Structure-based analysis of CysZ-mediated cellular uptake of sulfate

Authors and Affiliations:

Zahra Assur Sanghai ${ }^{1,2}$, Qun Liu ${ }^{3}$, Oliver B. Clarke ${ }^{2}$, Edgar Leal Pinto ${ }^{4}$, Brian Kloss ${ }^{5}$, Shantelle Tabuso ${ }^{5}$, James Love ${ }^{5}$, Marco Punta ${ }^{6}$, Surajit Banerjee ${ }^{7}$, Kanagalaghatta R. Rajashankar ${ }^{7}$, Burkhard Rost ${ }^{8}$, Diomedes Logothetis ${ }^{4}$, Matthias Quick ${ }^{9}$, Wayne A. Hendrickson ${ }^{1,2,6}$ and Filippo Mancia ${ }^{\text {* }}$
${ }^{1}$ Department of Physiology and Cellular Biophysics, ${ }^{2}$ Department of Biochemistry and Molecular Biophysics, and ${ }^{9}$ Department of Psychiatry, Center for Molecular Recognition, Columbia University, New York, NY 10032, USA.
${ }^{3}$ Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
${ }^{4}$ Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
${ }^{5}$ New York Structural Biology Center, New York, NY 10027, USA.
${ }^{6}$ Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
${ }^{7}$ Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Advanced Photon Source, Argonne, IL 60439, USA.
${ }^{8}$ Department of Informatics, Technical University of Munich, Munich 85748, Germany

[^0]
Abstract

Sulfur, most abundantly found in the environment as sulfate ($\mathrm{SO}_{4}{ }^{2-}$), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. Current understanding of the cellular delivery of $\mathrm{SO}_{4}{ }^{2-}$ at the molecular level is limited however. CysZ has been described as a $\mathrm{SO}_{4}{ }^{2-}$ permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, $\mathrm{SO}_{4}{ }^{2-}$ binding and uptake experiments in cells and proteoliposomes, and single-channel conductance measurements, we provide insight into the molecular mechanism of CysZmediated translocation of $\mathrm{SO}_{4}{ }^{2-}$ across membranes. CysZ properties differ markedly from those of known transporters and ion channels. The structures display a hitherto unknown fold with dual topology, assembling in CysZ from Pseudomonas denitrificans as a trimer of antiparallel dimers in the membrane. CysZ structures from two other species recapitulate dimers from this assembly. Mutational studies highlight the functional relevance of conserved CysZ residues.

Sulfur has a central role in many cellular processes across all kingdoms of life. It is a vital component of several essential compounds, including the sulfur-containing amino acids cysteine and methionine, in prosthetic groups such as the Fe-S clusters, as well as vitamins and micronutrients such as biotin (vitamin H), thiamine (vitamin B1) and lipoic acid, and in coenzymes A and M (Barton, 2005). Whilst mammals obtain the majority of the necessary sulfur-containing metabolites directly from the diet, plants, fungi, and bacteria are able to assimilate and utilize sulfur from organic and inorganic sources (Barton, 2005). Sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ is the most abundant source of sulfur in the environment and its utilization is contingent upon its
entry into the cell (Kertesz, 2000). In certain fungi, and prokaryotes, once internalized, $\mathrm{SO}_{4}{ }^{2-}$ is first reduced to sulfite $\left(\mathrm{SO}_{3}{ }^{2-}\right)$, and then further to sulfide $\left(\mathrm{S}^{2-}\right)$, a form that can be used by the cell (Kredich, Hulanicka, \& Hallquist, 1979) (Fig. 1-S1). In Escherichia coli and other gramnegative bacteria, the culmination of the aforementioned sulfate assimilatory (also known as reductive) pathway is the formation of cysteine by the addition of S^{2-} to O-acetylserine by cysteine synthase, followed by the synthesis of methionine from homocysteine (Kredich, 1971) (Fig. 1-S1).

In prokaryotes, the entry of $\mathrm{SO}_{4}{ }^{2-}$ into the cell is mediated by four known families of dedicated transport systems: the ABC sulfate transporter complexes SulT or CysTWA, the SulP family of putative SLC13 sodium:sulfate or proton:sulfate symporters or SLC26 solute:sulfate exchangers, the phosphate transporter-like CysP/PitA family, and the CysZ family classified as $\mathrm{SO}_{4}{ }^{2-}$ permeases (Aguilar-Barajas, Diaz-Perez, Ramirez-Diaz, Riveros-Rosas, \& Cervantes, 2011; Hryniewicz, Sirko, Palucha, Bock, \& Hulanicka, 1990; Kertesz, 2001; Loughlin, Shelden, Tierney, \& Howitt, 2002; Mansilla \& de Mendoza, 2000; Sirko, Zatyka, Sadowy, \& Hulanicka, 1995). CysZ family members are $28-30 \mathrm{kDa}$ bacterial inner-membrane proteins found exclusively in prokaryotes with no apparent homology to any of the established channel or transporter folds, and are scarcely studied in the literature (Zhang, Jiang, Nan, Almqvist, \& Huang, 2014). The cys Z gene owes its name to its presence in the cysteine biosynthesis regulon. In two reports from thirty years ago, an E. coli K 12 strain with a cys Z deletion showed a severe impairment in its ability to accumulate $\mathrm{SO}_{4}{ }^{2-}$ and was not viable in sulfate-free media without an alternate sulfur source such as thiosulfate $\left(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right)$ (Britton et al., 1983; Parra, Britton, Castle, Jones-Mortimer, \& Kornberg, 1983). Recently, a third report studying the functional properties
of CysZ, concluded that the protein from E. coli functions as a high affinity, highly specific $\mathrm{pH}-$ dependent $\mathrm{SO}_{4}{ }^{2-}$ transporter, directly regulated by the toxic, assimilatory pathway intermediate, $\mathrm{SO}_{3}{ }^{2-}$ (Zhang et al., 2014).

To investigate the role of CysZ in cellular sulfate uptake at a molecular level, we have undertaken an approach that combines structural and functional studies. To this end, we determined the crystal structures of CysZ from three species, Idiomarina loihiensis (Il; IlCysZ), Pseudomonas fragi (Pf; PfCysZ), and Pseudomonas denitrificans (Pd; PdCysZ), and characterized CysZ function in purified form, in reconstituted proteoliposomes, in planar lipid bilayers, and in cells. Combining the structural information from the three orthologs reveals that CysZ features a novel protein fold that assembles as oligomers with a dual topology. This arrangement can be understood as being derived from trimers of dimers akin to the hexameric assembly captured in one of the structures. Interpreting the functional data in a structural context has allowed us to formulate a mechanistic model for CysZ-mediated $\mathrm{SO}_{4}{ }^{2-}$ translocation across the bacterial cytoplasm membrane.

Both the structures and the functional properties of CysZ proteins are distinct from those of any known membrane transporter or ion channel. Besides not resembling other transporter structures, CysZ mediates sulfate uptake into cells or proteoliposomes without coupling to ion gradients, partner proteins, or exogenous energy sources such as ATP. Besides differing from other ion channel structures, CysZ generates sulfate currents across lipid bilayers with unusual characteristics. These distinctive properties make CysZ appealing as a model system for studies of biophysical principles of membrane protein biogenesis and transmembrane ion passage.

RESULTS

Structure determination of CysZ

Following a structural genomics approach aimed at crystallization for structural analysis, we cloned and screened a total of 63 different bacterial homologs of CysZ for high-level expression and stability in detergents (Love et al., 2010; Mancia \& Love, 2011). Crystal structures were determined for CysZ from three organisms. Chronologically, the structure of IlCysZ was the first solved, to $2.3 \AA$ resolution in space group $C 2$ by SAD, initially based on a single selenate ion bound to the protein and subsequently also by selenomethione derivatization (SeMet) SAD, and multi-crystal native SAD (Liu et al., 2012). The structure of PfCysZ was solved second, to $3.5 \AA$ resolution, with crystals also belonging to space group $C 2$. Although PfCysZ and $I l \mathrm{CysZ}$ share 42% sequence identity, molecular replacement failed to find a convincing solution, and we instead used SeMet-derivatized PfCysZ to obtain phase information by multi-crystal SeMet SAD. Third, we determined the structure of PdCysZ, which crystallized in multiple forms belonging to space groups $P 6_{3}, P 4_{1} 22$ and $P 2_{1} 2_{1} 2_{1}$, revealing the same architecture and oligomeric assembly each time (Fig. 1-S2b). $P d$ CysZ structures in the $P 6_{3}$ and $P 2_{1} 2_{1} 2_{l}$ lattices each contain an entire hexamer in their asymmetric units, whereas a molecular diad coincides with a crystallographic axis in the $P 4_{1} 22$ lattice. We focused our analysis on the best of these (3.4 \AA resolution in $P 6_{3}$). The location of the selenium sites was obtained from a SeMet SAD data set, and the structure was solved by combining the resulting SAD phases with those from a molecular replacement solution obtained by positioning the PfCysZ model (75% sequence identity) onto SeMet fiducials in the initial electron density map (Table 1, Fig. 1-S2a).

The hexameric structure of PdCysZ

The refined structure of $P d$ CysZ comprises an entire hexamer of near-perfect D3 symmetry. Antiparallel pairs of protomers arrange together as a trimer of dimers (Fig. 1a), with the threefold axis oriented perpendicular to the plane of the putative membrane and three two-fold axes between dimers of the hexamer. Both the periplasmic and cytoplasmic faces of the hexamer are essentially identical by symmetry, resulting in a dual-topology assembly for $P d \mathrm{CysZ}$. The hexamer has a triangular face of equal sides measuring approximately $75 \AA$, with the perpendicular span of about $65 \AA$. The interaction of the six protomers results in a total buried surface area (Krissinel \& Henrick, 2007) of $5,700 \AA^{2}$. A surface electrostatic representation reveals a hydrophobic belt along the mid-section of the hexamer when viewed from its side, outlining the orientation of CysZ in the lipid bilayer (Czodrowski, Dramburg, Sotriffer, \& Klebe, 2006; Dolinsky et al., 2007; Dolinsky, Nielsen, McCammon, \& Baker, 2004) (Fig. 1b). A surface representation of the sequence conservation, calculated by analysis of multiple sequence alignments (MSA) (Ashkenazy et al., 2016; Glaser et al., 2003) highlights the regions of invariance in the sequence and in turn, the areas on the molecule that are most likely to have structural and functional importance (Fig. 1c).

The CysZ protomer is an alpha-helical integral membrane protein with two long transmembrane (TM) helices (H2b and H3a) and two pairs of shorter helices (H4b-H5a and H7-H8) that insert only partially into the membrane (hemi-penetrating), forming a funnel or tripod-like shape within the membrane (Fig. 2a, b). The protein has an extra-membranous hydrophilic 'head', comprising an iris-like arrangement of the two short helices, H1 and H6, and kinked helices H3b, H4a, and H5b. The amino and carboxyl termini are also located in this region (Fig. 2a, b). H4b and H5a lie
partly inserted in the membrane, with the turn between the two helices pointing in towards the three-fold axis at the center of the hexamer. CysZ amino-acid sequences from different organisms are very similar; for example, those of PdCysZ and E. coli CysZ (EcCysZ) are 40.5\% identical and those of $E c \mathrm{CysZ}$ and our three structures have 30.0% of their residues exactly in common (Fig. 2c). Helix boundaries are also essentially the same in the structures of PdCysZ, $I l \mathrm{CysZ}$ and $P f \mathrm{CysZ}$ (Fig. 2c).

The dimeric assembly of IlCysZ and PfCysZ

Unlike PdCysZ, both IlCysZ and PfCysZ crystallize as dimers (Fig. 3a, b), in agreement with their different behavior in detergent-containing solution. Indeed, size-exclusion chromatography runs of the three species of CysZ in the same buffer and detergent conditions, show monodisperse peaks eluting at 13.42 ml (IlCysZ), 13.95 ml (PfCysZ) and 12.56 ml (PdCysZ) (Fig. 3S1). This result is consistent with a different and smaller oligomeric state of $I l \mathrm{CysZ}$ and PfCysZ (similar retention volume) compared to $P d$ CysZ (eluting 1 ml ahead).

