Let pi ∈ [k], ∀i ∈ [n]
be de�ned as pi = argminp

∑m
j=1 d(Ri j :,Vjp :). Notice that for any

j such that d(Ri j :,Vjp :) = 1, ‖Ri j : − Vjp :‖2
2
= 2. Therefore, by

denoting Ωi the set of informative �bers for the ith read we obtain
1

pi = argmin

p

m∑
j=1

d(Ri j :,Vjp :)

=
1

2

argmin

p

m∑
j=1
‖Ri j : − PΩi (Vjp :)‖22

(a)
=

1

2

argmin

p
‖Ri :: − PΩi (V:p :)‖2F

(b)
=

1

2

argmin

p
‖vec(Ri ::) − vec(PΩi (V:p :))‖22

(6)

where (a) follows from the de�nition of the Frobenius norm and

vec(.) in (b) denotes the vectorization of its argument. Let ep be

the pth
standard unit vector ∀p ∈ [k]. It is straightforward to

observe that the last equality in (6) can equivalently be written as

pi =
1

2
argminp ‖vec(Ri ::) − PΩi (Vep)>‖2

2
where V is the mode-

1 unfolding of the tensor V. Hence, MEC = 1

2

∑n
i=1 ‖vec(Ri ::) −

PΩi (Vep)>‖2
2
. Let U ∈ {0, 1}n×k be the matrix such that for its ith

row it holds that ui = epi . In addition, notice that vec(Ri ::) is the

ith row of R. Therefore, from the de�nition of the Frobenius norm

and the fact that PΩ(R) = R we obtain

MEC = min

U,V

1

2

‖PΩ(R − UV
>)‖2F . (7)

The optimization problem in (7) is NP-hard since the entries of V
are binary and the objective function is non-convex. Relaxing the

binary constraint to Vi, j ∈ C, ∀i ∈ [4m],∀j ∈ [k], where C = [0, 1],

1
Notice that Ω = ∪ni=1Ωi .

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 2. Representing haplotype sequences and sequencing reads us-
ing unfolded tensors. Matrix V ∈ {0, 1}4m×k contains haplotype
information while matrix U ∈ {0, 1}n×k assigns each of the n rows
of M to one of the k haplotype sequences, i.e., the i th row of U is an
indicator of the origin of the i th read.

results in the following relaxation of the MEC formulation,

min

U,V

1

2

‖PΩ(R − UV
>)‖2F

s.t. Vi, j ∈ C,∀i ∈ [4m],∀j ∈ [k]
ui ∈ Φ,∀i ∈ [n].

(8)

The new formulation can be summarized as follows. We start by

�nding the so-called mode-1 unfolding of tensors M and V and

denote the decomposition M = UV
>

, as illustrated in Fig. 2. As

implied by the �gure, after unfolding, the entries of the (1, 1, :)
�ber are mapped to four blocks of M and V that correspond to the

frontal slices of tensors M and V, respectively. Then, to determine

the haplotype sequence that minimizes the MEC score, one needs

to solve (8) and �nd the optimal tensor decomposition.

3 STRUCTURED TENSOR DECOMPOSITION
ALGORITHM

Although the objective function f (U,V) = 1

2
‖PΩ(R − UV

>)‖2F in

(8) is convex in each of the factors when the other factor is �xed,

f (U,V) is generally nonconvex. To facilitate computationally e�-

cient search for the solution of (8), we rely on a modi�ed gradient

search algorithm which exploits the special structures of U and V
and iteratively updates the estimates (Ut ,Vt) starting from some

initial point (U0V0). More speci�cally, given the current estimates

(Ut ,Vt), the update rules are

Ut+1 = arg min

ui ∈Φ

∑
(i, j)∈Ω

‖PΩ(R − UtV
>
t)‖2F (9)

Vt+1 = ΠC
(
Vt − α∇f (Vt)

)
, (10)

where ∇f (Vt) = −
(
PΩ(R − Ut+1V

>
t)

)>
Ut+1 denotes the partial

derivative of f (U,V) evaluated at (Ut+1,Vt), α is a judiciously

chosen step size, and ΠC denotes the projection operator onto

C. Notice that the optimization in (9) is done by exhaustively

searching over k vectors in Φ. Since the number of haplotypes k
is relatively small, the complexity of the exhaustive search (9) is

low. The proposed scheme is formalized as Algorithm 1. MATLAB

and Python implementations of AltHap are freely available from

https://sourceforge.net/projects/althap/.

Algorithm 1 Structured Tensor Decomposition Algorithm

Input: SNP fragment matrix R, step size α ,

maximum number of iterations T
Output: V, an estimate of the true haplotype tensor Vt

Preprocessing: Encode R to binary tensor R and �nd the

mode-1 unfolding, R
Initialization: Compute XDY> = SVDk

(
PΩ(R)

)
and let

U0 = XD
1

2 , V0 = YD
1

2 . De�ne Φ = {e1, . . . , ek }

for t = 0, 1, 2, 3 . . . ,T − 1 do
1. Ut+1 = argminui ∈Φ

∑
(i, j)∈Ω ‖PΩ(R − UtV

>
t)‖F

2. ∇f (Vt) = −
(
PΩ(R − Ut+1V

>
t)

)>
Ut+1

3. Vt+1 = ΠC
(
Vt − α∇f (Vt)

)
end for
Decode VT to obtain V

4 CONVERGENCE ANALYSIS OF ALTHAP
In this section, we analyze the convergence properties of AltHap

and provide performance guarantees in di�erent scenarios.

