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Abstract: 
 
While meta-analysis has demonstrated increased statistical power 
and more robust estimations in studies, the application of this 
commonly accepted methodology to cytometry data has been 
challenging. Different cytometry studies often involve diverse sets of 
markers. Moreover, the detected values of the same marker are 
inconsistent between studies due to different experimental designs 
and cytometer configurations. As a result, the cell subsets identified 
by existing auto-gating methods cannot be directly compared across 
studies. We developed MetaCyto for automated meta-analysis of 
both flow and mass cytometry (CyTOF) data. By combining clustering 
methods with a silhouette scanning method, MetaCyto is able to 
identify common cell subsets across studies, thus enabling meta-
analysis. Applying MetaCyto on a set of 10 heterogeneous cytometry 
studies with a total of 5966 samples allowed us to identify multiple 
cell populations exhibiting differences in phenotype and abundance 
across races.  Software is released to the public through GitHub 
(github.com/hzc363/MetaCyto). 
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Main text: 
 
Meta-analysis of existing data across different studies offers multiple 
benefits. The aggregated data allows researchers to test hypotheses 
with increased statistical power. The involvement of multiple 
independent studies increases the robustness of conclusions drawn. 
In addition, the complexity of aggregated data allows researchers to 
test or generate new hypotheses.  These benefits have been shown 
by many studies in areas such as genomics, cancer biology and 
clinical research and have led to important new biomedical findings 1–

4. For example, one study showed the correlation between neo-
antigen abundance in tumors and patient survival by performing 
meta-analysis of RNA sequencing data from The Cancer Genome 
Atlas5. In another study, meta-analysis of genome-wide association 
studies identified novel loci that affect risk of type 1 diabetes6. 
 
With the recent advances in high-throughput cytometry technologies 
the immune system can be characterized simultaneously at the single 
cell level with up to 45 parameters, thus minimizing the technical 
limitations and allowing capture of invaluable information from 
immunology studies7–9. Open science initiatives make more and more 
research data accessible, and the availability of shared cytometry 
data, including data from flow cytometry and mass cytometry 
(CyTOF), is growing exponentially. Notably, the ImmPort database 
(www.immport.org), a repository for immunology-related research and 
clinical trials, provides numerous studies with thousands of cytometry 
datasets10. However, meta-analysis of cytometry datasets remains 
particularly challenging.  Different studies use diverse sets of protein 
markers and fluorophore/isotope combinations. The detected values 
of the same marker are inconsistent between studies because of 
different cytometer configurations or operators. In addition, the high 
dimensionality of cytometry data, especially mass cytometry (CyTOF) 
data, makes manual gating based meta-analysis difficult and time 
consuming. 
 
The major challenge of automated meta-analysis of cytometry data 
lies in the identification of common cell subsets across studies. 
Multiple automated gating methods have been proposed to analyze 
cytometry data from a single experiment. The performance of these 
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methods has been extensively tested in several studies11,12. However, 
the results of most auto-gating methods, such as FlowSOM13, 
FlowMeans14 and CITRUS15, cannot be compared across studies. 
The cell subsets identified by these methods are usually labeled with 
anonymous identifiers with no cell-specific annotation, making it 
impossible to identify the common cell populations across different 
studies. The heterogeneity of cytometry data across studies also 
prevents identifying common cell populations based on marker 
values.  
 
In addition, many clustering methods are sensitive to parameter 
choices. For example, FlowSOM, FlowMeans and SPADE16 require 
users to pre-specify the number of clusters.  As a result, extensive 
parameter tuning and manual inspection is required for every 
cytometry dataset. In meta-analysis where large numbers of 
cytometry datasets are involved, this manual step becomes a major 
technical burden.  
 
Here, we developed MetaCyto to enable automated meta-analysis of 
cytometry datasets, including both conventional flow and CyTOF 
cytometry data. MetaCyto employs novel computational approaches 
to identify common cell subsets across studies in either of two fully 
automated pipelines: unsupervised analysis and guided analysis. The 
unsupervised analysis pipeline rigorously annotates and merges cell 
subsets identified by existing clustering methods, such as FlowSOM 
and FlowMeans, allowing the cell subsets to be related across 
studies. The guided analysis pipeline can identify known cell 
populations across studies based on pre-specified cell definitions, 
thus allowing for the search of specific cell subsets defined by 
immunologists. Applying our method in several cytometry datasets, 
we demonstrated that both pipelines are able to identify cell subsets 
from cytometry data across studies accurately without any parameter 
tuning requirements.  
 