The protomers of the IlCysZ dimer are arranged in a head-to-tail antiparallel association, with H4b-H5a protruding at an angle that is nearly parallel to the putative plane of the membrane (Fig. 3a, 3-S2a, b). The PfCysZ dimer is also arranged in an antiparallel orientation but with a different dimer interface (Fig. 3b). In the PfCysZ structure, H4b-H5a together form a narrower angle with H 2 and H 3 , and tuck-in closer to the rest of the molecule (Fig. 3b). The resulting dumbbell-shaped PfCysZ dimer is predicted, by OPM/PPM (Orientation of Proteins in Membranes) (Lomize, Pogozheva, Joo, Mosberg, \& Lomize, 2012), to lie in the membrane at a 31° tilt to the perpendicular, in agreement with the position of its central hydrophobic belt, as
revealed by surface-electrostatics calculations (Fig. 3-S2e, f). The dimer interfaces of $I l C y s Z$ and PfCys Z bury $780 \AA^{2}$ and $1136 \AA^{2}$ of surface area respectively (Krissinel \& Henrick, 2007)

The individual protomers of CysZ from all three species adopt the same topology and fold, and superpose well with an overall pairwise root mean squared deviation (r.m.s.d) of $\sim 2.5 \AA$ (Fig. $3 \mathrm{c})$. The greatest variation between the protomers of each structure is seen in the orientation of H4b-H5a with respect to the TM helices, H2 and H3 (Fig. 3c), which seem to be the most conformationally flexible with respect to the rest of the molecule.

Comparison of the structures of $I l \mathrm{CysZ}$ and $P f \mathrm{CysZ}$ with that of $P d \mathrm{CysZ}$ revealed that these two distinctive dimeric structures are both represented in the hexameric one. Indeed, the $I l \mathrm{CysZ}$ dimer (Fig. 3a) resembles the vertically arranged pair of protomers in the PdCysZ hexamer (Fig. 3d) at each of the vertices of the triangular structure. On the other hand, the PfCysZ dimer (Fig. 3b) resembles the transverse pair of protomers lying at a tilt, just as was predicted by OPM (Lomize et al., 2012), along the side of the $P d$ CysZ hexamer when viewed from inside the plane of the membrane (Fig. 3e). In essence, the $P d$ CysZ hexamer can be seen as a trimer of either IlCysZ or PfCysZ dimers (Fig. 3f).

Dual-topology assembly of CysZ

To validate the dual-topology assembly of CysZ observed in all our structures, we performed disulfide crosslinking assays on engineered cysteine mutants of CysZ designed to capture the antiparallel dimer, utilizing isolated membranes. Disulfide-trapping experiments of the transverse dimer, performed by crosslinking a pair of mutants (L161C-A164C) on H5 of PfCysZ,
as well as the corresponding pair in IlCysZ (V157C-Q163C) confirm the dimer interface observed in the structures of PfCysZ and IlCysZ, and, as a consequence, the dual-topology assembly of the two proteins (Fig. 3-S2f, g, h).

To further validate the dual-topology orientation of CysZ in the membrane, we performed a cysteine accessibility scan experiment, mapping residues expected to be located outside the lipid bilayer, by fluorescence labeling of the thiol groups of various single cysteine mutants with a membrane-impermeable dye. Membrane fractions isolated from recombinant cultures expressing IlCysZ cysteine mutants introduced at positions along the edge of helix H 4 predicted to be solvent accessible based on our structure, were indeed labeled with a membrane-impermeable fluorescent thiol-specific maleimide dye (Fig. 3-S2c, d).

Functional characterization of CysZ

To characterize the functional properties of CysZ, we used a four-pronged approach: (i) radiolabeled $\left[{ }^{35} \mathrm{~S}^{3} \mathrm{O}_{4}{ }^{2-}\right.$ uptake experiments in cells expressing plasmid-encoded CysZ, (ii) radiolabeled ($\left[{ }^{35} \mathrm{~S}_{\mathrm{O}} \mathrm{O}_{4}{ }^{2-}\right.$) binding to purified CysZ in detergent solution, (iii) $\left[{ }^{35} \mathrm{~S}^{2} \mathrm{O}_{4}{ }^{2-}\right.$ uptake in proteoliposomes reconstituted with purified CysZ, and (iv) single-channel electrophysiological recordings in a planar lipid bilayer reconstituted with CysZ.

First, we compared the time course of $\mathrm{SO}_{4}{ }^{2-}$ accumulation in an E. coli cys Z knockout strain $(E$. coli K12 JW2406-1, CysZ') (Baba et al., 2006) with that in the wild-type (WT, E. coli K12 BW25113, cys Z^{+}) strain. CysZ ${ }^{-}$cells, after growth in minimal media and 12 hours of sulfate starvation, showed significantly diminished $\mathrm{SO}_{4}{ }^{2-}$ uptake when compared to the WT strain, consistent with previous results (Fig. 4a) (Parra et al., 1983). The CysZ' strain still showed a low
level of sulfate accumulation, which could be attributed to the other endogenous sulfate transport systems present in the bacteria (for example ABC transporter and SulP). This uptake-deficient phenotype of the CysZ ${ }^{-}$cells could be rescued by plasmid-driven expression of $P d \mathrm{CysZ}$ (Fig. 4b), as well as IlCysZ and PfCysZ (data not shown). Consistent with previously reported data (Zhang et al., 2014), we observed that $\mathrm{SO}_{3}{ }^{2-}$ ions severely impede or block the accumulation of $\left[{ }^{35} \mathrm{~S}^{2} \mathrm{O}_{4}{ }^{2-}\right.$ by CysZ-expressing cells (Fig. 4b).

To further characterize the interaction of CysZ with both $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{SO}_{3}{ }^{2-}$, we performed binding experiments on purified $P d$ CysZ using the scintillation proximity assay (SPA) (Quick \& Javitch, 2007). To determine the concentration of half-maximal binding $\left(E C_{50}\right)$, we isotopically diluted $\left[{ }^{35} \mathrm{~S}^{2} \mathrm{O}_{4}{ }^{2-}\right.$ with non-labeled $\mathrm{SO}_{4}{ }^{2-}$, obtaining an $E C_{50}$ of $0.81 \pm 0.045 \mu \mathrm{M}$ (Fig. 4c). Competing binding of $\left[{ }^{35} \mathrm{~S}_{\mathrm{O}} \mathrm{O}_{4}{ }^{2-}\right.$ with $\mathrm{SO}_{3}{ }^{2-}$ revealed that $P d \mathrm{CysZ}$ binds $\mathrm{SO}_{3}{ }^{2-}$ with greater affinity as reflected by a half-maximum inhibition constant $\left(I C_{50}\right)$ of $0.12 \pm 0.034 \mu \mathrm{M}$.

Next, we conducted $\left[{ }^{35} \mathrm{~S}_{\mathrm{S}} \mathrm{O}_{4}{ }^{2-}\right.$ uptake experiments on detergent solubilized and purified CysZ reconstituted in proteoliposomes. Proteoliposomes provide a means for assessing the activity of a membrane protein independent of other proteins found natively in cellular expression systems. Such binding partners could be involved in $\mathrm{SO}_{4}{ }^{2-}$ uptake as measured in intact E. coli cells (Fig. 4a). Furthermore, in addition to the SPA measurements, these experiments allowed us to confirm that the detergent-based extraction from the membrane and purification of CysZ used for our crystallization approaches did not compromise its activity. Acting alone, $P d \mathrm{CysZ}$ in proteoliposomes mediated the accumulation of $\mathrm{SO}_{4}{ }^{2-}$ in a time-dependent manner; the uptake occurred rapidly, peaking at about 30 seconds after incubation with the radioligand (Fig. 4d).

Consistent with our observations on cells, the influx of sulfate was inhibited by the presence of $\mathrm{SO}_{3}{ }^{2-}$ at micromolar concentrations. IlCysZ and PfCysZ exhibited similar uptake profiles in liposomes, suggesting similar functional properties (Fig. 4-S1a).

To determine whether sulfate uptake by CysZ was driven by the concentration gradient of sulfate itself, or if it was coupled to a secondary driving force such as an ion (e.g., $\mathrm{H}^{+}, \mathrm{Na}^{+}$) gradient, we tested the effect of the uncouplers CCCP (carbonyl cyanide m-chlorophenyl hydrazone), and oligomycin, as well as that of the ionophores valinomycin and gramicidin on CysZ-mediated $\left[{ }^{35} \mathrm{~S}^{2} \mathrm{O}_{4}{ }^{2-}\right.$ accumulation in our cell-based assay (Buckler \& Vaughan-Jones, 1998). Since none of these uncoupling agents had a significant effect on the accumulation of $\left[{ }^{35} \mathrm{~S}\right] \mathrm{O}_{4}{ }^{2-}$, these experiments suggest that CysZ-mediated $\left[{ }^{35} \mathrm{~S}^{2} \mathrm{O}_{4}{ }^{2-}\right.$ flux is not dependent on the 'classical' H^{+}or Na^{+}electrochemical transmembrane gradient, thus indicating that the observed uptake solely depends on the $\mathrm{SO}_{4}{ }^{2-}$ transmembrane concentration gradient (Fig. 4-S1b), a notion that is consistent with a channel-like mechanism for CysZ-mediated $\mathrm{SO}_{4}{ }^{2-}$ translocation.

Finally, we employed the use of single-channel electrophysiological current recordings on CysZ (PdCysZ and IlCysZ) reconstituted in a planar lipid bilayer (Fig. 4-S2). Consistent with our $\left[{ }^{35} \mathrm{~S}^{2} \mathrm{O}_{4}{ }^{2-}\right.$-based flux assays, these electrophysiological measurements showed that reconstituted CysZ exhibits channel-like properties when a membrane potential is applied in symmetrical $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solutions on both sides of the bilayer. The $I l \mathrm{CysZ}$ protein exhibits an average open probability $\left(\mathrm{P}_{\mathrm{OPEN}}\right)$ of 0.8 and conductance estimated as $92 \pm 12 \mathrm{pS}$. However, unitary conductance levels varied, showing a dependence on the amount of protein reconstituted in the planar lipid bilayer. The PdCysZ protein passes a broad distribution of currents at fixed voltages.

For both proteins, the $\mathrm{SO}_{4}{ }^{2-}$ currents are completely abolished by the presence of low micromolar $\mathrm{SO}_{3}{ }^{2-}$ concentrations.

Sulfate Binding Site

A bound $\mathrm{SO}_{4}{ }^{2-}$ ion was observed in the structure of IlCysZ . This binding site was confirmed by purifying and crystallizing CysZ in the presence of the heavier $\mathrm{SO}_{4}{ }^{2-}$ - analog selenate $\left(\mathrm{SeO}_{4}{ }^{2-}\right)$. In the $\mathrm{SO}_{4}{ }^{2-}$ bound structure, each protomer in the dimer showed electron density consistent with a bound sulfate, but only one of the two refined to full occupancy, hence only one is shown in the refined model of $I l$ CysZ (Fig. 5a). The location of the bound $\mathrm{SO}_{4}{ }^{2-}$ is close to the putative membrane interface where it is coordinated by two arginine residues (R27 and R28 in IlCysZ) and the backbone amides of residues G25 and L26. This $\mathrm{SO}_{4}{ }^{2-}$-binding site is in the loop between H1 and H2, with the motif $\operatorname{GLR}(\mathrm{R})$ being well conserved among the CysZ family. Consistent with this observation, crystals of $I l$ CysZ in which R27 and R28 were replaced with alanines did not show interaction with $\mathrm{SO}_{4}{ }^{2-}$ in that site based on i) the lack of any density in the refined mutant structure at $2.3 \AA$ and ii) functional studies (see below). We could not confirm the presence of $\mathrm{SO}_{4}{ }^{2-}$ in either of the other structures of $P f \mathrm{CysZ}$ and $P d \mathrm{CysZ}$, owing, at least in part, to their lower resolution limit ($\sim 3.5 \AA$). Soaking and co-crystallization attempts on both PfCysZ and $P d$ CysZ with $\mathrm{SeO}_{4}{ }^{2-}$ resulted in cracking and destabilization of crystals, and loss of measurable diffraction. In this vein, IlCysZ R27A/R28A, and the corresponding PfCysZ R25A and $P d$ CysZ R23A mutants all have severely impaired sulfate uptake capability, as demonstrated in cells and proteoliposomes (Fig. 5b, 4-S1a), consistent with a conserved role for these targeted arginine residues in all CysZ variants.