In the appendix we show that, a judicious choice of the step size

α according to

α =
C ‖∇f (Vt)‖2F

‖PΩ(Ut+1∇f (Vt)>)‖2F
, (11)

where C ∈ (0, 2) is a constant, guarantees that the value of the

objective function in (8) decreases as one alternates between (9)

and (10), which in turn implies that AltHap converges. The key

observation that leads to this result is that f (U,V) is a convex

function in each of the factor matrices and that C = [0, 1] is a

convex set; hence the projection ΠC in (10) leads to a reduction of

f (Ut ,Vt) in each iteration t .
It is important however to determine the conditions under which

the stationary point of AltHap coincides with the global optima of

(8). To this end, we �rst provide the de�nition of incoherence of

matrices [8].

De�nition 4.1. A rank-k matrix M ∈ Rn×m with singular value
decomposition M = ÛΣV̂> is incoherent with parameter 1 ≤ µ ≤
max{n,m }

k if for every 1 ≤ i ≤ n, 1 ≤ j ≤ m

k∑
l=1

Û2

il ≤
µk

n
,

k∑
l=1

V̂2

jl ≤
µk

m
. (12)

Let each �ber in M be observed uniformly with probably p. Let

Csnp

4
=mp denote the expected number of SNPs covered by each

read, and Cseq

4
= np denote the expected coverage for each of

the haplotype sequences. Theorem 4.2 built upon the results of

[20, 23, 38] states that with an adequate number of covered SNPs,

the solution found by AltHap reconstructs M up to an error term

that stems from the existence of errors in sequencing reads.

Theorem 4.2. Assume M is µ-incoherent. Suppose the condition
number of M is κ. Then there exist numerical constants C0,C1 > 0

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://sourceforge.net/projects/althap/
https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

such that if Ω is uniformly generated at random and

Csnp > max{C0

3

√
µ4k14κ12Cseq,

pek
2κ6

2C1

} (13)

with probability at least 1− 1

m3
, the solution (U∗,V∗) found by AltHap

satis�es

‖M − U∗V
∗>‖2F ≤

C1κ
4pekm

2Csnp

. (14)

The proof of Theorem 4.2 which is omitted for brevity relies on

a coupled perturbation analysis to establish a certain type of local

convexity of the objective function around the global optima. Thus,

under (13) there is no other stationary point around the global

optima and hence, starting from a good initial point, AltHap con-

verges globally. We employ the initialization procedure suggested

by [38] – summarized in the initialization step of Algorithm 1 –

which is based on a low cost singular value decomposition of R
using power method [2, 27] and with high probability lies in the

described convexity region of f (U,V).
Remark 1: Under the assumption of 4.2, the Condition Csnp >

C0

3

√
µ4k14κ12Cseq speci�es a lower bound on the expected number

of covered SNPs, Csnp, that is required for the exact recovery of M
in the idealistic error-free scenario, i.e., for pe = 0. With higher

sequencing coverage, more SNPs are covered by the reads and

hence Csnp required for accurate haplotype assembly scales with

Cseq along with other parameters. Moreover, the term
C1κ4pekm

2Csnp

on

the right hand side of (14) is the bound on the error of the solution

generated by AltHap which increases with the sequencing error

rate pe and ploidy k , and decreases with Csnp and the number of

reads n, as expected.

Remark 2: If M is well-conditioned, i.e., M is characterized by

a small incoherence parameter µ and a small condition number κ,

the recovery becomes easier; this is re�ected in less strict su�cient

condition (13) and improved achievable performance (14). In fact,

as we veri�ed in our simulation studies, by using the proposed

framework for haplotype assembly, the parameters µ and κ associ-

ated with M are close to 1 (the ideal case). Theorem 4.3 provides

theoretical bounds on the expected MEC scores and CPR achieved

by AltHap. (The proof is in the appendix.)

Theorem 4.3. Under the conditions of Theorem 4.2, with probabil-
ity at least 1 − 1

m3
it holds that

E{MEC} ≤ 2pe (Cseqm + κ
4C1k). (15)

Moreover, if the reads sample haplotype sequences uniformly, with
probability at least 1 − 1

m3
it holds that

E{CPR} ≥ 1 − C1κ
4pek

nCsnp

. (16)

Remark 3: The bound established in (15) suggests that the ex-

pected MEC increases with the length of the haplotype sequences,

sequencing error, number of haplotype sequences, and sequencing

coverage. A higher sequencing coverage results in a larger fragment

data which in turn leads to higher MEC scores.

Remark 4: As intuitively expected, the bound (16) suggests that

AltHap’s achievable expected CPR improves with the number of

sequencing reads and the SNP coverage; on the other hand, the

CPR deteriorates at higher data error rates. Finally, assuming the

same sequencing parameters, (16) implies that reconstruction of

polyploid haplotypes is more challenging than that of diploids.

5 SIMULATION RESULTS AND DISCUSSION
We evaluated the performance of the proposed method on both

experimental and simulated data, as described next. AltHap was

implemented in Python and MATLAB, and the simulations were

conducted on a single core Intel Xeon E5-2690 v3 (Haswell) with 2.6

GHz and 64 GB DDR4-2133 RAM. The benchmarking algorithms

include Belief Propagation (BP) [34], a communication-inspired

method capable of performing haplotype assembly of diploid and

biallelic polyploid species, HapTree [5], and H-PoP [40], the state-

of-the-art dynamic programming algorithm for haplotype assembly

of diploid and biallelic polyploid species shown to be superior to

HapTree [5], HapCompass [1], and SDhaP [13] in terms of both ac-

curacy and speed [30, 40]. Following the prior works on haplotype

assembly (see, e.g., [9, 14, 18, 21]) we use MEC score and CPR to

assess the quality of the reconstructed haplotypes.
2

5.1 Experimental data
We �rst tested performance of AltHap in an application to haplo-

type reconstruction of a data set from the 1000 Genomes Project

– in particular, the sample NA12878 sequenced at high coverage

using the 454 sequencing platform. In this work, we take the trio-

phased variant calls from the GATK resource bundle [15] as the true

haplotype sequences. We compare the MEC score, CPR, and run-

ning time achieved by AltHap to those of H-PoP, BP, and HapTree.

