
























13

rs
o

s
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
R

S
o

c
o

p
e

n
s
c
i.

0
0

0
0

0
0

0
..............................................................

(a) Physiological and mechanical constraints on osteon dimensions

Covering an unprecedented range of mammalian species in which secondary osteons are found,

the size-invariance of the infill ratio, and similar exponent estimates for osteon area and infill

area (differing by less than 0.01) reported here confirm the results of previous studies showing a

tight coupling between bone resorption and formation in intra-cortical bone remodelling. Qiu and

coworkers [68] demonstrated a strong (r=0.97) quadratic relationship between osteon perimeter

and infill area in young and elderly humans. Another study [69] showed strong correlations

(r>0.95) between osteon area and infill area for osteons of varying sizes from several species.

Thus, seemingly, a similar percentage of resorbed bone is filled back in, independent of body size,

suggesting that it is crucial for all mammalian limb bones to keep their overall porosity at a similar

level, since porosity is an important determinant of bone strength [70].

Sample squared correlation coefficients are lower for minimum than for maximum and mean

osteon, canal and infill area. Erythrocyte dimensions may form a lower limit for the cross-sectional

area of remote blood vessels such as Haversian canals and do not vary with species size in

mammals [71]. Idealising the minimum canal areas we measured into circles resulted in diameters

of approximately 10µm, which are close to the diameter of an erythrocyte (approx. 8µm, [72]),

supporting this notion. Therefore, occasionally, osteons of large species are narrow relative to the

entire, inter-species range we report in the present study (and the erythrocytes still fit through the

capillaries), but wide osteons do not occur in small species.

On the other hand, upper limits for osteon and canal area may differ for species of varying

size: The maximum distance from a blood vessel at which osteocytes remain viable has been

reported to be 230µm [15]. This is close to the maximum infill distance we observed in the

larger species of our sample and suggests that maintaining osteocyte viability, combined with

the previously mentioned size-invariant infill ratio, constitutes a limiting factor for osteon area in

large species. For smaller species, however, this limit is never reached, suggesting that a different

mechanism dominates the size of osteons in these animals. The cortical thickness of the specimen

with the smallest estimated body mass and evidence of osteons in our sample (Red slender loris,

Loris tardigradus) ranges between 600 and 850µm, which is of comparable scale to the estimated

diameter of the largest osteon we found overall (580µm). A resorption area of that size in as thin

a cortex is likely to have deleterious consequences for the bone [73]. Creating as large osteons as

possible, if an organism can afford the temporary increase in porosity due to a large resorption

cavity, may be advantageous from a mechanical point of view after infilling has completed. Larger

(and more numerous) osteons have been associated with increased toughness [74–77]. It has more

recently been suggested that larger osteons [78] are geometrically more advantageous for resisting

bending and compression loads. Studies treating bone as a quasi-brittle material suggest that bone

strength and toughness improve with increases in the ratio between dominant inhomogeneity

size (i.e. in our case, the typical size of microscopic features such as osteons) and the structural

scale (i.e. the bone organ size) [79–81]. Therefore, larger osteons, to the extent to which they do

not preclude osteocyte viability, in large species may be explained as tissue-level geometrical

adaptations to offset mechanical disadvantages that come with increased size, conceptually

similar to adaptations at the organ level described in previous studies such as decreasing bending

moments with more upright postures [82], increased limb bone robustness [83], cortical thickness

and infilling with trabeculae [84], and adapting number and thickness of trabeculae [21].

The fact that phylogeny had little effect on our findings is unsurprising, given the diversity of

species, clades and ecologies that we sampled from. This also reinforces the notion that our results

likely reflect overall bio-physical limits within which the intracortical bone remodelling process

operates, and not clade- or species-specific adaptations.

(b) Limitations

The high variability of our data reflects the multitude of species- and specimen-specific

characteristics that will affect bone remodelling, including age, sex, locomotor style, life history,
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onset of secondary remodelling during ontogeny, environmental influences and more. Specimen

age was unknown, but we expect most specimens to be of young adult age, as life expectancy in

19th century zoos was low ( [85], as cited in [86]). There is some debate about the relationship

between age and osteon size in humans: While most studies support an inverse relationship

(narrower osteons in older people) [87,88], some studies show no effect. Osteon size was not

correlated with age in macaques [31]. The effect size of age in interspecies comparisons of

secondary osteon dimensions (if there is one) is however likely to be smaller in magnitude to

the relationship of secondary osteons with mass that we show here. Similarly, we could not take

sex into account in our analysis, since it was unknown for all our specimens.