Conserved core in the hydrophilic head

Each apex of the triangular faces of the $P d$ CysZ hexamer comprises an extra-membranous hydrophilic head of a CysZ protomer (Fig. 1a and 5c). The central core of this hydrophilic head consists of the ends of H 3 and H 5 and the start of H 4 , with their residues forming an intricate network of hydrogen bonds and salt bridges that hold this helical bundle together (Fig. 5c). Two highly conserved motifs in this region, ExVE and QYxDYPxDNHK (Fig. 2c), likely play critical roles in this network of interactions. The two aspartates E103 and E106 (PdCysZ) in the first motif interact with R129, N184 and R110, H185, respectively (Fig. 5c). The conserved R129 and R133 on H 4 b in turn also interact with D183 and N184 in the DNHK sequence stretch of H 5 b in the second motif. In the second motif, a conserved tyrosine (Y177) lies below the membrane interface towards the core of the molecule, along H5.

Mutational studies on a subset of these conserved hydrophilic-head residues highlight their functional relevance (Fig. 5d). R129 mutants (R129E or Q) exhibited a severe loss of $\mathrm{SO}_{4}{ }^{2-}$ binding and uptake, and mutations made to Q176 and Y177 also showed loss in function, albeit to a lesser extent. Charge reversal mutations made to E103 and E106 (to K or R) or the equivalent $I l$ CysZ E107, E110 resulted in very poor expression and stability levels, suggesting that the disruption of the interaction network in this region may destroy the structural integrity of the protein.

Putative pore and sulfate translocation pathway of CysZ

It was already evident from the initial $I l \mathrm{CysZ}$ structure that the hydrophilic head presented an incipient opening into the membrane, as seen in the center of the Fig. 5c inset, but it was quite
unclear how this opening might relate to transmembrane sulfate translocation. The 'transverse' dimer structure of PfCysZ clarified the possibility for ion permeation by showing that openings in its two protomers aligned across the putative membrane; however, the prospective transduction pathway would then be open on one side to the bilayer. The PdCysZ structure showed that the open sides of transverse dimers line a central cavity in the PdCysZ hexamers. Thus, plausible transduction pathways became more evident.

The view into a protomer surface along the direct pathway between transverse dimer apices (e.g. green to orange in Fig. 3e) displays the pattern of exceptionally high conservation associated with the entrance to a putative pore for sulfate translocation (Fig. 6a, b). This putative entrance or 'pore' lies in the midst of a tight network of interacting residues, which is seen detailed in the inset of Fig. 5c in the very same view as for Fig. 6a. These interactions close the incipient pore from ion conduction in this conformation. The electrostatic potential surface of PdCysZ (Fig. 6c) shows striking and puzzling electronegativity at the conserved pore entrance (Fig. 6d compared with Fig. 6b). Because of the conservations, similar electrostatics pertain to the two other homologs. Moreover, we observe the same helix dispositions, pore shape and charge interactions in all three structures, evident when the protomers are superimposed (Fig. 3c, top view).

Pathway prediction algorithms (namely, PoreWalker (Pellegrini-Calace, Maiwald, \& Thornton, 2009)) performed on the CysZ protomer revealed a putative ion translocation pathway that begins at the entrance to the putative pore and ends in the large central cavity of the CysZ hexamer that lies within the membrane (Fig. 7a, b). In the structure of $P d \mathrm{CysZ}$, the entrance of the putative pore appears to be closed by the network of charge-interactions by conserved
residues, R110, E106, N184, H185 and W235 (Fig. 6a, 7c-1). These residues interact to tightly restrict access to the putative translocation pathway and constrict the entry of ions, likely selected for size and charge (Fig. 7-S1a). After the narrow entrance, the putative pathway broadens, surrounded by a ring of conserved asparagine and glutamine residues, N33, N91, N98, Q176, and N220 (Fig. 7c-2). Mutations to N98 (N98A, N98D) led to impaired sulfate uptake (Fig. 5d). Following this polar environment, the putative pathway widens even further leading into a large, primarily hydrophobic, internal cavity encapsulated by the TM helices of the $P d$ CysZ hexamer, located in the plane of the lipid bilayer (Fig. 7b, 7-S1c, d). The hydrophobic cavity is enclosed on both the top and bottom by pairs of helices $\mathrm{H} 4-\mathrm{H} 5$, three on each side from the six protomers, pointing in towards the three-fold axis, with each side of the cavity, at its midsection, measuring $\sim 50 \AA$, when viewed from above or outside the membrane (Fig. 7-S1c, d). Given the symmetric, dual topology nature of the CysZ assembly, the ions could then exit the cavity via the same pathway as they entered, but traveling through CysZ protomers located on the opposite side of the membrane.

DISCUSSION

There are four known families of dedicated $\mathrm{SO}_{4}{ }^{2-}$ transport systems in prokaryotes ${ }^{6}$, of which CysZs are the least studied (Zhang et al., 2014). The sequence of CysZ, coding for an integral membrane protein with four predicted TM segments, shows no resemblance to any other known protein. This, and the quest to set the basis for a mechanistic understanding of function, prompted us to investigate the structure of CysZ.

We present here three structures of CysZ from different species, all determined by x-ray
crystallography. These structures are all similar, showing a novel fold comprising two extended TM helices and two hemi-penetrating helical hairpins, giving rise to a tripod-like shape within the membrane, and a hydrophilic head (Fig. 2a, b, 3c). Two of the structures (IlCysZ and PfCysZ) show dimers in the crystals, albeit with different interfaces (Fig. 3a, b), and the third structure (PdCysZ) displays a hexameric assembly in multiple crystal forms (Fig. 1a).

All three structures have a dimeric component, each of which is present in the hexameric arrangement present in all the crystal forms of PdCysZ (Fig. 3a, b), showing how they are all related. Furthermore, $I l \mathrm{CysZ}$ can be crosslinked in membranes to the alternative PfCysZ dimer by engineering of disulfide cysteine mutants (Fig. 3-S2), which suggests that $I l \mathrm{CysZ}$ can adopt both of the dimer assemblies observed in the PdCysZ hexamer. Thus, we hypothesize that CysZ is a hexamer in nature, as observed in PdCysZ, and that in the case of $I l \mathrm{CysZ}$ and $P f \mathrm{CysZ}$, this assembly may have come apart into the subsequently crystallized dimeric components during the process of detergent extraction from the membrane and purification. This could be explained by the unusually labile, and conformationally-flexible, nature of the H4b-H5a helical hairpin of CysZ, with only one pair of stabilizing TM helices per protomer (H2-H3). We presume that the hexamer is maintained with the support and scaffolding of the lipid bilayer.

CysZ shows a clear dual topology arrangement, which we confirmed with cross-linking experiments on membranes (Fig. 3-S2). Dual-topology insertion is fairly uncommon in membrane proteins; however, reported cases include the well-documented EmrE, a multi-drug resistant export protein that inserts into the membrane as an anti-parallel dimer, and the more recently discovered and studied family of double-barreled 'Fluc' fluoride channels (Amadi,

Koteiche, Mishra, \& McHaourab, 2010; Korkhov \& Tate, 2009; Rapp, Granseth, Seppala, \& von Heijne, 2006; Stockbridge et al., 2015; Stockbridge, Robertson, Kolmakova-Partensky, \& Miller, 2013).

Functional characterizations of the three CysZs for which we have obtained structural information show that all three mediate $\mathrm{SO}_{4}{ }^{2-}$ uptake and that this uptake is inhibited by $\mathrm{SO}_{3}{ }^{2-}$, for which the protein has higher affinity. Comparable results were obtained in cell-based as well as in proteoliposome-based uptake assays (Fig. 4b, d, 4-S1a). Affinities for $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{SO}_{3}{ }^{2-}$ were measured by SPA (Fig. 4c). These results are consistent with previously reported data on E. coli CysZ (Zhang et al., 2014). Experiments performed on cells with uncoupling agents (Fig. 4-S1b) showed that CysZ-mediated $\mathrm{SO}_{4}{ }^{2-}$ uptake was independent of a classical electrochemical gradient, thus suggestive of the driving force being a concentration gradient of $\mathrm{SO}_{4}{ }^{2-}$ across the membrane. This hypothesis is supported by our single-channel bilayer experiments performed with PdCysZ and IlCysZ, which show that CysZ has channel-like properties (Fig. 4-S2).

Building on our functional and structural discoveries, our results suggest a fascinating hypothesis for mechanisms of $\mathrm{SO}_{4}{ }^{2-}$ transfer and regulation. There is a conserved central core (Fig. 6a), which is likely to have a structural role. Close to this lies a sulfate-binding site, with functional implications (Fig. 5a), and the entrance to a putative pore (Fig. 5c). The entrance of this putative pore is delineated by a hydrophilic network of conserved residues that form a tight constriction in our observed conformation. Following this hypothetical route, sulfate ions that might enter through the three separate pores, one per CysZ dimer pair, would converge into a central hydrophobic cavity (Fig. 7b, 7-S1c, d). Once sulfate ions enter this central cavity, due to the
unfavorable environment, these are likely to exit it rather rapidly through one of the three available exit pores on the cytoplasmic side of the hexamer. Hydrophobic cavities and pores are seen commonly in ion channels, with examples ranging from the well documented hydrophobic inner pores of the various potassium channels (Doyle et al., 1998) to the SLAC1 (Chen et al., 2010) and bestrophin anion channels (Yang et al., 2014), and the MscS and MscL mechanosensitive channels (Anishkin, Akitake, Kamaraju, Chiang, \& Sukharev, 2010; Bass, Strop, Barclay, \& Rees, 2002; Birkner, Poolman, \& Kocer, 2012; Chen et al., 2010; Doyle et al., 1998), facilitating the rapid passage of ions due to the unfavorable environment, as well as potentially providing a means of 'hydrophobic gating' (Aryal, Sansom, \& Tucker, 2015).

The surface electrostatics of CysZ (Fig. 1b and Fig. 6c, d) draw attention to the negative potential of the conserved core of each protomer, which is then surrounded by a more neutral annulus. While this feature seems contradictory to admission of $\mathrm{SO}_{4}{ }^{2-}$ ions at the extracellular side, it could be advantageous for expulsion into the cytoplasm on the opposite side. In any case, the structures that we have determined are evidently in a closed state, implying that a conformational change would have to occur to allow passage of $\mathrm{SO}_{4}{ }^{2-}$, likely modifying the surface electrostatics of the protein. It is tempting to speculate that the regulation of the opening of the pore could be modulated by the binding of sulfate ions to the identified sulfate-binding site, as it is near the entrance of the putative pore. L22 lies in proximity of the entrance of the putative pore, and its backbone amide (along with G21) coordinates the sulfate ion in the GLR motif of the sulfate-binding site. Thus, the binding of sulfate to the GLR motif could trigger a conformational change needed to displace L22, allowing for a wider opening for the sulfate ions
to enter the pore. Sulfite could hypothetically exert its inhibitory effect on CysZ function by binding to this site.