All the algorithms used in the benchmarking study were executed

with their default settings. The results are given in Table 1. As

seen there, among the considered algorithms AltHap achieves the

smallest MEC score for nearly all chromosomes and the highest

CPR for majority of the chromosomes. Moreover, H-PoP and BP

are the fastest and second fastest schemes but their speed comes at

the cost of reduced accuracy. On the other hand, AltHap is slightly

slower than H-PoP and BP but faster than HapTree.

Fosmid pool-based sequencing provides very long fragments and

is characterized by much higher ratio of the number of SNPs to

the number of reads than the standard data sets generated by high-

throughput sequencing platforms. We consider the fosmid sequence

data for chromosomes of HapMap NA12878 and again take the trio-

phased variant calls from the GATK resource bundle [15] as the

true haplotype sequences. We compare the performance of AltHap

to those of H-PoP, BP, and HapTree and report the results in Table

2. As can be seen from Table 2, AltHap achieves the best CPR and

MEC score for most of the chromosomes and is faster than BP and

HapTree. H-PoP is the fastest among the considered schemes but

its speed comes at the cost of reduced accuracy. The second most

accurate method is HapTree. However, it is signi�cantly slower

than other methods which makes it use more challenging in practice.

Since HapTree could not �nish assembling haplotype of the 6
th

chromosome in 48 hours, that result is missing from the table.

2
For diploid data, we also quanti�ed the performance of di�erent methods by means

of the switch error rate (SWER) (here omitted from brevity and reported at https:

//sourceforge.net/projects/althap/).

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://sourceforge.net/projects/althap/
https://sourceforge.net/projects/althap/
https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. Performance comparison of AltHap, H-PoP, BP, and HapTree applied to haplotype reconstruction of the CEU NA12878 data set in
the 1000 Genomes Project.

AltHap H-PoP BP HapTree

Chromosome CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

1 0.974 2011 11.26 0.957 2264 5.22 0.991 2321 8.17 0.841 2305 15.43

2 0.953 2562 12.22 0.956 2971 5.65 0.895 2897 9.83 0.845 2875 17.59

3 0.933 2084 10.38 0.912 2312 6.99 0.743 2367 8.30 0.852 2363 15.06

4 0.969 2368 12.16 0.970 2648 5.24 0.748 2613 6.76 0.835 2604 18.67

5 0.972 1924 9.96 0.966 2103 4.67 0.882 2185 4.76 0.848 2171 16.95

6 0.949 3687 14.17 0.952 3343 4.93 0.887 3588 6.94 0.846 3583 23.86

7 0.970 1846 11.19 0.924 1986 4.24 0.811 2073 7.88 0.847 2070 13.06

8 0.962 1634 9.63 0.947 1848 4.14 0.885 1857 8.01 0.842 1838 14.81

9 0.971 1272 6.42 0.910 1462 3.36 0.898 1491 6.13 0.851 1479 14.90

10 0.968 1584 7.97 0.945 1683 3.67 0.908 1839 7.18 0.857 1823 12.13

11 0.933 1394 7.45 0.915 1553 3.71 0.756 1586 6.69 0.836 1577 11.33

12 0.921 1423 7.12 0.903 1570 3.46 0.744 1589 6.48 0.848 1589 9.97

13 0.970 1269 4.42 0.941 1440 2.89 0.891 1409 5.38 0.828 1405 9.55

14 0.903 857 9.53 0.971 974 2.54 0.700 995 4.53 0.854 987 7.79

15 0.972 941 9.42 0.974 1039 2.40 0.746 1063 3.92 0.836 1061 7.43

16 0.967 1198 5.40 0.935 1192 2.47 0.797 1269 4.42 0.851 1273 8.13

17 0.975 1146 4.58 0.911 1244 1.98 0.924 1234 3.15 0.848 1230 6.34

18 0.910 860 4.54 0.976 893 2.51 0.820 942 3.79 0.841 941 7.13

19 0.976 618 3.32 0.978 695 1.82 0.980 1060 2.47 0.846 765 5.26

20 0.973 703 3.53 0.950 719 2.00 0.971 796 2.74 0.869 795 6.08

21 0.974 470 2.51 0.970 512 1.70 0.975 532 1.86 0.863 528 5.05

22 0.973 367 1.98 0.983 427 1.44 0.907 438 1.72 0.869 436 4.65

5.2 Simulated data: the diploid case
To further benchmark performance of the proposed scheme, we test

it on the synthetic data from [18] often used to compare methods

for haplotype assembly of diploids. These data sets emulate haplo-

type assembly under varied coverage, sequencing error rates and

haplotype block lengths. We constrain our study to the assembly

of haplotype blocks having lengthm = 700 bp (the longest blocks

in the data set). The results, averaged over 100 instances of the

problem, are given in Table 3. As evident from this table, AltHap

outperforms other algorithms for nearly all the combinations of

data error rates and sequencing coverage and is also much faster

than BP and HapTree while being slightly slower than H-PoP.