We applied MetaCyto to perform a joint analysis of 10 human 
immunology cytometry datasets contributed by four different 
institutions17–20. Altogether, this analysis spanned 5966 peripheral 
blood mononuclear cells (PBMC) or whole blood samples from 1374 
healthy subjects, and were acquired using either flow cytometry or 
CyTOF with a diverse set of markers.  These 1374 subjects were 
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identified as representing 5 different races. While it is well known that 
characteristics of multiple immune system-related diseases, such as 
HIV21, tuberculosis22 and hepatitis C23, vary between racial groups, 
the heterogeneity of the immune system among the human 
population has made studying these differences difficult, even within 
the same racial group24,25.  We hypothesized that a meta-analysis 
approach could lead to a better understanding of racial differences in 
the immune system. Using MetaCyto, we not only confirm a known 
racial difference, but also identified new cell types whose frequencies 
or characteristics vary between races.  
 
 
 
RESULTS 
 
MetaCyto identifies and labels common cell subsets in 
cytometry data across studies to enable meta-analysis 
 
Our meta-analysis of cytometry data follows four steps: data 
aggregation, data pre-processing, identification of common cell 
subsets across studies, and statistical analysis (Fig. 1a). The third 
step, identification of common cell subsets across studies, has been 
the main technical challenge preventing automated meta-analysis. 
Therefore, while all four steps are automated and covered in the 
MetaCyto software system and documented in the online methods, 
here we primarily focus on describing our identification and relating of 
common cell subsets across studies. 
 
The unsupervised analysis pipeline in MetaCyto identifies common 
cell subsets across different studies in a fully automated way. 
Cytometry data in each study is first clustered using an existing 
clustering method (Fig. 1b Top). FlowSOM13 was implemented as 
the default clustering method due to its speed and performance. 
However, any other clustering method, such as hierarchical clustering 
or FlowMeans, could be substituted as well. At this stage, clusters are 
labeled with non-informative labels, such as C1, C2, C3, which 
cannot be related across studies. For example, C1 in study 1 and C1 
in study 2 represent entirely different cell populations.  
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A threshold is then chosen to bisect the distribution of each marker 
into positive and negative regions, needed to label each cluster in a 
biological meaningful way (Fig. 1b Middle). The selection of a 
threshold is easy when a clear bi-modal distribution is present, but 
becomes challenging in other cases. We implemented a Silhouette 
scanning method, which bisects each marker at the threshold 
maximizing the average silhouette, a widely used way of describing 
the quality of clusters26. We compared Silhouette scanning against 8 
other bisection methods and found it to be superior, when compared 
with manual gating (Supplementary Fig. 1).  
 
Clusters are then labeled for each of the markers based on the 
following rule: if the marker level of 95% of cells in the cluster are 
above or below the threshold, the cluster will be labeled as positive or 
negative for the marker, respectively. Otherwise, the cluster will not 
be labeled for the marker. For example in Fig 1b, both C2 and C1 in 
study 2 will be labeled as CD8+ CD4-.  
 
Next, clusters with the same labels are merged into a square shaped 
cluster (Fig. 1b Bottom). In cytometry data with higher dimensions, 
clusters are hyper-rectangles. Following this stage, common cell 
subsets across studies can be rigorously identified and annotated. 
For example, the CD4- CD8+ clusters in both study 1 and study 2 
correspond to CD8+ T cells.  
 
MetaCyto is also able to identify cell subsets in a guided analysis 
pipeline using pre-defined cell definitions. After bisecting each marker 
into positive and negative regions, cells fulfilling the pre-defined cell 
definitions are identified. For example, the CD3+ CD4+ CD8- (CD4+ 
T-cells) cell subset corresponds to the cells that fall into the CD3+ 
region, CD4+ region and CD8- region concurrently (Fig. 1c). Notice 
that both CD45RA+ and CD45RA- populations are included in the cell 
subset, because the cell definition does not specify the requirement 
for CD45RA expression. However, researchers could easily alter the 
cell definition to CD3+ CD4+ CD8- CD45RA+ to find the CD45RA+ 
cell subset.  
 
The guided analysis pipeline in MetaCyto can accurately identify 
cell populations using pre-defined cell definitions.  
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A successful meta-analysis of cytometry data requires cell 
populations to be identified accurately from each study. To evaluate if 
the guided analysis pipeline of MetaCyto can accurately identify cell 
subsets from a single study, we downloaded a set of PBMC 
cytometry data (SDY478) from ImmPort, with which the original 
authors identified 88 cell types. Correspondingly, we specified the 88 
cell definitions (Supplementary Table 2) based on the author’s 
gating strategy and identified these cell subsets for each cytometry 
sample using the guided analysis pipeline in MetaCyto.  We 
compared the proportions of all cell subsets estimated by MetaCyto 
with the original manual gating results and found that MetaCyto 
estimations are highly consistent with the manual gating result (Fig. 
2a-c). We also compared our estimations to an existing method, 
flowDensity27, which is also able to identify pre-defined cell 
populations. Our results suggest that MetaCyto performs better than 
flowDensity in quantifying both major and rare populations (Fig. 
2d,e).  
 