There is an overall electropositive region in the center of the hexameric molecule, when viewed from the top (Fig. 1b, 6c, d). This central region is lined by conserved residues along helices H4b-H5a, namely, R129, R133 and K137. The hydrophobic tips of helices H4b-H5a of the three protomers on each side of the membrane then converge in the center of the hexamer. A pore through the three-fold axis of the hexamer could provide an alternative passageway for $\mathrm{SO}_{4}{ }^{2-}$ ions through this assembly. Although we cannot exclude it, this possibility seems less plausible because of the poor conservation at the tips of helices H4b-H5a and the strictly hydrophobic nature of this region.

We observe, in agreement with previous data, that $\mathrm{SO}_{3}{ }^{2-}$ inhibits CysZ-mediated $\mathrm{SO}_{4}{ }^{2-}$ flux (Fig. 4b, d, 4-S2a, f) (Zhang et al., 2014). The dual topology nature of CysZ could provide a means for internal as well as external regulation. However, experiments in solutions - such as crystallizations - where all molecules are exposed to the same chemical environment, makes capturing such a state in an open or $\mathrm{SO}_{3}{ }^{2-}$ blocked conformation challenging. Despite this limitation, our CysZ structures and associated functional experiments have allowed us to make substantial progress in the understanding $\mathrm{SO}_{4}{ }^{2-}$ uptake by these membrane permeases. This work sets the framework for future experiments aimed at unraveling the molecular details of how $\mathrm{SO}_{4}{ }^{2-}$ is translocated across the membrane by CysZ and how this process is regulated.

PDB Accession codes: Idiomarina loiheinsis CysZ: 3TX3, Pseudomonas fragi CysZ: TBD, Pseudomonas denitrificans CysZ: TBD.

Materials and Methods

Ortholog selection and cloning

A total of 63 cys Z candidate genes were selected by a bioinformatics approach implemented by the New York Consortium of Membrane Protein Structure (NYCOMPS), as previously described (Punta et al., 2009). The majority of the genes (including IlCysZ, uniprot ID: Q5QUJ8) were PCR-amplified from fully sequenced prokaryotic genomic DNA (obtained from ATCC ${ }^{\circledR}$) (Love et al., 2010). CysZ genes from certain species, such as PfCysZ (uniprot ID: A0A0X8F058) and $P d$ CysZ (uniprot ID: M4XKU7) were chemically synthesized by GenScript ${ }^{\circledR}$, with codonoptimization for protein expression. All genes were cloned by ligation-independent cloning (LIC) (Aslanidis \& de Jong, 1990) into an IPTG (isopropyl β-D-1-thiogalactopyranoside) inducible, kanamycin-resistant pET derived plasmid (Novagen), with an N-terminal decahistidine tag (His10) and a TEV (tobacco etch virus) protease site to allow for tag cleavage upon purification.

Protein expression and purification

Expression plasmids bearing the cysZ genes were transformed into BL21(DE3)pLysS cells using standard protocols, and grown at $37^{\circ} \mathrm{C}$ in 2 XYT media supplemented with $50 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin and $50 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol in an orbital shaker at 250 rpm . Protein expression was induced for ~ 16 hours at $22{ }^{\circ} \mathrm{C}$ with 0.2 mM IPTG once an absorbance $\left(\mathrm{A}_{600 \mathrm{~nm}}\right)$ of $0.8-1.0$ was reached.

Selenomethione (Se-Met)-incorporated proteins were expressed in BL21(DE3)pLysS cells grown using an M9 minimal media kit (Shanghai Medicilon Inc.) supplemented with the necessary minerals, vitamins and non-inhibitory amino acids. Se-Met was added prior to IPTG induction at an $\mathrm{A}_{600 \mathrm{~nm}}$ of 1.2. The Se-Met-incorporated protein was purified using the same procedures as the native protein. Once harvested, the cells were resuspended at $0.2 \mathrm{~g} / \mathrm{ml}$ in lysis buffer containing 20 mM Na-Hepes pH 7.5, $200 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ MgSO4, DNase I and RNase A, 0.5 mM PMSF (phenylmethylsulfonyl fluoride), EDTA-free Complete protease inhibitor cocktail (Roche) and 1 mM TCEP-HCl (Tris (2-carboxyethyl) phosphine hydrochloride) as a reducing agent. Initial small-scale expression and detergent screening was performed on 80 mg of pelleted cells (wet weight), and 7-10 g of cells for large-scale protein purification. Cells were lysed using an Avestin ${ }^{\circledR}$ EmusiFlex-C3 homogenizer, followed by protein solubilization with 1% (w/v) decyl maltopyranoside (DM) (Anatrace ${ }^{\circledR}$ Affymetrix) for 1 hour at $4{ }^{\circ} \mathrm{C}$, after-which insoluble material was removed by ultra-centrifugation at $100,000 \mathrm{xg}$. The solubilized protein was applied to Ni-NTA Sepharose (Qiagen) in batch, washed with lysis buffer containing 0.2\% DM and 40 mM imidazole and eluted in buffer containing 250 mM imidazole. Upon elution, CysZ was dialyzed overnight with His-tagged TEV protease at $4^{\circ} \mathrm{C}$, against a buffer containing 20 mM Na -Hepes $\mathrm{pH} 7.0,200 \mathrm{mM} \mathrm{NaCl}, 0.2 \% \mathrm{DM}, 1 \mathrm{mM}$ TCEP-HCl and 20 mM Na2SO4, allowing for the cleavage of the His10 tag and removal of the imidazole. Tagless CysZ was then re-passaged over Ni-NTA sepharose to re-bind of any uncleaved CysZ, TEV protease and the cleaved His10 tag. The protein was then subjected to size-exclusion chromatography (Superdex $20010 / 30 \mathrm{HR}$, GE Healthcare) in $20 \mathrm{mM} \mathrm{Na-Hepes} \mathrm{pH} 7.0,200 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ TCEP-HCl, 20 mM Na 2SO4 and appropriate detergent for crystallization, for IlCysZ: 0.06% Lauryl dimethylamine oxide (LDAO) and for PfCysZ and PdCysZ: $1 \% \beta$-octyl glucopyranoside (β -

OG). The choice of detergent was made based on protein yield, stability and mono-disperse gelfiltration peaks obtained in the initial small-scale detergent screening. A yield of $\sim 1.5 \mathrm{mg}$ of purified CysZ was typically obtained from a cell pellet of 7-8 grams (1 liter of culture).

Protein Crystallization

IlCysZ: Crystals of IlCysZ in LDAO were obtained by vapor diffusion at a protein concentration of $6-8 \mathrm{mg} / \mathrm{ml}$ at $4^{\circ} \mathrm{C}$, in a $1: 1 \mathrm{v} / \mathrm{v}$ ratio against a precipitant of $28-32 \%$ PEG400, 0.1 M Tris- HCl pH 8.0 , with salt additive of 0.1 M NaCl or $0.1 \mathrm{M} \mathrm{MgCl}_{2}$. The crystals appeared overnight, continued to grow in size over the course of 2-4 days after set-up. After optimization, the crystals grew to a maximum size of $\sim 200 \mu \mathrm{~m} \times 100 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$ with a rhomboid or cuboid shape. The crystals were harvested directly without the addition of a cryo-protectant and flash-frozen into liquid nitrogen, for data collection on the $\mathrm{X} 4 \mathrm{~A} / \mathrm{X} 4 \mathrm{C}$ beamlines at National Synchrotron Light Source (NSLS), Brookhaven National Labs (Upton, NY). SeMet derivatized and selenate cocrystals were obtained from the same conditions as the native crystals.

PfCysZ: Crystals of PfCysZ in $\beta-\mathrm{OG}$ at $5 \mathrm{mg} / \mathrm{ml}$ were initially obtained at $4{ }^{\circ} \mathrm{C}$ by vapor diffusion, in a 1:1 protein to precipitant ratio, after 1-2 days against 28% PEG400, 0.1 M MES pH 6.0. They were cuboid in shape and grew in clusters of multiple crystals originating from a common locus. The crystals were optimized to a maximal size of $\sim 150-200 \mu \mathrm{~m} \times 50 \mu \mathrm{~m} \times 50$ $\mu \mathrm{m}$, with the best diffracting crystals grown under silicone oil (visc. 500) in microbatch Terazaki plates. Crystals were directly flash-frozen into liquid nitrogen without the use of a cryoprotectant and were exposed to X-rays at the NE-CAT (241DC and E) beamlines at APS, Argonne National Lab (Argonne, IL) for data collection. SeMet crystals were obtained from the same conditions as the native protein.

PdCysZ: Crystals of $P d$ CysZ in $\beta-\mathrm{OG}$ at $5-8 \mathrm{mg} / \mathrm{ml}$ were initially obtained at $4^{\circ} \mathrm{C}$ by vapor diffusion, in a 1:1 protein to precipitant ratio, after 2-3 days against 22-30\% PEG550MME, 0.1 M Na-Hepes pH 7.0. The rod-like crystals were hexagonal on one face, and grew in clusters originating from a common locus as well as on the edge of the drop. The multiple crystal forms observed were all obtained in the same crystallization conditions. The crystals were optimized to a maximal size of $\sim 200-250 \mu \mathrm{~m} \times 25 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$. With the addition of 20% glycerol (w/v) as a cryo-protectant, the crystals were flash-frozen into liquid nitrogen and were exposed to X-rays at the NE-CAT (24-IDC and 24-IDE) beamlines at APS, Argonne National Lab (Argonne, IL) for data collection.

Data collection and structure determination

IlCysZ: The structure of CysZ was determined by the single-wavelength anomalous diffraction (SAD) method from anomalous diffraction of a selenate $\left(\mathrm{SeO}_{4}{ }^{2-}\right)$ derivative crystal. The anomalous signals were measured at the Se K-edge peak wavelength, which was determined experimentally from fluorescence scanning of the crystal prior to data collection. All diffraction data were recorded at 100 K using an ADSC Q4R CCD detector at the NSLS X4 beamline. Diffraction data were indexed, integrated, scaled, and merged by HKL2000 (Otwinowski \& Minor, 1997). Selenate substructure determination was performed with the SHELXD program through HKL2MAP (Pape \& Schneider, 2004). A resolution cut-off at $2.6 \AA$ was used for finding Se sites by SHELXD. A strong peak found by SHELXD was used to calculate initial SAD phases, which were improved by density modification by SHELXE (Sheldrick, 2010). With a solvent content of 65% corresponding to 2 molecules in the asymmetric unit, 50 cycles of density modification resulted in an electron density map of sufficient quality for model building. The initial polypeptide chain was built by Arp/Warp (Langer, Cohen, Lamzin, \& Perrakis, 2008),
at $2.1 \AA$ by using experimental phases. Further cycles of model building were performed manually using COOT (Emsley, Lohkamp, Scott, \& Cowtan, 2010) and all rounds of refinements were performed with PHENIX (Adams et al., 2010). The native structure of CysZ with bound sulfate was determined both by multi-crystal native SAD (Liu et al., 2012) (final resolution of $2.3 \AA$) and by molecular replacement with the selenate bound model (final resolution of $2.1 \AA$). In addition, phase information obtained from $\mathrm{Se}-\mathrm{Met}$ derivatized protein with 9 Se sites per CysZ molecule, verified our model obtained from the selenate data.