5.3 Simulated data: the polyploid case
The performance of AltHap in applications to haplotype assembly

for polyploids was tested using simulations; in particular, we stud-

ied how AltHap’s accuracy depends on coverage and sequencing

error rate. The generated data sets consist of paired-end reads with

long inserts that emulate the scenario where long connected hap-

lotype blocks need to be assembled. We simulate sampling of the

entire genome using paired-end reads and generate SNPs along the

genome with probability 1 in 300. In other words, the distance be-

tween pairs of adjacent SNPs follows a geometric random variable

with parameter psnp =
1

300
(the SNP rate). To emulate a sequencing

process capable of facilitating reconstruction of long haplotype

blocks, we randomly generate paired-end reads of length 500 with

average insert length of 10,000 bp and the standard deviation of

10%; sequencing errors are inserted using realistic error pro�les

[12] and genotyping is performed using a Bayesian approach [15].

At such read and insert lengths, the generated haplotype blocks

are nearly fully connected. Each experiment is repeated 10 times.

AltHap is compared with H-PoP and BP. We also tried to run Hap-

Tree. However, HapTree could not �nish the simulations for the

considered block size in 48 hours.

Table 4 compares the CPR, MEC score, and running times of

AltHap with those of H-PoP, and BP for biallelic triploid genomes

with haplotype block lengths ofm = 1000 for several combinations

of sequencing coverage and data error rates. As can be seen there,

AltHap outperforms both H-PoP and BP in terms of the CPR and

MEC score in all the scenarios. In addition, AltHap is much faster

than BP while capable of achieving highly accurate performance.

Interestingly, AltHap is much faster than H-PoP for the highest

coverage, i.e., 30. This is due to linear complexity of AltHap’s

iterations which makes it suitable for high-throughput sequencing

data characterized by high coverage. The results of tests conducted

on simulated biallelic tetraploid genomes are summarized in Table 5,

where we observe that AltHap outperforms the competing schemes

in terms of both accuracy and running time.

We further studied the performance of AltHap on triploid and

tetraploid organisms having polyallelic sites and the results are sum-

marized in Table 6 and Table 7, respectively. Notice that none of the

competing schemes are capable of handling polyallelic genomes.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 2. Performance comparison of AltHap, H-PoP, BP, and HapTree applied to the Fosmid data set. HapTree could not �nish assembling
haplotype of the 6th chromosome in 48 hours.

AltHap H-PoP BP HapTree

Chromosome CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

1 0.955 9731 18.38 0.848 9845 2.127 0.876 9567 40.18 0.915 9676 6501

2 0.955 9589 38.89 0.904 9444 2.16 0.848 9698 42.90 0.923 9802 7196

3 0.917 7311 29.40 0.917 7182 1.79 0.847 7587 30.61 0.907 7705 4847

4 0.927 5508 26.69 0.926 5775 1.76 0.869 6288 31.10 0.908 6500 8392

5 0.920 6711 27.39 0.939 6910 1.95 0.863 6975 36.94 0.908 7094 5670

6 0.909 7213 33.68 0.885 7505 2.40 0.850 7590 41.20 - - -

7 0.907 6151 28.60 0.919 6829 1.68 0.858 6091 36.94 0.915 6169 5589

8 0.912 5927 23.82 0.902 6143 1.89 0.873 6282 38.87 0.912 6379 8316

9 0.918 5347 19.40 0.918 5719 1.76 0.851 5493 26.13 0.917 5513 4465

10 0.901 6044 24.07 0.924 6328 1.48 0.864 6503 27.65 0.889 6553 4838

11 0.908 5424 21.73 0.903 6432 1.68 0.858 5579 20.56 0.905 5625 5183

12 0.915 5456 24.25 0.914 5653 1.46 0.850 5706 24.19 0.913 5770 5654

13 0.904 3646 14.23 0.901 3708 1.54 0.827 3976 17.33 0.898 4029 5367

14 0.895 4156 18.64 0.891 4261 1.21 0.870 4004 14.84 0.906 4038 4103

15 0.900 4079 14.67 0.729 4001 1.06 0.823 4022 14.35 0.907 4116 3357

16 0.885 6197 26.28 0.715 6119 1.20 0.844 5112 29.51 0.942 5142 9683

17 0.897 4507 16.35 0.883 4911 1.22 0.876 4749 18.29 0.931 4806 3003

18 0.930 3080 12.68 0.908 3315 1.14 0.855 3457 13.31 0.919 3493 2303

19 0.857 4212 13.40 0.863 4115 0.84 0.835 3928 13.44 0.928 3953 1984

20 0.903 3512 13.64 0.900 4121 0.85 0.849 3814 15.97 0.901 3886 1529

21 0.927 1871 6.20 0.919 1974 0.68 0.872 1953 8.18 0.921 1979 1410

22 0.851 3654 17.24 0.878 3757 0.62 0.867 3910 14.72 0.924 3307 1351

Table 3. Performance comparison of AltHap, H-PoP, BP, and HapTree on a simulated diploid data set from [18] with haplotype block length
m = 700.

AltHap H-PoP BP HapTree

Error rate Coverage CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

0.1 5 0.996 477 0.043 0.993 402 0.012 0.867 698 1.421 0.886 491 2.13

0.1 8 0.999 759 0.128 0.998 780 0.035 0.872 861 4.627 0.884 767 3.82

0.1 10 0.999 954 0.404 0.999 903 0.109 0.873 1130 13.58 0.873 963 4.03

0.2 5 0.909 941 0.061 0.877 1021 0.027 0.812 953 2.671 0.762 988 9.36

0.2 8 0.981 1458 0.141 0.889 1532 0.098 0.861 1847 6.897 0.808 1562 6.69

0.2 10 0.991 1836 0.394 0.915 2023 0.201 0.867 2485 10.13 0.827 1943 4.20

0.3 5 0.607 1228 0.069 0.618 1331 0.041 0.537 1677 3.235 0.646 1170 10.21

0.3 8 0.677 2022 0.145 0.657 2250 0.098 0.572 2469 7.982 0.657 2021 6.17

0.3 10 0.750 2558 0.375 0.712 2979 0.217 0.596 3114 15.32 0.651 2597 5.74

The results suggest that AltHap was able to reconstruct underly-

ing haplotype sequences with competitive performance at a low

computational cost.