 
The unsupervised analysis pipeline in MetaCyto can enhance 
the quality and robustness of several clustering methods  
 
We then tested the performance of the unsupervised analysis 
pipeline of MetaCyto. In the unsupervised analysis pipeline, cell 
clusters are first identified by an existing clustering algorithm, and are 
then merged into hyper-rectangle clusters (Fig. 1b). To learn how 
such merging affects the quality of clusters, we evaluated the results 
of two clustering algorithms, FlowSOM13 and FlowMeans14, with and 
without the merging step. Multiple studies have been conducted to 
evaluate the performance of existing clustering method for cytometry 
data11,12. The most recent (Weber et al.12) compared 15 clustering 
methods and found FlowSOM generally outperformed other methods 
after manual tuning.  
 
We downloaded an evaluation dataset, West Nile virus dataset 
(FlowCAP WNV), used by Weber et al12 and applied FlowSOM. The 
clustering result is then labeled and merged.  Since FlowSOM 
requires a pre-specified cluster number (K), we did multiple runs with 
K ranging from 10 to 90. F-measure is used to evaluate the quality of 
the clusters. We found that the quality of clusters is comparable 
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before and after merging when K equals to 10. However, the 
performance of FlowSOM drops when K increases. The subsequent 
merging step prevented FlowSOM performance to deteriorate (Fig. 
2f). We then looked at the total number of clusters identified before 
and after merging. As expected, FlowSOM identified the same 
number of clusters specified by K. However, when running the 
merging step after FlowSOM, the total number of clusters no longer 
increases after a certain point (Fig. 2g).  
 
The same results were obtained with FlowMeans14 (Supplementary 
Fig. 2).  This suggests that MetaCyto is able to merge small clusters 
in a biologically meaningful way, preventing over-partitioning of the 
cell subsets, thus allowing the clustering analysis to be performed 
without tuning any parameters. 
 
 
 
Meta-analysis of cytometry data using MetaCyto provides 
consistent results between cytometry panels and confirms 
previous findings 
 
After demonstrating the performance of MetaCyto in analyzing 
cytometry data from single studies, we next demonstrated the ability 
of MetaCyto in yielding consistent results from combining multiple 
studies.  We applied MetaCyto to identify cell types whose proportion 
or protein expression levels are different between age, gender and 
race groups. We downloaded 10 studies from ImmPort containing 
cytometry data.  These 10 studies had been contributed from four 
different institutions, where 88 panels containing 74 different markers 
were used (Fig. 3 and Supplementary Table 3). Altogether, the 
dataset contains 5966 whole blood or PBMC samples from 1374 
healthy subjects and were acquired using either flow cytometry or 
CyTOF. The subjects are proportionately distributed by gender, with 
slightly more female than male (Supplementary Fig. 3a).  The age 
span ranging from 19 to 90 years, and comes from five different 
defined racial groups (Supplementary Fig. 3 b,c). 
 
We used both unsupervised and guided MetaCyto analysis pipelines 
in parallel to identify cell subsets. For the latter, we created 24 cell 
definitions based on well-defined cell types from the Human 
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ImmunoPhenotyping Consortium28, ranging from effector memory T 
cells to monocytes (Supplementary Table 4). 
 
We then calculated summary statistics for each cell type in each 
sample, including proportion and median fluorescence intensity (MFI) 
of each marker. The effect size of age, gender and race on the cell 
type proportions or markers MFI was estimated using a linear 
regression model (Supplementary Table 5-10).  
 
We validated our results in two ways using the effect size of age, 
previously well characterized in other studies20,29.  First, we checked if 
the results from MetaCyto were internally consistent. The 88 panels 
were randomly divided into two panel sets. The effect size of age 
estimated separately in the two panel sets were compared with each 
other. We repeated the procedure 100 times and found that the effect 
size estimates from two panels sets were highly correlated with each 
other using both the guided and unsupervised approaches (Fig. 4a-
c), demonstrating that MetaCyto is able to derive consistent results 
from different cytometry panels.  
 
As a subsequent validation, we tested whether results obtained with 
MetaCyto could replicate results from a previous independent study 
(Carr et al.29). We ran the MetaCyto guided analysis pipeline across 
all 88 panels together, and among the 24 cell types MetaCyto 
identified, 14 overlapped with the cell types included in the Carr 
study. We compared the effect size of age on the proportion of these 
14 cell types, between MetaCyto on the 88 panels, and the 
independent results from Carr, et al. We found that results agree well 
with each other (r = 0.69, p = 0.006, Fig. 4d).  
 