PfCysZ: Multi-crystal SeMet-SAD data sets were collected at APS beamline 24-IDC with a Pilatus 6 M pixel array detector under a cryogenic temperature of 100 K . To enhance anomalous signals from Se atoms for phasing (Liu, Zhang, \& Hendrickson, 2011), the X-ray wavelength was tuned to the $\operatorname{Se}-\mathrm{K}$ edge $(\lambda=0.9789 \AA$). The orientation of crystals was random without special consideration of crystal alignment, and beam size was adjusted to match the crystal size. A total of 22 data sets were collected, each from a single crystal. An oscillation angle of 1° was used for data collection with a total of 360 frames for each data set. The beam size was adjusted to match the crystal size. The 22 single-crystal data sets were processed individually by using XDS (Kabsch, 2010) and CCP4 packages (Winn et al., 2011). For phasing purposes, the lowresolution anomalous signals were enhanced by increased multiplicity. By rejection of 7 outlier crystals (Liu et al., 2012), anomalous diffraction data from 15 statistically-compatible crystals were scaled and merged for phasing. For outlier rejection, a unit-cell variation of 1.0σ was used. CCP4 program POINTLESS and SCALA (Evans, 2006) were used for data combining; and Bijvoet pairs were kept separately throughout the data flow. For refinement purposes, keeping the high angle data was important, and done by limiting radiation damage as well as by
increasing multiplicity. Although most PfCysZ crystals diffracted to only about $3.5 \AA$ spacings or poorer, we intentionally set the detector distance to include higher spacings. Higher resolution data were retained through a data merging procedure that is described as follows: 1) The 22 individually processed data sets were analyzed by diffraction dissimilarity analysis by using only high angle data between 3.5-3.0 \AA, resulting in three subsets. 2) The data statistics of members in each subset were checked manually and the subset that contained the highest angle data set, e.g. data set 6 , was selected for further analyses and data combination. 3) Each data set within the selected subset was compared with data set 6 by high-angle intensity correlation. Six of the highest resolution data sets were statistically comparable and therefore were selected for merging. For phasing, substructure solutions were found by SHELXD (Sheldrick, 2010) and were further refined and completed by PHASER (McCoy et al., 2007) and then used to compute initial SAD phases at the data limit by SAD phasing with PHENIX (Adams et al., 2010). Phases were density modified with solvent flattening and histogram matching as implemented in CCP4 program DM (Cowtan \& Zhang, 1999) to improve phases and also to break phase ambiguity. The estimated solvent contents of 71% were used for density modification. The model was initially built into the experimental electron density map by COOT (Emsley et al., 2010), followed by iterative refinement by PHENIX and model building in COOT. The refined model does not contain solvent molecules at this resolution.

PdCysZ:

Native crystal data were collected at the APS beamline 24 -IDC with a Pilatus 6 M pixel array detector at a cryogenic temperature of 100 K at an X-ray wavelength of $\lambda=1.023 \AA$. The sample-to-detector distance was set to 500 mm . An oscillation angle of 0.5° was used for data collection.

The beam size was adjusted to match the crystal size. Molecular replacement was attempted using a variety of search models (PfCysZ and IlCysZ monomer/dimer models, with various degrees of truncation). Success was achieved by searching for six copies of a search model consisting of the PfCysZ monomer, with residues 36-53 deleted and the sequence adjusted using CHAINSAW (Stein, 2008) (pruning non-conserved residues to the gamma carbon). Density modification of the initial map was performed in PARROT, incorporating solvent flattening, histogram matching and NCS-averaging. An initial round of model building was performed in COOT (Emsley et al., 2010) into this map, followed by further phase improvement and biasremoval using phenix.prime_and_switch (Adams et al., 2010). The improved map was used for a second round of model building, followed by iterative cycles of reciprocal space refinement using phenix.refine, and real-space refinement and correction in COOT.

All graphical representations and figures of our structural models were made in either PyMOL (Schrodinger, 2010) or Chimera (Pettersen et al., 2004).

Radioligand Binding by Scintillation Proximity Assay (SPA)

CysZ was purified by standard protocols as described above, with the exception of leaving the histidine-tag intact without cleavage by the TEV protease. The imidazole was removed by dialysis and the purified protein was not run over the size exclusion column, and instead was directly concentrated to $2 \mathrm{mg} / \mathrm{ml}$ for the SPA experiment. [${ }^{35} \mathrm{~S}^{3} \mathrm{O}_{4}{ }^{2-}$ obtained in the form of sulfuric acid (American Radiolabeled Chemicals (ARC)) was used as the radioligand. $100 \mathrm{ng}-$ 250 ng of CysZ was used per assay point, diluted in $100 \mu \mathrm{l}$ of assay buffer containing 20 mM Hepes pH 7.0, $200 \mathrm{mM} \mathrm{NaCl}, 0.2 \% \mathrm{DeM}, 20 \%$ glycerol, 0.5 mM TCEP, with $12.5 \mu \mathrm{l}$ of Copper YSi beads (Perkin Elmer). A trace amount of $\left[{ }^{35} \mathrm{~S}^{5} \mathrm{O}_{4}{ }^{2-}(\sim 10-30 \mathrm{nM})\right.$ mixed with cold ligand
$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ was added to each well of a 96 well clear bottom plate along with the mix of protein, buffer and beads. The plate was agitated for a minimum of 30 minutes to as long as overnight, and measured in a scintillation counter the following morning (MicroBeta, Perkin Elmer). Competitive binding experiments with a gradient of a competing cold ligand ranging from (10 $\mathrm{nM}-100 \mathrm{mM}$) were performed in triplicate, with the control measured at each concentration by adding 1 M Imidazole to the reaction buffer, to prevent binding of the protein to the scintillation beads. All data were analyzed and graphically represented with GraphPad ${ }^{\text {TM }}$ Prism6 software.

$\left[{ }^{35} \mathrm{~S}^{-} \mathrm{O}_{4}{ }^{2-}\right.$ Uptake Experiments

In whole cells: The cysZ gene knockout strain in E. coli K-12 was obtained from the Coli Genetic Stock Center at Yale University (http://cgsc.biology.yale.edu/), originally found in the Keio knockout collection (Baba et al., 2006). Genotype: F-, Δ (araD-araB)567, Δ lacZ4787(::rrnB-3), $\lambda-, \Delta$ cysZ742::kan,rph-1, $\Delta($ rhaD- rhaB $) 568$, hsdR514. The knockout strain was made competent by standard protocols (Hanahan, 1983) to allow for the transformation and expression of cysZ-containing plasmids, for rescue experiments. Wild-type parental E. coli K-12 was used as a control strain. The strains were grown in LB (Luria Broth) without any antibiotic (for the WT cells) and with $50 \mu \mathrm{~g} / \mathrm{ml}$ of kanamycin for the knockout cells at $37{ }^{\circ} \mathrm{C}$ overnight to saturation. The culture was spun down at 3000 xg the next morning and the cells were resuspended in Davis-Mingioli (DM) minimal media without sulfate $\left(\mathrm{MgSO}_{4}\right.$ was replaced with MgCl_{2} and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ was replaced by $\mathrm{NH}_{4} \mathrm{Cl}$), supplemented with 0.63 mM L cysteine to allow the cells to grow in the absence of sulfate (Davis \& Mingioli, 1950). The cells were incubated in DM media for a minimum of 9 hours, maximum overnight, at $37^{\circ} \mathrm{C}$ after which they were spun down and washed 3 times in 5 mM Na -Hepes pH 7.0 . This ensured that
the cells were starved of SO_{4}, to deplete the sulfate stores in the cell, enhancing sulfate uptake measured (F. Parra, personal communication). The cells were resuspended in the same buffer at $0.7 \mathrm{~g} / \mathrm{ml}$ at room temperature, and $10 \mu \mathrm{l}$ of the cell suspension was used for each point in the uptake experiment. A final concentration of $320 \mu \mathrm{M}$ of $\mathrm{SO}_{4}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$ with $\left[{ }^{35} \mathrm{~S}^{3} \mathrm{O}_{4}{ }^{2-}\right.$ as a tracer $)$ was used outside. The uptake experiments were performed in triplicate, measured over a time course of typically $0-300$ seconds. The reaction was stopped by dilution, by adding 1.5 ml of ice-cold buffer (5 mM Na -Hepes pH 7.0) to the cells in the tube. The reaction mix was immediately poured onto a vacuum filtration device, with an individual glass-fiber filter (0.75 $\mu \mathrm{m}, \mathrm{GF} / \mathrm{F}$) per assay point, after which the filters are washed once more with 1.5 ml of buffer. The dry filters, with the cells attached to their surface, were then moved to scintillation vials, containing 4 ml of EconoSafe ${ }^{\circledR}$ scintillation cocktail, to be counted the next morning. For the CysZ cell rescue experiments, a similar protocol was used, transformed with an ampicillin resistant expression vector containing the CysZ gene, mutant or empty vector (as the control). Upon transformation, the cells were grown overnight in a 4 ml starter culture of LB with 50 $\mu \mathrm{g} / \mathrm{ml}$ kanamycin and $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin. The next morning the entire 4 ml was used to inoculate 75 ml of LB (Kan, Amp), and grown at $37^{\circ} \mathrm{C}$ for $2.5-3$ hours until an OD_{600} of $0.6-0.8$ was reached. Protein expression was then induced at $37^{\circ} \mathrm{C}$ for 4 hrs with 0.2 mM IPTG. After 4 hrs , the cells were spun down and resuspended in the DM minimal media without sulfate, 0.63 mM cysteine, Amp, Kan and 0.2 mM IPTG, and incubated overnight at $22^{\circ} \mathrm{C}$. The next morning the cells were spun down, washed 3 times with 5 mM Na -Hepes 7.0 and resuspended at final concentration of $0.7 \mathrm{~g} / \mathrm{ml}$ for uptake.

In proteoliposomes: CysZ was purified by the procedure described above, and upon elution from the size-exclusion column concentrated to $1 \mathrm{mg} / \mathrm{ml}$ for reconstitution into liposomes at a protein
to lipid ratio of 1:100. The liposomes were comprised of a $3: 1$ ratio of E. coli polar lipids and phosphatidylcholine (PC) (Avanti Polar Lipids), prepared by previously described methods (Rigaud, Pitard, \& Levy, 1995). Typically, $10 \mu \mathrm{l}$ of CysZ-proteoliposomes and control 'empty' liposomes at a concentration of $5-10 \mathrm{mg} / \mathrm{ml}$, were used per assay point and diluted into a reaction buffer of 100μ l, containing $\left[{ }^{35} \mathrm{~S}^{2} \mathrm{O}_{4}{ }^{2-}\right.$ (at trace amounts of $\sim 10-15 \mathrm{nM}$) supplemented with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ at the desired concentration. The experiment was performed in triplicate and sulfate accumulation was measured either over a time-course or at a fixed time with different amounts of $\mathrm{SO}_{4}{ }^{2-}$ or $\mathrm{SO}_{3}{ }^{2-}$ present. The reaction was stopped by dilution, by adding 1.5 ml of ice-cold buffer (5 mM Na -Hepes pH 7.0) to the cells in the tube. The reaction mix was immediately poured onto a vacuum filtration device, with an individual nitrocellulose filter $(0.22 \mu \mathrm{~m})$ per assay point, after which the filters are washed once more with 1.5 ml of buffer. The dry filters, with the cells attached to their surface, were then moved to scintillation vials, containing 4 ml of EconoSafe ${ }^{\circledR}$ scintillation cocktail, to be counted the next morning.

Measurement of CysZ single-channel activity in the planar lipid bilayer

A previously described method (Mueller, Rudin, Tien, \& Wescott, 1962) to insert ion channels incorporated in liposomes into "painted" planar lipid bilayers by vesicle fusion was used to incorporate CysZ into a lipid bilayer created on a small aperture between two aqueous compartments, called the cis and trans compartments (Morera, Vargas, Gonzalez, Rosenmann, \& Latorre, 2007). Since this system is very sensitive to contaminants, CysZ was expressed in and purified from a porin- deficient strain of E. coli cells to prevent any carry through of contaminating porins that could create large conductances and artifacts in the single-channel recordings. Phosphatidylethanolamine (PE) and phosphatidylserine (PS) (Avanti Polar Lipids), in a ratio of 1:1 were dissolved in chloroform to mix, and dried completely under an argon
stream. The mixed and dried lipids were then dissolved in n-decane to a final concentration of 50 $\mu \mathrm{g} / \mathrm{ml}$, and kept at $4^{\circ} \mathrm{C}$. The lipids are always prepared fresh, on the same day of the experiment. The purified CysZ protein were incorporated into PE:PS (1:1) liposomes by brief sonication at 80 kHz for 1 minute at $4{ }^{\circ} \mathrm{C}$. The experimental apparatus consisted of two $1-\mathrm{ml}$ buffer chambers separated by a Teflon film that contains a single $20-$ to $50-\mu \mathrm{m}$ hole. A lipid bilayer was formed by "painting" the hole with the 1:1 mixture of PE:PS, this results in a seal between the two cups formed by the lipids (Leal-Pinto, London, Knorr, \& Abramson, 1995). For these studies, the cis side was defined as the chamber connected to the voltage-holding electrode and all voltages are referenced to the trans (ground) chamber. Stability of the bilayer was determined by clamping voltage at various levels. If a resistance $>100 \Omega$ and noise $<0.2 \mathrm{pA}$ were maintained in the patch, the proteoliposomes containing CysZ were added to the trans side of the chamber and stirred for 1 min . The fusion event or insertion of a channel into the bilayer was assessed by the presence of clear transitions from 0 current to an open state.