The results of these extensive simulations imply that, as expected,

haplotype assembly becomes more challenging as the number of

haplotype sequences (i.e., the ploidy) increases. Nevertheless, in all

the conducted studies, AltHap consistently reconstructs haplotype

sequences accurately and with low computational cost. In addition,

the results of Table 4 and Table 5 demonstrate that the computa-

tional time of AltHap grows signi�cantly slower with coverage than

the computational time of the competing schemes. In particular, for

high coverages that are characteristic of high-throughput sequenc-

ing technologies, AltHap is the most e�cient algorithm. Finally, we

use the results obtained by running AltHap on simulated biallelic

triploid data (i.e., the results summarized in Table 4) to examine

tightness of the theoretical bounds on the CPR stated in Theorem

4.3. In particular, theoretical bounds on CPR are compared to the

CPRs empirically computed for various combinations of coverage

and data error rates (averaged over 10 independent problem in-

stances). In Fig. 3a, the theoretical bound and experimental CPR

results are shown as functions of the data error rate for coverage 15.

We observe that the bound is reasonably close to the experimental

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
P

R

(a) Cseq = 15

5 10 15 20 25 30

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
P

R
(b) pe = 0.002

Fig. 3. A comparison of the theoretical bound on CPR with the ex-
perimental results obtained by applying AltHap to the problem of
reconstructing biallelic triploid haplotypes (synthetic data).

results over the considered range of data error rates. In Fig. 3b, the

theoretical bound and experimental CPR results are plotted against

sequencing coverage for the data error rate pe = 0.002. This �gure,

too, implies that the theoretical CPR bound is relatively close to the

experimental results.

6 CONCLUSION
In this paper, we developed a novel haplotype assembly framework

for both diploid and polyploid organisms that relies on sparse ten-

sor decomposition. The proposed algorithm, referred to as AltHap,

exploits structural properties of the problem to e�ciently �nd ten-

sor factors and thus assemble haplotypes in an iterative fashion,

alternating between two computationally tractable optimization

tasks. If the algorithm starts the iterations from an appropriately

selected initial point, AltHap converges to a stationary point which

is with high probability in close proximity of the solution that is

optimal in the MEC sense. In addition, we analyzed the perfor-

mance and convergence properties of AltHap and found bounds

on its achievable MEC score and the correct phasing rate. AltHap,

unlike the majority of existing methods for haplotype assembly for

polyploids, is capable of reconstructing haplotypes with polyallelic

sites, making it useful in a number of applications involving plant

genomes. To the best of our knowledge, AltHap is the �rst polyno-

mial time approximation algorithm for haplotype assembly with

analytical guarantees on its achievable performance. Moreover,

unlike several state-of-the-art techniques which are exponential in

either read length or sequencing coverage, AltHap’s steps are linear

in both and thus suitable to process sequencing data with long

reads and deep coverage. Our extensive tests on real and simulated

data demonstrate that AltHap compares favorably to competing

methods in applications to haplotype assembly of diploids, and

signi�cantly outperforms existing techniques when applied to hap-

lotype assembly of polyploids.

As part of the future work, it is of interest to extend the sparse

tensor decomposition framework to viral quasispecies reconstruc-

tion and recovery of bacterial haplotypes from metagenomic data.

APPENDIX
Derivation of the proposed step size
For the proposed algorithm to converge, it must hold that

f (Ut+1,Vt+1) ≤ f (Ut ,Vt), (17)

∀t . First, by noting (9) it holds that f (Ut+1,Vt) ≤ f (Ut ,Vt). It

now remains to show that f (Ut+1,Vt+1) ≤ f (Ut+1,Vt). First, for

the sake of notations and clarity, de�ne

TrΩ(A>B) = Tr

(
PΩ(A>)PΩ(B)

)
=

∑
(i, j)∈Ω

Ai jBi j . (18)

Recall that ∇f (Vt) = −
(
PΩ(R − Ut+1V

>
t)

)>
Ut+1 and Vt+1 =

ΠC(Ṽt+1) where Ṽt+1 = Vt − α∇f (Vt). Since ΠC is a projection

onto a convex set of constraints, f (Ut+1,Vt+1) ≤ f (Ut+1, Ṽt+1).
Thus, it remains to show f (Ut+1, Ṽt+1) ≤ f (Ut+1,Vt). Given that,

f (Ut+1, Ṽt+1) − f (Ut+1,Vt)

=
1

2

‖PΩ(R − Ut+1V
>
t) + αPΩ(Ut+1∇f (Vt)>)‖2F

− 1

2

‖PΩ(R − Ut+1V
>
t)‖2F

= αTr
(
PΩ(R − Ut+1V

>
t)>PΩ(Ut+1∇f (Vt)>)

)
+
α2

2

‖PΩ(Ut+1∇f (Vt)>)‖2F (19)

Now, consider the second term in the last line of (6). Following

straightforward linear algebra we obtain

αTr
(
PΩ(R − Ut+1V

>
t)>PΩ(Ut+1∇f (Vt)>)

)
= αTrΩ

(
(R − Ut+1V

>
t)>(Ut+1∇f (Vt)>

)
= −αTrΩ

(
(R − Ut+1V

>
t)>Ut+1U>t+1PΩ(R − Ut+1V

>
t)

)
= −αTrΩ

(
PΩ(R − Ut+1V

>
t)>Ut+1U>t+1PΩ(R − Ut+1V

>
t)

)
= −α ‖U>t+1PΩ(R − Ut+1V

>
t)‖2F = −α ‖∇f (Vt)>‖2F .