The Carr study also investigated the effect of gender on immune cells 
and only identified CD4+ T cells to be significantly different between 
genders. We compared the effect size of gender from MetaCyto with 
the results in Carr study and found that the 2 sets of results are highly 
consistent with each other (r = 0.71, p = 0.004, Supplementary Fig. 
4). In addition to finding CD4+ T cells, our study identified that the 
proportion of effector CD8+ T cells, naive B cells, plasmablasts, 
regulatory T cells and naive CD4+ T cells are also significantly 
affected by gender (Supplementary Table 6), demonstrating the 
increased power with larger sample sizes in meta-analysis.  
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We then tested whether we could re-discover well known differences 
in cell populations between races using MetaCyto applied to all 88 
panels together. It has been known that Asian individuals have fewer 
CD4+ T cells in blood than White individuals30. We found that 
MetaCyto is able to identify this racial difference consistently across 
all flow cytometry and CyTOF panels (Fig. 4e). Combining the results 
from all panels allows us to confirm this known racial difference with 
high confidence (p = 1.16x10-7). 
 
 
Meta-analysis of cytometry data using MetaCyto identifies novel 
racial differences in immune cells 
 
In addition to confirming the known racial difference, we were able to 
identify additional immune cell types to be different between races. 
Since White subjects were most prevalent in the data, we used this 
group as the baseline and compared Asian and African American 
individuals against this baseline.  
 
We first tested each of 24 well-defined cell types using the guided 
analysis pipeline, based on the cell definition from Human 
ImmunoPhenotyping Consortium (HIPC)28.  We found that in addition 
to bulk CD4+ T cells, the proportion of CD4+ central memory T cells 
is also lower in Asians compare to Whites (p=0.039). The proportion 
of NK cells, however, is higher in Asians (p=0.039, Fig. 5a and 
Supplementary Table 7).  
 
The phenotypes of multiple cell types, as defined by the MFI for 
various markers, were affected by race as well (Fig. 5a, b, 
Supplementary Table 7 and 8). For example, we found that the 
expression level of CD94 (KLRD1) is higher in NK cells of both Asian 
(p=0.00027) and African American (p=0.00036) individuals compared 
to Whites (Fig. 5a-c). We further confirmed that this finding was not 
an artifact of our methodology with manual gating of the cytometry 
data from panel 1 of SDY420 (Fig. 5d). 	
 
In some cases, the marker level in all cell populations are affected by 
race in the same way. For example, the expression of CD28 on 
numerous T cell subsets is higher in African Americans as compared 
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to Whites. In other cases, the marker level difference was cell type 
specific. CD25 expression was for instance lower on CD8+ T cells, 
but higher on NK cells in African Americans compared to Whites (Fig. 
5b). Such cell type specific changes can only be identified using 
single cell technologies such as cytometry.  
 
Results from the unsupervised analysis identified multiple cell types, 
other than the 24 types used in the guided analysis, whose 
abundance were different between races (Supplementary Table 9 
and 10). As one example, we found that the proportion of a sub-
population of CD8+ T cells, the CD3+ CD4- CD45RA+ CD8+ CD85J- 
cell population, is significantly higher in Asians than in Whites (Fig. 5 
e,f). A closer look at the forest plot revealed that the association 
between this population and race was not at a significant level in 
most studies taken independently. However, by combining the results 
from multiple studies, we were able to identify this association with 
high confidence (p=0.0049). 
 
 
DISCUSSION 
 
In this study, we developed MetaCyto, a computational tool that 
allows automated gating and automated meta-analysis of both 
CyTOF and flow cytometry data. MetaCyto is able to find common 
cell subsets across studies using either an unsupervised or a guided 
analysis pipeline. Using publicly available datasets, we showed that 
both methods in MetaCyto outperform existing auto-gating methods 
without the need of any parameter tuning. Using MetaCyto, we 
analyzed cytometry data from 10 studies. After confirming known 
associations, we identified additional cell populations whose 
abundance or phenotype is different between races. 
 
Most existing auto-gating methods identify cell populations in 
cytometry data using unsupervised clustering approaches11,12,31. 
Although such approaches are able to identify cell subsets in an 
unbiased way, they often miss well-defined cell populations, 
especially for rare populations such as regulatory T cells. MetaCyto’s 
guided analysis pipeline is able to identify cell populations using user-
defined cell definitions. For example, regulatory T cells can easily be 
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identified using the definition “CD3+ CD4+ Foxp3+”. Such an 
approach allows researchers to incorporate their domain knowledge 
into the analysis, making the result more biologically relevant.  
 