Site-specific cysteine labeling experiments

All functional and cysteine mutants of CysZ were generated by site-directed mutagenesis, using the QuikChange® site-directed mutagenesis kit (Strategene). The sequence-verified mutants were then tested for expression in comparison to the WT CysZ. To address the membrane topology of $I l \mathrm{CysZ}$, single cysteine mutants were designed to perform site-directed fluorescence labeling based on the accessibility of the cysteine to the membrane impermeable thiol-directed fluorescent probe (Ye, Jia, Jung, \& Maloney, 2001). A set of surface-exposed residues at different positions on the CysZ molecule were selected to be mutated to cysteines, based on the IlCysZ structure. The cysteine mutants were expressed by standard protocols that were used for
the WT protein. The membrane fraction of each mutant was pelleted after cell lysis by ultracentrifugation at $100,000 \mathrm{xg}$ and resuspended at $20 \mathrm{mg} / \mathrm{ml}$ (Bradford assay) in fresh buffer containing $20 \mathrm{mM} \mathrm{Na}-$ Hepes $\mathrm{pH} 7.0,200 \mathrm{mM} \mathrm{NaCl}$, protease inhibitors: 0.5 mM PMSF and Complete protease inhibitor cocktail EDTA-free and 1 mM TCEP-HCl. 1 ml of membranes were then incubated with $30 \mu \mathrm{M}$ membrane-impermeant fluorescein-5-maleimide dye (Invitrogen, 2 mM stock freshly prepared in water, protected from light) for 30 minutes in the dark at room temperature. The labeling reaction was stopped by the addition of $6 \mathrm{mM} \beta$-mercaptoethanol, and the membranes were spun down and resuspended in fresh buffer to remove any remaining unreacted fluorescent dye. The fluorescently labeled protein was then purified from the membranes by solubilization with 1% DM, using a standard Ni-NTA purification protocol, qualitatively analyzed on an SDS-PAGE, and quantitatively measured by a Tecan ${ }^{\circledR}$ fluorescence plate reader at an excitation of 495 nm , emission of 535 nm .

Crosslinking of Cysteine Mutant Pairs in CysZ

Cysteine mutants of PfCysZ and $I l$ CysZ were designed based on pairs of residues that were in close proximity (within $3-7 \AA$) of each other in our structure that could have the ability to covalently join the 2 protomers of the dimer. The single and double cysteine mutants were made by site-directed mutagenesis using the QuikChange ${ }^{\circledR}$ Site-Directed Mutagenesis Kit (Strategene). Mutants and WT were expressed using the standard protocols CysZ expression. Isolated membrane fraction was resuspended by homogenization in fresh lysis buffer at a membrane protein concentration of $\sim 25 \mathrm{mg} / \mathrm{ml}$ (measured by Bradford Assay). Bismethanethiosulfonate (Bis-MTS) crosslinkers (Santa Cruz Biotechnolgies) of different spacer lengths were used at 0.5 mM (dissolved in DMSO) added to 1 ml of resuspended membranes at

RT for 1 hour. Bis-MTS crosslinkers are membrane permeable, highly reactive and specific to sulfhydryl groups, and the covalent linkage is resistant to reducing agents like β-mercaptoethanol (Akabas, Stauffer, Xu, \& Karlin, 1992). The crosslinking lengths used were: 1,1-Methanediyl Bismethanethiosulfonate (3.6 A), 1,2- Ethanediyl Bismethanethiosulfonate ($5.2 \AA$), 1,4Butanediyl Bismethanethiosulfonate (7.8 \AA) and 1,6-Hexanediyl Bismethanethiosulfonate (10.4 \AA). The reaction was quenched by the addition of 10 mM free cysteine, and the protein was then extracted and purified from the membranes with 1% DM followed by Ni-NTA resin. The imidazole is then diluted out in the Ni-elute, and the His-tag is cut with TEV protease in small scale. The cleaved protein is passaged over Ni-NTA resin to remove contaminants and uncleaved protein, and flowthrough is run on a reducing SDS- PAGE and stained with Coomassie blue to analyze dimer formation. The mutants designed were L161C (single mutant), L161C-A164C and N160C-L168C (double mutants) for PfCysZ; and L156C-Q163C and V157C-Q163C (double mutants) for $I l C y s Z$.

Acknowledgments:

Crystallographic data for this study were collected on the NSLS beamline X4A at Brookhaven National Laboratory and on the NE-CAT beamlines 24ID-C and E (supported by NIH-NIGMS grant P41 GM103403) at the Advanced Photon Source. The Pilatus 6M detector on 24-ID-C beam line is funded by a NIH-ORIP HEI grant (S10 RR029205). This work was supported by NIH-NIGMS grants R01 GM098617 (F.M.) and R01 GM107462 (W.A.H.), and by grants through the New York Structural Biology Center for the New York Consortium on Membrane Protein Structure (NYCOMPS; U54 GM095315) and for the Center on Membrane Protein Production and Analysis (COMPPÅ; P41 GM116799). O.B.C. was supported by a Charles H.

Revson Senior Fellowship. We thank John Schwanof for assistance during data collection at NSLS, Joe Mindell, Francisco Parra, Albano Meli, Giuliano Sciara and Carlos A Villalba Galea for helpful advice and contributions at the early stages of the project, and Leora Hamberger for her assistance managing the Mancia Lab.

Declaration of Competing Interests:

The authors declare that they have no financial or non-financial competing interests.

Figures and Tables:

Table 1: Crystallographic data and refinement statistics.

Data collection	Native IlCysZ	$\begin{aligned} & \hline \mathrm{IlCysZ} \\ & w / \mathrm{SeO}_{4}^{2-} \\ & (\mathrm{SAD}) \end{aligned}$	SeMet PfCysZ (6 crystals, refinement)	SeMet PfCysZ (15 crystals, SAD)	Native PdCysZ (MR-SAD)
Beamline	NSLS X4A	NSLS X4A/C	APS 24-ID-E	APS 24-ID-C	APS 24-ID-C
Space group	C2	C2	C2	C2	$\mathrm{P6}_{3}$
Cell dimensions: a, b, c (\AA)	$\begin{aligned} & 128.9,82.0, \\ & 100.4 \end{aligned}$	128.9, 81.9, 100.3	172.29, 56.9, 96.17	172.35, 56.9, 96.31	$\begin{aligned} & 225.13,225.13, \\ & 96.62 \end{aligned}$
$\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}\left({ }^{\circ}\right)$	90, 125.1, 90	90, 125.1, 90	90, 91.43, 90	90, 91.33, 90	90, 90, 120
$\mathbf{Z}_{\text {a }}$	2	2	2	2	6
Wavelength	1.7432	0.96789	0.97890	0.97890	1.0230
Bragg spacings (A $^{\text {) }}$	30-2.30	50-2.10	40-3.20	40-3.50	86-3.40
$\mathbf{R}_{\text {merge }}$	0.047 (0.257)	0.046 (0.417)	0.136 (6.506)	0.135 (2.13)	0.095 (2.89)
$\mathrm{I} / \mathrm{J}_{\text {I }}$	29.4 (7.9)	25.0 (1.9)	12.3 (0.7)	24.2 (2.6)	22.4 (1.2)
Completeness (\%)	99.9 (99.9)	99.9 (100.0)	99.8 (99.3)	99.9 (100.0)	100.0 (100.0)
Multiplicity	7.3 (7.2)	7.6 (7.6)	27.2	72.8	19.7
Refinement:					
Resolution (${ }_{\text {(}}$)	2.30		3.50		3.40
No. of reflections	38075		20741		37221
$\mathbf{R}_{\text {work }} / \mathbf{R}_{\text {free }}$	0.200/0.238		0.297/0.339		0.239/0.277
No. of atoms:					
Protein	3679		3428		11415
Ligand/ion	249		0		560
Water	162		0		0
Average B-factors ($\mathbf{H}^{\mathbf{2}}$)	49.4		198.9		204.18
Protein	48.4		198.9		204.18
Ligand/Ion	77.3		-		-
Water	45.3		-		-
Bond Ideality (r.m.s.d.):					
Bond lengths (A) Bond angles $\left({ }^{\circ}\right)$	0.006 0.894		0.006 1.133		0.96
Ramachandran					
Analysis:					
Favored (\%)	99.0				
PDB accession code	3TX3		TBD		TBD

Values in parentheses are from the highest resolution shell. $\mathrm{R}_{\text {free }}$ was calculated using 5% of data excluded from refinement.

Figure 1.

Fig. 1. Overall structure of the P. denitrificans CysZ (PdCysZ) hexamer. a. Side and top views of the hexamer as a ribbon diagram with each protomer chain colored differently. The approximate dimensions of the hexamer marked in \AA. b. Side and top views represented by surface electrostatics as calculated by APBS, with negative and positive surface potential represented in red and blue respectively. c. Side and top views representing conservation of residues as calculated by ConSurf, with maroon being most conserved to cyan being least conserved.

Figure 1 - Figure Supplement 1.

Fig. 1. S1. Schematic of assimilatory sulfate reduction in bacteria for cysteine biosynthesis. Assimilatory reduction is energetically dispendious as sulfate is extremely stable. In this pathway, sulfate ions enter the cell via a transporter or channel, like CysZ; this is followed by its activation by ATP-sulfurylase, which utilizes ATP to form adensosine phosphosulfate (APS) and inorganic pyrophosphate (PPi) as a by-product. APS is then further activated by the addition of a second phosphate forming phosphoadenosine phosphosulfate (PAPS) and this high-energy intermediate product is poised for sulfur removal to form sulfite $\left(\mathrm{SO}^{2-}\right)$ by the thioredoxin enzyme, which is then further reduced to sulfide ions $\left(\mathrm{S}^{-}\right)$. Sulfide, the final reduced sulfur product, can then be used in a variety of ways by the cell, such as the incorporation into O acetylserine to synthesize cysteine.

Figure 1 - Figure Supplement 2.

Fig. 1. S2. Representative electron density of the crystal structures of IICysZ, PfCysZ and PdCysZ, and the different crystal forms observed for PdCysZ. a. Representative electron density in blue mesh for: $I l \mathrm{CysZ}$, contoured at 1 x r.m.s.d., PfCysZ, contoured at 2 x r.m.s.d, with a negative B-factor of $-100 \AA^{2}$ applied to map; $P d$ CysZ, contoured at 1 x r.m.s.d, with a negative B-factor of $-100 \AA^{2}$ applied to map. Final atomic models ($\mathrm{C} \alpha$ trace with side chains depicted) are shown as yellow stick representation. b. Preliminary molecular replacement analyses of the 3 different crystal forms obtained for PdCysZ, showing the hexameric assembly of the molecule, seen in each case. The $\mathrm{C} \alpha$ trace of an asymmetric unit in each case is depicted in grey, with their symmetry mates are shown in yellow. Space group and unit cell dimensions are listed below.

Figure 2.