(20)

Therefore,

f (Ut+1, Ṽt+1) − f (Ut+1,Vt) =
α2

2

‖PΩ(Ut+1∇f (Vt)>)‖2F
− α ‖∇f (Vt)>‖2F . (21)

By choosing the step size (11) we obtain

f (Ut+1, Ṽt+1) − f (Ut+1,Vt) = (
C2

2

−C)
‖∇f (Vt)>‖4F

‖PΩ(Ut+1∇f (Vt)>)‖2F
.

(22)

Clearly if C ∈ (0, 2) it must hold that f (Ut+1, Ṽt+1) ≤ f (Ut+1,Vt),
which in turn implies convergence.

Derivation of the MEC and CPR bounds
Recall that under conditions of Theorem 4.1, with probability 1− 1

m3

it holds that ‖M−U∗V
∗>‖2F ≤

C1κ4pekm
2Csnp

. Once the stationary point

M
∗
= U∗V

∗>
is found, Althap performs a decoding (rounding) step

in order to obtain the binary solution M̂ = U∗V̂>. In this rounding

procedure AltHap �rst normalizes all unfolded �bers such that sum

of entries of each �ber equals 1. Then AltHap sets the largest entry

of each unfolded �ber to 1 and the remaining three entries to 0.

Eventually, AltHap reshapes the solution M̂ to the tensor M̂. Note

that this normalization is not required and we only consider it for

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 4. Performance comparison of AltHap, H-PoP and BP on a simulated biallelic triploid data set with haplotype block lengthm = 1000.
HapTree could not �nish the simulations in 48 hours.

AltHap H-PoP BP

Error rate Coverage CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

0.002 10 0.982 322 30.74 0.715 3642 14.17 0.689 4210 132.02

0.002 20 0.951 1986 59.65 0.731 7728 41.28 0.729 7762 416.44

0.002 30 0.984 2412 109.73 0.708 12865 265.22 0.697 14751 1310.18

0.01 10 0.917 1379 30.90 0.700 3786 14.18 0.681 4092 138.85

0.01 20 0.977 1597 60.09 0.709 8375 42.4 0.689 8601 460.60

0.01 30 0.989 3143 110.18 0.718 11769 266.39 0.681 15124 1301.54

0.05 10 0.971 2802 31.04 0.701 3978 14.53 0.669 4227 135.08

0.05 20 0.949 8222 59.95 0.703 9276 41.90 0.701 9484 460.49

0.05 30 0.826 17284 110.06 0.713 13778 268.05 0.676 16876 1315.84

Table 5. Performance comparison of AltHap, H-PoP and BP on a simulated biallelic tetraploid data set with haplotype block lengthm = 1000.
HapTree could not �nish the simulations in 48 hours.

AltHap H-PoP BP

Error rate Coverage CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

0.002 10 0.911 1113 43.56 0.707 3366 43.69 0.698 4568 290.29

0.002 20 0.950 2113 87.51 0.734 7359 113.77 0.712 9434 540.80

0.002 30 0.999 674 163.81 0.726 11693 598.39 0.715 12745 1496.51

0.01 10 0.982 938 44.66 0.693 3511 46.35 0.664 6475 296.27

0.01 20 0.993 1668 87.57 0.703 7882 114.86 0.669 10213 552.80

0.01 30 0.953 6518 164.71 0.710 12392 597.40 0.684 13245 1485.65

0.05 10 0.937 3905 44.96 0.677 4110 46.37 0.645 6869 306.29

0.05 20 0.958 9645 89.04 0.691 9109 118.96 0.685 11477 623.89

0.05 30 0.815 18690 165.04 0.700 14212 601.78 0.675 17681 1504.87

Table 6. Performance of AltHap on simulated polyallelic triploid
data set with haplotype block lengthm = 1000. H-PoP, BP, and Hap-
Tree cannot assemble polyallelic polyploid haplotypes.

Error rate Coverage CPR MEC t(sec)

0.002 5 0.832 1377 43.05

0.002 10 0.932 897 115.13

0.002 15 0.935 1799 173.55

0.002 20 0.952 2346 232.07

0.01 5 0.747 2341 58.13

0.01 10 0.944 1269 115.41

0.01 15 0.909 3755 173.38

0.01 20 0.855 7272 235.86

0.05 5 0.799 3076 57.77

0.05 10 0.894 3925 116.33

0.05 15 0.931 6100 174.37

0.05 20 0.939 9120 236.73

the analysis purposes. Therefore, it is required to establish a bound

on ‖M − M̂‖2F . Let L be the set of mismatching �bers, i.e., ∀f ∈ L,

Mf , M̂f . It is straightforward to see that |L| = 1

2
‖M − M̂‖2F .

First, notice that ∀f ∈ Lc , ‖Mf − M
∗
f ‖22 ≥ ‖Mf − M̂f ‖22 = 0.

Table 7. Performance of AltHap on simulated polyallelic tetraploid
data set with haplotype block lengthm = 1000. H-PoP, BP, and Hap-
Tree cannot assemble polyallelic polyploid haplotypes.