In addition to the guided analysis pipeline, MetaCyto also allows 
researchers to identify cell populations using un-supervised clustering 
methods. Successful efforts were made by the community to develop 
efficient clustering methods for flow cytometry data analysis. We built 
MetaCyto to be fully compatible with existing clustering methods. 
MetaCyto is able to merge and transform the clusters from existing 
clustering algorithms in a biologically meaningful way, therefore 
improving result quality and enabling further meta-analysis of many 
studies.  
 
Based on the test result, we recommend over-clustering the data first, 
followed by the merging of the clusters by MetaCyto. Such a strategy 
not only makes the method tuning free, but also is more 
computationally efficient than traditional auto-tuning methods, which 
require running the clustering algorithm multiple times with different 
parameters.  
 
Applying MetaCyto to cytometry data from 10 human immunology 
studies allowed us to thoroughly characterize differences in the 
immune system between races. Other than the previously known 
differences in CD4+ T cell abundance between Asians and Whites, 
we identified novel cell populations whose abundance and marker 
expression levels were significantly different between races. We 
believe that our findings will not only help us better understand the 
heterogeneity of the human immune system in the population, but 
also serve as the starting point for future in-depth studies to reveal 
the mechanisms behind racial discrepancies in immune-related 
diseases.  
 
MetaCyto is primarily designed to improve the robustness and 
interpretability of cytometry analysis. Inevitably, the sensitivity of the 
method is decreased, especially in the unsupervised analysis 
pipeline.  Although the merging of cell subsets improves the 
robustness of the clustering result, some small cell populations of 
biological meaning may be lost. To overcome this limitation, a more 
sensitive method, such as CITRUS15 may be applied to data from a 
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single study first. After identifying the cell subsets of interest from the 
single study, the guided analysis pipeline of MetaCyto can be used to 
perform meta-analysis on the cell subsets across studies.    
 
 
METHODS  
 
Data Aggregation 
Flow cytometry data and CyTOF data from SDY112, SDY16719, 
SDY18018, SDY311, SDY312, SDY314, SDY315, SDY42020, SDY478 
and  SDY73617 were downloaded from ImmPort web portal. Only fcs 
files from pre-vaccination blood samples of healthy adults were 
included in the meta-analysis. Parameters, including antibodies and 
fluorescence or isotope labels, used in each fcs file were then 
identified using the fcsInfoParser function in MetaCyto. The fcs files 
were then organized into panels, which are defined as a collection of 
fcs files from the same study that have the same set of parameters.  
 
Manual gating results for both FlowCAP WNV data (ID number FR-
FCM-ZZY3) were downloaded from the FlowRepository link: 
community.cytobank.org/cytobank/experiments/4329.  
 
All data sets were downloaded between September 1, 2016 and 
February 1, 2017. 
 
Data Pre-processing 
Flow cytometry data from ImmPort were compensated for 
fluorescence spillovers using the compensation matrix supplied in 
each fcs file.  All data from ImmPort were arcsinh transformed. For 
flow cytometry data, the formula f(x) = arcsinh (x/150) was used. For 
CyTOF data, the formula f(x) = arcsinh (x/8) was used. All 
transformation and compensation were done using the preprocessing 
or preprocessing.batch function in MetaCyto. 
 
Cytometry data FlowCAP WNV was transformed and subset to only 
include protein markers. The pre-processing was doing using the 
same code provided by the Weber study12 : 
github.com/lmweber/cytometry-clustering-comparison  
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Identifying cell subsets with the guided analysis pipeline in 
MetaCyto 
Cell definitions were created based on the gating strategies provided 
by authors of SDY 420 and SDY478 or based on the cell definition 
from the Human ImmunoPhenotyping Consortium28 . The cell 
definitions are available in the supplementary table 1, 2 and 4.  
searchCluster or searchClster.batch function was used to identify the 
cell subsets corresponding to the cell definitions. The summary 
statistics, including proportion and MFI of markers of each cell 
subsets were generated by the same functions.  
 
Identify cell subsets with the unsupervised analysis pipeline in 
MetaCyto 
In Fig. 2 and Supplementary Fig. 2, FlowSOM13 and FlowMeans14 
were run using the same code provided by the Weber study using 
different K values. The resulting clusters from FlowSOM and 
FlowMeans were labeled and merged using the labelCluster and 
clusterSearch function in MetaCyto. 
 
In Fig. 4 and 5, Pre-processed data from all 10 studies were 
clustered using the autoCluster.batch function in MetaCyto. The 
summary statistics of the identified cell subsets were calculated using 
the searchCluster.batch  function.   
 
Evaluating the performance of clustering result.  
 