Fig. 2. Structure and topology diagram of PdCysZ protomer, with sequence alignment and conservation a. Ribbon diagram of the $P d \mathrm{CysZ}$ protomer colored in rainbow colors from N (blue) to C terminus (red), viewed from within the plane of the membrane, shown in the same orientation as the protomer drawn in green in Fig. 1a. b. Topology diagram of the PdCysZ protomer with helices marked from 1 to 8 . Helices H 2 b and H 3 a are transmembrane helices, whereas $\mathrm{H} 4-\mathrm{H} 5$ and $\mathrm{H} 7-\mathrm{H} 8$ are hemi-penetrating helical hairpins, only partially inserted into the
membrane. c. Sequence alignment of E. coli CysZ (EcCysZ), P. denitrificans CysZ (PdCysZ), P. fragi CysZ (PfCysZ), and I. loihiensis CysZ (IlCysZ). Residues are colored based on conservation, with maroon being most conserved and cyan least conserved, as calculated by ConSurf using a sequence alignment of 150 non-redundant sequences from the CysZ family as input. Spirals above residues mark the extent of the helical segments based on the atomic structure of $P d \mathrm{CysZ}$ with helices numbered $\mathrm{H} 1-\mathrm{H} 8$; letters mark residue identities; black dots above identify every tenth residue (modulo 10) in the $P d \mathrm{CysZ}$ sequence and black underlines mark functionally relevant motifs discussed in the text.

Figure 3.

Fig. 3. Structures of IICysZ and PfCysZ, with comparison to PdCysZ a. Ribbon diagram of the structure of CysZ from I. loihiensis (IlCysZ) at $2.3 \AA$. Protomers of the dimer are colored in salmon pink and teal blue, arranged in a head-to-tail conformation in the membrane, with helical hairpins H2-3 and H4-5 labeled for clarity. The dimer interface of IlCysZ involves H2-3. b. Ribbon diagram of the structure of CysZ from P. fragi (PfCysZ) at $3.2 \AA$. The protomers of the dual topology dimer in the membrane are colored gold and purple, with helical hairpins $\mathrm{H} 2-3$ and H4-5 again labeled. The dimer interface here involves the interaction of helices $\mathrm{H} 4-5$ of each protomer. c. Side and top views of the superposition of the three different protomers from $P d$ CysZ (green), $I l$ CysZ (pink) and PfCysZ (yellow) after aligning H1-H3. d, e. The same dimer interfaces observed in IlCysZ (a) and PfCysZ (b) observed in the hexameric assembly of $P d$ CysZ, as highlighted in green and blue (d) and green and orange (e). f. Schematic representation showing how three copies of the dimeric protomers of $I l C y s Z$ (green and blue,
left) and of PfCysZ (orange and green, center), can coexist in and each recapitulate the

Figure 3 - Figure Supplement 1.

Fig. 3. S1. Size-exclusion chromatography of CysZ shows a mono-disperse elution profile for each of the three species purified - PdCysZ, PfCyZ and IlCysZ. All three proteins were solubilized from isolated membrane fractions purified in the presence of 0.2% decyl maltopyranoside (DeM) and exchanged into buffer containing 1\% β-octyl glucopyranoside (β OG) on the size-exclusion column (Superdex 200 10/30 HR). A schematic of the oligomeric states observed in the three crystal structures of CysZ are shown below the elution profiles. Crystallization trials were set-up directly after the size-exclusion chromatography step. A shift of
$\sim 1 \mathrm{ml}$ was observed for the elution of $P d \mathrm{CysZ}$ (peak at 12.56 ml), with respect to $P f C y s Z$ and $I l \mathrm{CysZ}$, indicating that the size (volume) and shape of $P d \mathrm{CysZ}$ is significantly larger than the other two species. IlCysZ elutes at $13.42 \mathrm{ml}, 0.5 \mathrm{ml}$ ahead of PfCysZ, which could be explained by the shape of $I l \mathrm{CysZ}$, occupying more volume as compared to PfCysZ, with its helices (H4H5) pointing outward, away from the body of the dimer.

Figure 3 - Figure Supplement 2.

Fig. 3. S2. Surface electrostatics, hydrophobicity and site-directed fluorescence labeling of cysteine mutants located on H4 of IICysZ. a. A depiction of the surface electrostatic potentials of the $I l \mathrm{CysZ}$ dimer with negative surface potential represented in red, and positive potential in blue as calculated by APBS. b. Surface of IlCysZ rendered by level of hydrophicity, using the Kyte-Doolitle hydrophobicity scale with cyan being most polar, to orange being most hydrophobic, reveals a hydrophobic belt along the center of the dimer, suggesting the orientation of the dimer in the lipid bilayer. c, d. Single cysteine mutants were designed to be located along
the length of helix 4 of CysZ, to gauge the extent of its membrane insertion. The labeled protein was extracted from the membrane and purified after quenching the labeling reaction. Fluorescence intensity was measured and quantified by a Tecan fluorescence plate reader at an excitation of 485 nm and emission of 535 nm the results of which were plotted on the left, with error bars representing the standard deviation from the mean for $n=3$. The results show that of all the residues on the helix, only R132C (the top-most residue) was accessible to the fluorophore and hence exposed out of the membrane. d. Locations of the mutated residues on helix H 4 are marked on the model of IlCysZ in green. Crosslinking of L161C-A164C cysteine mutant of PfCysZ and IlCysZ exhibits dimer formation. e. A depiction of the surface electrostatic potentials of the PfCysZ dimer with negative surface potential represented in red, and positive potential in blue as calculated by APBS, highlights hydrophobic belt marking the orientation of the PfCysZ dimer in the membrane. f. Membrane orientation of PfCysZ predicted by OPM/PPM server shows its 31-degree tilt to the perpendicular, with a zoomed in view of the location of the cysteine mutants at the dimer interface, used for crosslinking of the dimer. g. h. Dimer formation by the crosslinking of PfCysZ (g) and IlCysZ (h) with introduced structure-based cysteine substitution mutations in the $\mathrm{H} 4-\mathrm{H} 5$ dimer interface. Analogous pairs of cysteine mutants from each species are shown here: PfCysZ L161C-A164C and IlCysZ L156C-Q163C and V157CQ163C. Sulfydryl specific Bis-MTS crosslinkers of a certain spacer length (in this case $5.2 \AA$) were used at 0.5 mM for 1 hour at room temperature to crosslink the protein. Experiment was performed on protein in the membrane, as well as on solubilized protein. WT protein (cysteineless) was used as a control. Proteins were purified after stopping the reaction, and run on an SDS PAGE with reducing dye, and stained with Coomassie blue.

Figure 4.

Fig. 4. Functional characterization of CysZ. a. Time course of $\left[{ }^{35} \mathrm{~S}^{2} \mathrm{O}_{4}{ }^{2-}\right.$ uptake $(320 \mu \mathrm{M})$ by cells of WT E. coli K12 (strain BW25113) and by CysZ ${ }^{-}$(strain JW2406-1) cells (n=3). b. Sulfite inhibition of sulfate uptake. Radiolabeled sulfate $\left(320 \mu \mathrm{M}\left[{ }^{35} \mathrm{~S}^{-} \mathrm{O}_{4}{ }^{2-}\right)\right.$ uptake is rescued in the same cys Z knockout strain by transformation with an expression vector for $P d \mathrm{CysZ}$ whereas the control cells were transformed with an empty vector. Sulfate uptake is inhibited by the addition of $10 \mathrm{mM} \mathrm{SO}_{3}{ }^{2-}(\mathrm{n}=3)$. c. Competitive binding of labeled sulfate in presence of unlabeled ligands. The inhibition of labeled sulfate ($7 \mathrm{nM}\left[{ }^{35} \mathrm{~S}\right] \mathrm{O}_{4}{ }^{2-}$) binding by non-labeled sulfate or
sulfite is measured by the scintillation proximity assay using purified $P d \operatorname{CysZ}(\mathrm{n}=3) . \operatorname{PdCysZ}$ binds $\mathrm{SO}_{4}{ }^{2-}$ with an $E C_{50}$ of $0.81 \pm 0.045 \mu \mathrm{M}$ and exhibits an $I C_{50}$ of $0.12 \pm 0.034 \mu \mathrm{M}$ for $\mathrm{SO}_{3}{ }^{-2}$. d. Radiolabeled sulfate $\left(10 \mu \mathrm{M}\left[{ }^{35} \mathrm{~S}^{2} \mathrm{O}_{4}{ }^{2-}\right)\right.$ accumulation into proteoliposomes reconstituted with detergent-purified $P d$ CysZ. Uptake into reconstituted proteoliposomes (open squares) is shown in comparison with control (empty) liposomes (solid discs). Uptake is inhibited by the presence of $0.1 \mathrm{mM} \mathrm{SO}_{3}{ }^{2-}(\mathrm{n}=3)$. Figure 4 - Figure Supplement 1.

Fig. 4. S1. a. Radiolabeled sulfate ($10 \mu \mathrm{M}\left[{ }^{35} \mathrm{~S}_{\mathrm{SO}}^{4}{ }^{2-}\right.$) accumulation is measured from detergent purified IICysZ and PfCysZ reconstituted in proteoliposomes, in comparison to the control (empty) liposomes. Sulfate-binding site alanine mutants (IlCysZ R27A/R28A and PfCysZ R25A) display a significantly diminished sulfate uptake capability. Error bars represent the standard deviation from the mean (SEM), for $n=3$. b. Effect of uncouplers and ionophores on the sulfate accumulation by CysZ. IlCysZ expressed in the E. coli knockout strain shows unchanged sulfate uptake levels in the presence of the uncouplers CCCP and oligomycin or the ionophores gramicidin and valinomycin. Sulfate accumulation was measured in triplicate at pH 7 and total accumulation was plotted after a 10 s incubation. Error bars were calculated by standard deviation from the mean, for $\mathrm{n}=3$.

Figure 4 - Figure Supplement 2.

Fig. 4. S2. Reconstitution of CysZ in planar lipid bilayers yields sulfite-sensitive conductances. a. Sample traces of $I l \mathrm{CysZ}$ under 150 mM symmetrical $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solutions at the indicated membrane potentials and $\mathrm{pH}=5.4$. The lowest trace shows inhibition of activity by 15 $\mu \mathrm{M} \mathrm{Na} 2 \mathrm{SO}_{3}$. b. Unitary conductance estimated at $92 \pm 12 \mathrm{pS}$ with a reversal potential $\left(\mathrm{E}_{\mathrm{rev}}\right)$ at 0 mV . c. Unitary open probability does not change as a function of membrane potential, and is stable at an average $\mathrm{P}_{\text {OPEN }}=0.8$. d. Stable bilayer recording at a membrane potential $\mathrm{V}_{\mathrm{m}}=+50$ mV , with no protein reconstituted. An all point current amplitude histogram is plotted on the left of the trace. The peak of the normal distribution denotes the baseline zero current. e. Reconstitution of $P d$ CysZ under 150 mM symmetrical $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solutions at +50 mV . An all point current amplitude histogram is plotted on the left of the trace. The high frequency activity shows a poorly resolved distribution of unitary currents above baseline. f. Inhibition of activity by $5 \mu \mathrm{M}$
$\mathrm{Na}_{2} \mathrm{SO}_{3}$. An all point current amplitude histogram is plotted on the left of the trace. Sulfite inhibited activity back to baseline levels.

Figure 5.