Error rate Coverage CPR MEC t(sec)

0.002 5 0.794 2380 109.00

0.002 10 0.865 2043 220.6

0.002 15 0.938 2148 328.49

0.002 20 0.963 2388 432.28

0.01 5 0.797 2398 113.08

0.01 10 0.841 2927 220.33

0.01 15 0.828 5787 327.10

0.01 20 0.992 2319 432.85

0.05 5 0.746 4721 113.38

0.05 10 0.890 5146 211.43

0.05 15 0.923 7555 327.20

0.05 20 0.920 13704 435.15

In addition, consider a �ber ∀f ∈ L. The minimum value of

‖Mf −M
∗
f ‖22 occurs when two entries in f are both equal to 0.5

and the remaining two entries are both 0. Hence, it becomes clear

that ‖Mf −M
∗
f ‖22 ≥ 0.5. Thus, with probability 1 − 1

m3
it holds

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

that

1

4

‖M − M̂‖2F ≤ ‖M − U∗V
∗>‖2F ≤

C1κ
4pekm

2Csnp

(23)

which is the desired relation. We now establish the MEC bound.

Using the linearity of expectation and the above discussion, we

obtain

1

2

E{‖PΩ(R − M̂)‖2F } =
1

2

E{‖PΩ(R −M) + PΩ(M − M̂)‖2F }

≤ E{‖PΩ(R −M)‖2F } + E{‖PΩ(M − M̂)‖2F }
= E{‖PΩ(N)‖2F } + E{‖PΩ(M − M̂)‖2F }
= E{‖PΩ(N)‖2F } + p‖M − M̂‖2F
≤ E{‖PΩ(N)‖2F } + 2C1κ

4pek

= 2pemCseq + 2C1κ
4pek .

(24)

Thus, E{MEC} ≤ 2pe (Cseqm + κ
4C1k). We now establish the CPR

bound. The following is an equivalent de�nition of CPR computed

using unfolded tensors of the true and the reconstructed haplotype

sequences,

CPR = 1 − 1

2mk
min

M
‖V −M(V̂)‖2F , (25)

whereM is a one-to-one mapping from the corresponding entries of

the lateral slices of V̂ to those of V̂. Assuming that sequencing reads

uniformly sample haplotype sequences, on average, the mismatches

between V and V̂ contribute equally to the number of mismatches

between M and M̂. That is,
1

2
E{‖M − M̂‖2F } =

n
2k E{‖V − V̂‖2F }.

Therefore,

E{min

M
‖V −M(V̂)‖2F } ≤ E{‖V − V̂‖2F } =

k

n
E{‖M − M̂‖2F }

≤ 2C1κ
4pek

2m

nCsnp

.

(26)

Thus, E{CPR} ≥ 1 − C1κ4pek
nCsnp

which is the desired bound.

REFERENCES
[1] D. Aguiar and S. Istrail. 2012. HapCompass: a fast cycle basis algorithm for

accurate haplotype assembly of sequence data. J. Comput. Biol. 19, 6 (2012),

577–590.

[2] J. Baglama and L. Reichel. 2005. Augmented implicitly restarted Lanczos bidiag-

onalization methods. SIAM J. on Scien. Comput. 27, 1 (2005), 19–42.

[3] V. Bansal and V. Bafna. 2008. HapCUT: an e�cient and accurate algorithm for

the haplotype assembly problem. Bioinformatics 24, 16 (2008), i153–i159.

[4] V. Bansal, A.L. Halpern, N. Axelrod, and V. Bafna. 2008. An MCMC algorithm

for haplotype assembly from whole-genome sequence data. Genome research 18,

8 (2008), 1336–1346.

[5] E. Berger, D. Yorukoglu, J. Peng, and B. Berger. 2014. HapTree: A Novel Bayesian

Framework for Single Individual Polyplotyping Using NGS Data. PLoS Comput.
Biol. 10, 3 (2014).

[6] P. Bonizzoni, R. Dondi, G.W. Klau, Y. Pirola, N. Pisanti, and S. Zaccaria. 2015.

On the �xed parameter tractability and approximability of the minimum error

correction problem. In Annual Symposium on Combinatorial Pattern Matching.

Springer, 100–113.

[7] P. Bonizzoni, R. Dondi, G.W. Klau, Y. Pirola, N. Pisanti, and S. Zaccaria. 2016. On

the Minimum Error Correction Problem for Haplotype Assembly in Diploid and

Polyploid Genomes. J. Comput. Biol. 23, 9 (2016), 718–736.

[8] E.J. Candès and B. Recht. 2009. Exact matrix completion via convex optimization.

Found. Comput. math. 9, 6 (2009), 717–772.

[9] Z. Chen, F. Deng, and L. Wang. 2013. Exact algorithms for haplotype assembly

from whole-genome sequence data. Bioinformatics (2013), btt349.

[10] R. Cilibrasi, L. Van Iersel, S. Kelk, and J. Tromp. 2005. On the complexity of several

haplotyping problems. In Algorithms in Bioinformatics. Springer, 128–139.

[11] A.G. Clark. 2004. The role of haplotypes in candidate gene studies. Genetic
epidemiology 27, 4 (2004), 321–333.

[12] S. Das and H. Vikalo. 2012. Onlinecall: fast online parameter estimation and base

calling for illumina’s next-generation sequencing. Bioinformatics 28, 13 (2012),

1677–83.

[13] S. Das and H. Vikalo. 2015. SDhaP: Haplotype assembly for diploids and poly-

ploids via semi-de�nite programming. BMC Genomics 16:260 (April 2015).

[14] F. Deng, W. Cui, and L. Wang. 2013. A highly accurate heuristic algorithm for

the haplotype assembly problem. BMC genomics 14, 2 (2013), S2.

[15] M.A. DePristo, E. Banks, R. Poplin, K.V. Garimella, J.R. Maguire, and et al. 2011. A

framework for variation discovery and genotyping using next-generation DNA

sequencing data. Nature genetics 43, 5 (2011), 491–498.