In Supplementary Fig. 1 and Fig. 2 a-e, the proportions of each cell 
type were provided by the authors of SDY420 and SDY478. 
MetaCyto or flowDensity27 was used to estimate the proportion of 
each cell type. The Spearman correlation coefficient between 
author’s result and MetaCyto or flowDensity result was calculated to 
measure the performance of MetaCyto and flowDensity.  
 
In Fig. 2f and Supplementary Fig. 2, the F measure was used to 
measure the performance of clustering methods. The F measure was 
calculated as described in the FlowCAP study33. Briefly, for each cell 
population in manual gating and each cell population in auto-gating 
result, a 2 × 2 contingency table was calculated containing the false 
positive (FP), true positive (TP), false negative (FN) and true negative 
(TN). The recall (Re) was calculated as TP/(TP + FN), the precision 
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(Pr) was  calculated a TP/(TP + FP).  The F measure was calculated 
as F = (2 × Pr × Re)/(Pr + Re). For each population in manual gating 
result, the best F measure and its corresponding recall and precision 
were used as the F measure of the population. The overall F 
measure, Recall and Precision was the average of F measure, Recall 
and Precision of all manual gated populations, weighted by the size 
of each manual population.  
 
Evaluating the performance of bisection algorithm 
 
In Supplementary Fig. 1, Different Methods were tested to bisect the 
distribution of each marker.  
 
Silhouette scanning method: The range of a marker was divided into 
100 intervals using 99 breaks. The distribution was bisected at each 
break and the corresponding average silhouette26 was calculated. 
The break giving rise to the largest average silhouette was used as 
the cutoff for bisection. 
 
K-means method: based on the values of a single marker, cells were 
clustered into 2 groups using k means clustering algorithm were k = 
2. The cutoff value for bisection was the border between the 2 
groups. 
 
Hierarchical clustering method: based on the values of a single 
marker, cells were grouped into a Hierarchical tree. The tree was 
then cut into 2 groups at the top level. The cutoff value for bisection 
was the border between the 2 groups.  
 
First valley method: The distribution of each marker was smoothed 
using the smooth.spline function. The peaks in the distribution were 
identified using the .getPeaks function in flowDensity package27. The 
lowest points between peaks were defined as valleys. The valley with 
the smallest marker value was used as cutoff for bisection.  
 
Last valley method: The valley with the largest marker value was 
used as cutoff for bisection.  
 
Median valley method: The valley closest to the median of the marker 
value was used as cutoff for bisection. 
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Mean method: The mean of the marker distribution was used as the 
cutoff.  
 
Median method: the median of the marker value was used as the 
cutoff 
 
Middle method: the mean of the max and min of the marker values 
were used as the cutoff.  
 
After markers in SDY420 data were bisected, cells fulfilling the 
requirement of each cell definition (listed in Supplementary Table 1) 
were identified. For example, for cell definition “CD3+ CD8+ CD4- ”, 
cells falling into the CD3+ region were identified. Similarly, cells 
falling into CD8+ and CD4- regions were identified. The intersect of 
the 3 sets of cells were the cells corresponding to the cell definition 
“CD3+ CD8+ CD4- ”. The proportion of cells corresponding to each 
cell definition was calculated and compared to the proportion 
provided by the author. The Spearman correlation was used as a 
measurement of the bisection algorithm.  
 
Statistical Analysis 
For the meta-analysis of the 10 human immunology studies from 
ImmPort, the proportion or MFI of cell subsets was regressed against 
age, gender and race (Y ~ age + gender + race) in each cytometry 
panel. The effect size was defined as the regression coefficient 
divided by the standard deviation of Y. The overall effect size from all 
cytometry panels was estimated using a random effect model. For 
data from the Carr study, the proportion of a cell population was 
regressed against age and gender. Race information was missing in 
the data, therefore was omitted in the regression. All statistical 
analysis was performed using the metaAnalysis function in MetaCtyo. 
The p-value was adjusted using the Benjamini-Hochberg32 correction.  
 
In Fig. 4 a, b and d, Pearson correlations are calculated and tested 
against the null hypothesis (correlation equals zero) using the cor.test 
function in R.  
 
In Fig. 5f, Shapiro-Wilk test was performed to check the normality 
assumption using the shapiro.test function in R. F test was performed 
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to check the equal variance assumption using var.test function in R.  
A two-sided unpaired Mann-Whitney test is performed to test the 
difference between two groups using the wilcox.test function in R.  
 