Because stylopodal dimensions also scale with body size [19], it seems reasonable to speculate

that bone size, and not body size, determines osteon dimensions [89]. However, data for calcanei

and femora from equine samples, and metapodials and femora from American black bears,

suggests that secondary osteon dimensions are similar across different anatomical sites and across

bones of varying size within the same species [69]. This makes it appear more likely that osteon

dimensions relate to adult body mass, as our data show, and not to bone size. To distinguish the

contributions to osteon size of bone organ size and whole body mass in more detail, a further

study, similar to ours, comparing osteon dimensions in bones of the same size across species, and

in bones of different sizes within species, would be required.

More insights would be gained if we were to measure the secondary remodelling process

in three dimensions. However, while we are now able to image resorption cavities effectively

using X-ray microtomography [90], for now, the characterization of cement sheaths in 3D involves

considerable manual effort [4] and could not have been completed within the time-scale of this

study.

Using a historical collection of slides presented some further limitations. To an extent,

knowledge of exact anatomical location, precise taxon as well as specimen age and provenance

was sacrificed in order to sample a large species and size range. We feel this was important,

as we would have been prone to concluding that there was no scaling relationship if we had

used a smaller number of different species that are easily accessible, given that (for example)

humans have relatively wide, and cattle have relatively narrow, osteons for their size. The use of

a historical collection additionally avoided the time, effort and difficulties required to obtain and

generate an equivalent collection to a modern standard.

Fluorochrome labelling could have helped validate our results. However, this would have

constituted only a partial validation: it would have confirmed whether we characterized the

secondary osteons formed during the labelling period correctly (i.e. true positives), but would

likely have produced a number of false negatives, namely intact secondary osteons formed prior

to fluorochrome injection. Using solely labelled osteons would have reduced the number of

osteons sampled, increased the bias towards osteons which had not completed infilling at time of

death or had possibly differing infilling rates, and could have therefore confounded our results.

Moreover, obtaining labelled material from a large enough range of species would have posed

considerable difficulties.

(c) Conclusion

In summary, the images of historically important specimens we produced are available (See data

accessibility statement below) to researchers for use in future comparative histological studies.

The measurements of secondary osteon and Haversian canal area we presented here have the

highest number of mammalian species with the most diversity in clades and the broadest range

in size to date. We performed a comprehensive scaling analysis of quantities describing the intra-

cortical remodelling process across species, which showed negative allometry for osteon, canal

and infill area as well as infill distance, while the infill ratio was size-independent. Our results

indicate that minimum osteon dimensions correlate only very weakly with animal body mass

and might relate to erythrocyte dimensions. In contrast, the upper limits to osteon dimensions

display a strong relationship with adult body size: osteons in small species may be restricted to
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sizes avoiding fatal temporary stress increases around too large resorption cavities, while osteon

size in large species may be dictated by the ability to maintain osteocyte viability.

Data Accessibility. Full-resolution images can be obtained from RCS for research purposes upon request

(Low-resolution versions can be found on the RCS online catalogue SurgiCat by searching for the reference

numbers listed in Tables 1 and 2). Segmentations of the images, and the raw data of the histomorphometrical

measurements are available online. The code used to obtain our results is available on github [66,67].

Authors’ Contributions. AF imaged the specimens, hand-traced the secondary osteons, wrote the code for

image and statistical analysis, carried out the statistical analyses and drafted the manuscript; CP, HC and MC

searched the RCS collection and archives and prepared the slides for imaging; CP, HC, MC and AF drafted

paragraphs about the history and condition of the Quekett slides and reviewed the manuscript; MD conceived

of and coordinated the study and helped draft the manuscript; JRH conceived of the study, helped draft the

manuscript and gave advice on phylogenetic correction. All authors gave final approval for submission and

publication.

Competing Interests. The authors declare no competing interests. CP, HC, and MC are employed by RCS,

which oversees the conservation of the Quekett collection; however, this association had no bearing on the

analysis or interpretation of the results.

Funding. AF’s PhD project is funded by The Royal Veterinary College and Foster+Partners. The study

presented here was a collaborative effort between RCS and RVC.

Acknowledgements. The authors thank all the RCS staff and the Quekett Microscopy Club for providing

access to the Quekett collection. AF is grateful to Andrew Cuff for help with phylogenetic independent

contrasts, to Andrew Pitsillides, Inês Perpétuo and Jim Usherwood for helpful discussions, and to Richard

Domander for reviewing the code.

References

1. Petrtýl M, Heřt J, Fiala P.
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