[16] J. Duitama, T. Huebsch, G. McEwen, E. Suk, and M.R. Hoehe. 2010. ReFHap: a

reliable and fast algorithm for single individual haplotyping. In ACM Int. Conf.
Bioinform. and Comput. Biol. ACM, 160–169.

[17] J. Duitama, G.K. McEwen, T. Huebsch, S. Palczewski, S. Schulz, and et al. 2011.

Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of

Single Individual Haplotyping techniques. Nucleic acids research (2011), gkr1042.

[18] F. Geraci. 2010. A comparison of several algorithms for the single individual SNP

haplotyping reconstruction problem. Bioinformatics 26, 18 (2010), 2217–2225.

[19] R.A. Gibbs, J.W. Belmont, P. Hardenbol, T.D. Willis, F. Yu, and et al. 2003. The

international HapMap project. Nature 426, 6968 (2003), 789–796.

[20] S. Gunasekar, A. Acharya, N. Gaur, and J. Ghosh. 2013. Noisy matrix completion

using alternating minimization. In Joint European Conference onMachine Learning
and Knowledge Discovery in Databases. Springer, 194–209.

[21] D. He, A. Choi, K. Pipatsrisawat, A. Darwiche, and E. Eskin. 2010. Optimal algo-

rithms for haplotype assembly from whole-genome sequence data. Bioinformatics
26, 12 (2010), i183–i190.

[22] D. He, B. Han, and E. Eskin. 2013. Hap-seq: an optimal algorithm for haplotype

phasing with imputation using sequencing data. J. Comput. Biol. 20, 2 (2013),

80–92.

[23] R.H. Keshavan, A. Montanari, and S. Oh. 2010. Matrix completion from noisy

entries. J. Mach. Learning Research 11, Jul (2010), 2057–2078.

[24] J.H. Kim, M.S. Waterman, and L.M. Li. 2007. Diploid genome reconstruction

of Ciona intestinalis and comparative analysis with Ciona savignyi. Genome
research 17, 7 (2007), 1101–1110.

[25] V. Kuleshov. 2014. Probabilistic single-individual haplotyping. Bioinformatics 30,

17 (2014), i379–i385.

[26] G. Lancia, V. Bafna, S. Istrail, R. Lippert, and R. Schwartz. 2001. SNPs problems,

complexity, and algorithms. In Algorithms—ESA 2001. Springer, 182–193.

[27] R.M. Larsen. 1998. Lanczos bidiagonalization with partial reorthogonalization.

DAIMI Report Series 27, 537 (1998).

[28] S. Levy, G. Sutton, P.C. Ng, L. Feuk, A.L. Halpern, and et al. 2007. The diploid

genome sequence of an individual human. PLoS biology 5, 10 (2007), e254.

[29] R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. 2002. Algorithmic strategies

for the single nucleotide polymorphism haplotype assembly problem. Brief.
Bioinform. 3, 1 (2002), 23–31.

[30] E. Motazedi, R. Finkers, C. Maliepaard, and D. de Ridder. 2017. Exploiting

next-generation sequencing to solve the haplotyping puzzle in polyploids: a

simulation study. Brief. Bioinform. (2017), bbw126.

[31] M. Patterson, T. Marschall, N. Pisanti, L. Van Iersel, L. Stougie, and et al. 2015.

WhatsHap: Weighted haplotype assembly for future-generation sequencing

reads. J. Comput. Biol. 22, 6 (2015), 498–509.

[32] Y. Pirola, S. Zaccaria, R. Dondi, G.W. Klau, N. Pisanti, and P. Bonizzoni. 2015.

HapCol: accurate and memory-e�cient haplotype assembly from long reads.

Bioinformatics (2015), btv495.

[33] M.C.F. Prosperi and M. Salemi. 2012. QuRe: Software for viral quasispecies

reconstruction from next-generation sequencing data. Bioinformatics 28, 1 (2012),

132–133.

[34] Z Puljiz and H Vikalo. 2016. Decoding genetic variations: Communications-

inspired haplotype assembly. IEEE/ACM Trans. Comput. Biol. Bioinform. (2016).

[35] S. Renny-By�eld and J.F. Wendel. 2014. Doubling down on genomes: polyploidy

and crop plants. American J. botany 101, 10 (2014), 1711–1725.

[36] P.C. Sabeti, D.E. Reich, J.M. Higgins, H.Z.P. Levine, D.J. Richter, and et al. 2002.

Detecting recent positive selection in the human genome from haplotype struc-

ture. Nature 419, 6909 (2002), 832–837.

[37] R. Schwartz and et al. 2010. Theory and algorithms for the haplotype assembly

problem. Communications in Info. & Sys. 10, 1 (2010), 23–38.

[38] R. Sun and Z.Q. Luo. 2016. Guaranteed matrix completion via non-convex

factorization. IEEE Trans. Info. Theory 62, 11 (2016), 6535–6579.

[39] R. Wang, L. Wu, Z. Li, and X. Zhang. 2005. Haplotype reconstruction from SNP

fragments by minimum error correction. Bioinformatics 21, 10 (2005), 2456–2462.

[40] M. Xie, Q. Wu, J. Wang, and T. Jiang. 2016. H-PoP and H-PoPG: Heuristic parti-

tioning algorithms for single individual haplotyping of polyploids. Bioinformatics
(2016), btw537.

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/130930doi: bioRxiv preprint

https://doi.org/10.1101/130930
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	1 Introduction
	2 Mathematical Model and Problem Formulation
	3 Structured Tensor Decomposition Algorithm
	4 Convergence Analysis of AltHap
	5 Simulation Results and Discussion
	5.1 Experimental data
	5.2 Simulated data: the diploid case
	5.3 Simulated data: the polyploid case

	6 Conclusion
	References