 
 
 
SUPPLEMENTARY INFORMATION: 
 
Supplementary Figure 1: Silhouette scanning bisects the distribution 
of each marker in a biological meaningful way. (a) An example 
illustrating the silhouette scanning. The range of CD8 is divided into 
100 intervals using 99 breaks. The distribution is bisected at each 
break and the corresponding average silhouette is calculated. The 
break that gives rise to the largest average silhouette is used as the 
cutoff for bisection. Grey histogram shows the distribution of CD8. 
Blue dots show the average silhouette at each break. Red line shows 
the cutoff that maximizes the average silhouette. Black arrows show 
the position of 3 peaks. (b-c) Using different bisection algorithms, 
each marker in CyTOF data from SDY420 are bisected into positive 
and negative regions. 24 cell types were identified using the semi-
supervised method as described in Fig. 1c. The proportion of each 
cell type in each sample is calculated and compared with manual 
gating result. (b) The Spearman correlation between the estimated 
proportion and author’s proportion are used to measure the 
performance of each bisection algorithm. (c) Scatter plots showing 
the result generated by using silhouette scanning, k-means clustering 
and mean as the bisection algorithm. Each dot represents the 
proportion of a cell type in a sample. Each color represents a cell 
type.  See online methods for a detailed description of the 9 bisection 
methods tested.   
 
Supplementary Figure 2: MetaCyto is able to improve the quality and 
robustness of clustering results from FlowMeans. (a,b) FlowMeans is 
used to cluster FlowCAP WNV data with K ranging from 10 to 90 with 
or without MetaCyto. F measure (a) and the number of clusters (b) 
are showed in the bar plots. 
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Supplementary Figure 3: Demographics of subjects included in the 
meta-anlaysis of 10 human immunology studies. Bar graphs show the 
distribution of gender (a), race (b) and age (c).  
 
Supplementary Figure 4: Comparison between the effect sizes of 
gender estimated by MetaCyto using all 88 panels, against the effect 
size of gender estimated using the data from Carr, et al. 
 
 
Supplementary Table 1: A list of cell definitions used to identify the 24 
cell populations in cytometry data (SDY420) from ImmPort. The cell 
definitions are created based on the author’s gating strategy provided 
in SDY420.  
 
Supplementary Table 2: A list of cell definitions used to identify the 88 
cell populations in cytometry data (SDY478) from ImmPort. The cell 
definitions are created based on the author’s gating strategy provided 
in SDY478.  
 
Supplementary Table 3: A summary of 10 studies included in the 
meta-analysis. 
 
Supplementary Table 4: A list of cell definitions used to identify the 24 
cell populations in all 10 studies included in the meta-analysis.  
 
Supplementary Table 5: A table summarizing the effect size of age to 
the proportion and phenotype of 24 cell populations. The effect sizes 
are estimated from the meta-analysis of 10 human immunology 
studies using the guided analysis pipeline in MetaCyto. 
 
Supplementary Table 6: A table summarizing the effect size of 
gender to the proportion and phenotype of 24 cell populations. The 
effect sizes are estimated from the meta-analysis of 10 human 
immunology studies using the guided analysis pipeline in MetaCyto. 
 
Supplementary Table 7: A table summarizing the effect size of race to 
the proportion and phenotype of 24 cell populations when comparing 
cytometry data of blood from Asian and White subjects. The effect 
sizes are estimated from the meta-analysis of 10 human immunology 
studies using the guided analysis pipeline in MetaCyto. 
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Supplementary Table 8: A table summarizing the effect size of race to 
the proportion and phenotype of 24 cell populations when comparing 
cytometry data of blood from African American and White subjects. 
The effect sizes are estimated from the meta-analysis of 10 human 
immunology studies using the guided analysis pipeline in MetaCyto. 
 
Supplementary Table 9: A table summarizing the effect size of race to 
the proportion of cell subsets identified by the unsupervised analysis 
pipeline when comparing cytometry data of blood from Asian and 
White subjects. The effect sizes are estimated from the meta-analysis 
of 10 human immunology studies. 
 
Supplementary Table 10: A table summarizing the effect size of race 
to the proportion of cell subsets identified by the unsupervised 
analysis pipeline when comparing cytometry data of blood from 
African American and White subjects. The effect sizes are estimated 
from the meta-analysis of 10 human immunology studies. 
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Figure Legends: 
 
Figure 1:  MetaCyto identifies and labels common cell subsets in 
cytometry data across studies. (a) Schematic illustration of the 4 
steps MetaCyto uses to perform meta-analysis of cytometry data. (b) 
Schematic illustration of the unsupervised analysis pipeline in 
MetaCyto. Top: Cytometry data from different studies are first 
clustered using a clustering method, such as FlowSOM. Middle: Each 
marker is bisected into positive and negative regions using the 
silhouette scanning method. Each identified clusters is labeled based 
on their position relative to this threshold. Bottom: Clusters with the 
same label are merged together into rectangles or hyper-rectangles. 
(c) An example illustrating the guided analysis pipeline in MetaCyto. 
Each marker in the data is bisected into positive and negative regions 
using the silhouette scanning method.  The CD3+ CD4+ CD8- cluster 
corresponds to cells that fall into CD3+ region, CD4+ region and 
CD8- region at the same time. Red histograms show the distribution 
of markers in CD3+ CD4+ CD8- subset. Grey histograms show the 
distribution of markers of all cells.  
 
 
Figure 2:  Both guided and unsupervised analysis pipelines in 
MetaCyto accurately identify cell populations. (a-c) Scatter plots 
showing the comparison between proportions of cell types estimated 
by the guided analysis pipeline in MetaCyto and proportions provided 
by the authors of SDY478. All cell populations (a), CD16- monocytes 
(b), and effector memory CD8+ T cells (c) are included in the plots. 
Each dot represents the proportion of a cell type in a sample. Each 
color represents a cell type. (d) Scatter plots showing the comparison 
between flowDensity and manual gating. All cell populations are 
included. (e) The 88 cell types are broken down into rare and major 
populations based on their mean proportion in the manual gating 
results. The cell types whose mean proportions are less than 2 
percent are defined as rare population, the rest cell types are defined 
as major populations. Spearman correlation between MetaCyto or 
flowDensity’s results and manual gating results are calculated to 
measure the performance.  (f,g) FlowSOM is used to cluster the West 
Niles Virus dataset (FlowCAP WNV) with K ranging from 10 to 90 
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with or without the merge step in MetaCyto unsupervised analysis 
pipeline. F measure (f) and the number of clusters (g) are showed in 
the bar plots. See Supplementary Fig. 2 for a comparison between 
MetaCyto and FlowMeans. 
 
Figure 3:  Data from 10 human immunology studies includes highly 
heterogeneous cytometry panels. Eighty-eight panels with diverse 
sets of markers were used in these 10 studies, with the panels 
represented vertically.  The specific markers used are represented 
horizontally. A red square in each grid element indicates that 
particular marker was used in a study panel.  
 
Figure 4: Meta-analysis of cytometry data using MetaCyto provides 
consistent results between cytometry panels and confirms previous 
findings. (a) The 88 cytometry panels included in the meta-analysis 
were randomly split into 2 panel sets. Twenty-four specific cell types 
were identified by the guided analysis pipeline. The effect size of age 
on the proportion of the cell types was estimated in the two panel sets 
independently and then compared with each other. (b) Eighty-two cell 
subsets were identified by the unsupervised analysis pipeline in two 
independent panel sets and compared. (c) The procedure of (a) and 
(b) were repeated 100 times, the mean and standard deviation of the 
100 correlation between two panel sets are shown in the bar plot. (d) 
Comparison between the effect sizes of gender estimated by 
MetaCyto using all 88 panels, against the effect size of age estimated 
using the data from Carr, et al. (e) Forest plot showing the effect size 
of race (Asian compared to White) on the proportion of CD4+ T cells 
in the blood. The effect sizes are estimated within each panel first, 
and are combined using a random effect model. Panels in blue 
represent flow cytometry data. Panels in black represent CyTOF 
data.  In (a,b,d), r represents the Pearson correlation; p represents 
the p value of r not equal to 0.  In (e), p represents the p value of the 
overall effect size not equal to 0. 
 
 
Figure 5:  Meta-analysis of cytometry data using MetaCyto identifies 
multiple racial differences in immune cells. (a) Heat map showing the 
effect size of race (Asian vs. White) on the proportion and the 
expression of 7 selected markers in 13 selected cell types. Color 
scale represents the value of the effect size (red means higher in 
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Asian than White, blue means lower). The area of circle represents 
the absolute value of the effect size. Red squares indicate significant 
differences. (b) Heat map showing the effect size of race (African 
American vs. White) on the proportion and expression of 5 selected 
markers in 9 selected cell types. (c) Forest plot showing the effect 
size of race (Asian vs. White) on the MFI of CD94 on NK cells. (d) 
Cytometry data from panel 1 of SDY420 is manually gated to identify 
NK cells. Representative histogram of CD94 expression on NK cells 
from Asian, African American and White subjects were shown. (e) 
Forest plot showing the effect size of race (Asian vs. White) on the 
proportion of a novel cell subset (CD3+CD4-CD45RA+CD8+CD85J-) 
identified by the unsupervised analysis pipeline. (f) The proportion of 
the CD3+CD4-CD45RA+CD8+CD85J- cell subset in PBMC from 
Asian and White subjects in panel 2 of SDY312. The p values in a-c 
are calculated using random effect models, adjusted using Benjamini-
Hochberg correction. p value in f is calculated from unpaired Mann-
Whitney test without correction. See Supplementary Table 5-8 for a 
complete list of differences in immune cells between races. 
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