Fig. 5. Functionally relevant features of the CysZ molecule a. Side-view of a ribbon diagram of the PdCysZ hexamer, with one chain rainbow-colored from N- (blue) to C-termini (red). Insets show the sulfate-binding site located at the start of H 2 a in $P d \mathrm{CysZ}$ (left), with conserved residues G21, L22, R23 and L24 labeled, and the corresponding site in IlCysZ (right), with residues G25, L26, R27, and R28 labeled and showing the $\mathrm{SO}_{4}{ }^{-2}$ ion as bound in the crystal structure. b. Sulfate uptake by sulfate-binding site mutants of PdCysZ. E. coli K12 CysZ^{-}cells transformed with the listed $P d$ CysZ R23 mutants were used to measure $\left[{ }^{35} \mathrm{~S}_{\mathrm{O}} \mathrm{O}_{4}{ }^{-2}\right.$ uptake ($\mathrm{n}=3$). Sulfate uptake was abolished for R23A, and rescued to 50% and 40% of the wild type levels for the R23K and R23Q mutants respectively. c. A top-view of the $P d \mathrm{CysZ}$ hexamer, colored as in a. The inset magnifies the central core of CysZ to show the associated network of hydrogen bonds (R129-N184, E106-H185), van der Waals interactions (E103-N184, E106-N184, Q176-E134)
and salt bridges (R129-D183, R133-D183, R110-E106) between pairs of highly conserved residues. Interatomic contacts are shown as purple dotted lines with distances (in \AA) marked in blue. d. Sulfate uptake by central-core mutants of PdCysZ. E. coli K12 CysZ ${ }^{-}$cells transformed with the listed PdCysZ mutants were used to measure $\left[{ }^{35} \mathrm{~S}\right] \mathrm{O}_{4}{ }^{-2}$ uptake $(\mathrm{n}=3)$. N98A and R129E and R129Q showed severely impaired sulfate uptake, whereas more conservative substitutions such as N98D, Q176E and Q176N had less of a negative effect on function. Y177A and Y177F do not show any impaired function.

Figure 6.

Fig. 6. Conservation and entrance of putative pore of PdCysZ. a. Ribbon diagram colored by conservation with residues in maroon being most conserved to cyan being least conserved (calculated by ConSurf) to highlight the entrance to the putative pore; an asterisk (*) marks the location of the sulfate-binding site (GLR motif) at top of H2a. b. Same view and coloring scheme as in a, but now shown in surface representation. c. Electrostatic representation of hexameric $P d$ CysZ as viewed from the top, with negative surface potential represented in red, and positive potential in blue as calculated by APBS, with location of the putative pore marked by a dashed circle. d. Close-up view in electrostatic representation of the putative pore within a PdCysZ protomer, surface and orientation as in b.

Figure 7.

Fig. 7. Putative ion conductance pathway of CysZ. a. A PdCysZ protomer looking into the incipient pore entrance. The polypeptide ribbon is oriented as in 6 a and colored by level of sequence conservation (calculated by ConSurf, with maroon being most conserved and cyan least). The putative pore and ion conduction pathway is shown as a yellow tube of $1 \AA$ diameter, calculated by PoreWalker. b. Surface representation of the $P d \mathrm{CysZ}$ hexamer, as side views, both semi-transparent (left) and with surface clipped (right, cut surfaces colored in grey) to allow for the internal visualization of the pathway leading to the central cavity. c. Side view of a PdCysZ protomer left, viewed as in b and rotated 90° from a . Insets show magnified views of crosssections along the pathway: At level 1, the entrance to the pore consists of a narrow constriction created by a network of highly conserved polar and charged residues (E106, R110, E134, N184, H185) tightly interacting with one another. At level 2, the pathway broadens and becomes less
charged, but yet polar in nature as lined by conserved asparagine, tyrosine and threonine residues (N33, T87, N91, N98, Q176, Y177). From level 3, the pathway widens further and ultimately leads into the large central hydrophobic cavity.

Figure 7 - Figure Supplement 1.
a
b

Fig. 7. S1. Plot of the pore diameter of the putative ion conduction pathway. a. PdCysZ b. PfCysZ, showing a very narrow constriction of under $2 \AA$ in diameter near the entrance of the pore, which then widens as the ions move past the core of the protomer to the inner central cavity of the hexameric channel (as calculated by PoreWalker, measured at $3 \AA$ steps along the x -axis) c. Central hydrophobic cavity of $P d$ CysZ hexamer, cross-section of central cavity of the hexameric $P d$ CysZ (top view) and d. side view, shows a triangular-shaped cavity with each side
measuring $49.6 \AA$ in length. The cavity is primarily hydrophobic, as depicted and colored with the Kyte-Doolitle hydrophobicity scale from most polar colored in cyan to most hydrophobic colored in orange.

References:

Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., \& Zwart, P. H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 66(Pt 2), 213221. doi:S0907444909052925 [pii]
10.1107/S0907444909052925

Aguilar-Barajas, E., Diaz-Perez, C., Ramirez-Diaz, M. I., Riveros-Rosas, H., \& Cervantes, C. (2011). Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals, 24(4), 687-707. doi:10.1007/s 10534-011-9421-x
Akabas, M. H., Stauffer, D. A., Xu, M., \& Karlin, A. (1992). Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science, 258(5080), 307-310.
Amadi, S. T., Koteiche, H. A., Mishra, S., \& McHaourab, H. S. (2010). Structure, dynamics, and substrate-induced conformational changes of the multidrug transporter EmrE in liposomes. J Biol Chem, 285(34), 26710-26718. doi:10.1074/jbc.M110.132621
Anishkin, A., Akitake, B., Kamaraju, K., Chiang, C. S., \& Sukharev, S. (2010). Hydration properties of mechanosensitive channel pores define the energetics of gating. J Phys Condens Matter, 22(45), 454120. doi:10.1088/0953-8984/22/45/454120
Aryal, P., Sansom, M. S., \& Tucker, S. J. (2015). Hydrophobic Gating in Ion Channels. Journal of Molecular Biology, 427(1), 121-130. doi:10.1016/j.jmb.2014.07.030
Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., \& Ben-Tal, N. (2016). ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res, 44(W1), W344-350. doi:10.1093/nar/gkw408
Aslanidis, C., \& de Jong, P. J. (1990). Ligation-independent cloning of PCR products (LICPCR). Nucleic Acids Res, 18(20), 6069-6074.
Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., \& Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol, 2, 20060008. doi:10.1038/msb4100050
Barton, L. L. (2005) Structural and Functional Relationships in Prokaryotes (pp. 680-720): Springer.
Bass, R. B., Strop, P., Barclay, M., \& Rees, D. C. (2002). Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science, 298(5598), 15821587. doi:10.1126/science. 1077945

Birkner, J. P., Poolman, B., \& Kocer, A. (2012). Hydrophobic gating of mechanosensitive channel of large conductance evidenced by single-subunit resolution. Proc Natl Acad Sci U S A, 109(32), 12944-12949. doi:10.1073/pnas. 1205270109
Britton, P., Boronat, A., Hartley, D. A., Jones-Mortimer, M. C., Kornberg, H. L., \& Parra, F. (1983). Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12: location of the gsr (tgs) and iex (crr) genes by specialized transduction. J Gen Microbiol, 129(2), 349-356.

Buckler, K. J., \& Vaughan-Jones, R. D. (1998). Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol, 513 (Pt 3), 819-833.
Chen, Y. H., Hu, L., Punta, M., Bruni, R., Hillerich, B., Kloss, B., Rost, B., Love, J., Siegelbaum, S. A., \& Hendrickson, W. A. (2010). Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature, 467(7319), 1074-1080. doi:10.1038/nature09487
nature09487 [pii]
Cowtan, K. D., \& Zhang, K. Y. (1999). Density modification for macromolecular phase improvement. Prog Biophys Mol Biol, 72(3), 245-270.
Czodrowski, P., Dramburg, I., Sotriffer, C. A., \& Klebe, G. (2006). Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein-ligand complexes. Proteins, 65(2), 424-437. doi:10.1002/prot. 21110
Davis, B. D., \& Mingioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol, 60(1), 17-28.
Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., \& Baker, N. A. (2007). PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res, 35(Web Server issue), W522525. doi:10.1093/nar/gkm276

Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., \& Baker, N. A. (2004). PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res, 32(Web Server issue), W665-667. doi:10.1093/nar/gkh381
Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., \& MacKinnon, R. (1998). The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science, 280(5360), 69-77.
Emsley, P., Lohkamp, B., Scott, W. G., \& Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 66(Pt 4), 486-501. doi:S0907444910007493 [pii]
10.1107/S0907444910007493

Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr, 62(Pt 1), 72-82. doi:10.1107/S0907444905036693
Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., \& Ben-Tal, N. (2003). ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics, 19(1), 163-164.
Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology, 166(4), 557-580.
Hryniewicz, M., Sirko, A., Palucha, A., Bock, A., \& Hulanicka, D. (1990). Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol, 172(6), 3358-3366.
Kabsch, W. (2010). Xds. Acta Crystallogr D Biol Crystallogr, 66(Pt 2), 125-132. doi:10.1107/S0907444909047337
Kertesz, M. A. (2000). Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev, 24(2), 135-175.
Kertesz, M. A. (2001). Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol, 152(3-4), 279-290.

Korkhov, V. M., \& Tate, C. G. (2009). An emerging consensus for the structure of EmrE. Acta Crystallogr D Biol Crystallogr, 65(Pt 2), 186-192. doi:10.1107/S0907444908036640
Kredich, N. M. (1971). Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth of varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem, 246(11), 3474-3484.
Kredich, N. M., Hulanicka, M. D., \& Hallquist, S. G. (1979). Synthesis of L-cysteine in Salmonella typhimurium. Ciba Found Symp(72), 87-99.
Krissinel, E., \& Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774-797 'Protein interfaces, surfaces and assemblies' service PISA at the European Bioinformatics Institute. (http://www.ebi.ac.uk/pdbe/prot int/pistart.html). doi:10.1016/j.jmb.2007.05.022
Langer, G., Cohen, S. X., Lamzin, V. S., \& Perrakis, A. (2008). Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc, 3(7), 1171-1179. doi:nprot. 2008.91 [pii]
10.1038/nprot. 2008.91

Leal-Pinto, E., London, R. D., Knorr, B. A., \& Abramson, R. G. (1995). Reconstitution of hepatic uricase in planar lipid bilayer reveals a functional organic anion channel. J Membr Biol, 146(2), 123-132.
Liu, Q., Dahmane, T., Zhang, Z., Assur, Z., Brasch, J., Shapiro, L., Mancia, F., \& Hendrickson, W. A. (2012). Structures from anomalous diffraction of native biological macromolecules. Science, 336(6084), 1033-1037. doi:10.1126/science. 1218753
Liu, Q., Zhang, Z., \& Hendrickson, W. A. (2011). Multi-crystal anomalous diffraction for lowresolution macromolecular phasing. Acta Crystallogr D Biol Crystallogr, 67(Pt 1), 45-59. doi:10.1107/S0907444910046573
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., \& Lomize, A. L. (2012). OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res, 40(Database issue), D370-376. doi:10.1093/nar/gkr703
Loughlin, P., Shelden, M. C., Tierney, M. L., \& Howitt, S. M. (2002). Structure and function of a model member of the SulP transporter family. Cell Biochem Biophys, 36(2-3), 183-190. doi:CBB:36:2-3:183 [pii]
10.1385/CBB:36:2-3:183

Love, J., Mancia, F., Shapiro, L., Punta, M., Rost, B., Girvin, M., Wang, D. N., Zhou, M., Hunt, J. F., Szyperski, T., Gouaux, E., MacKinnon, R., McDermott, A., Honig, B., Inouye, M., Montelione, G., \& Hendrickson, W. A. (2010). The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. J Struct Funct Genomics, 11(3), 191-199. doi:10.1007/s10969-010-9094-7
Mancia, F., \& Love, J. (2011). High throughput platforms for structural genomics of integral membrane proteins. Curr Opin Struct Biol, 21(4), 517-522. doi:10.1016/j.sbi.2011.07.001
Mansilla, M. C., \& de Mendoza, D. (2000). The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology, 146 (Pt 4), 815-821.
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., \& Read, R. J. (2007). Phaser crystallographic software. Journal of Applied Crystallography, 40(Pt 4), 658-674. doi:10.1107/S0021889807021206

Morera, F. J., Vargas, G., Gonzalez, C., Rosenmann, E., \& Latorre, R. (2007). Ion-channel reconstitution. Methods Mol Biol, 400, 571-585. doi:10.1007/978-1-59745-519-0_38
Mueller, P., Rudin, D. O., Tien, H. T., \& Wescott, W. C. (1962). Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, 194, 979-980.
Otwinowski, Z., \& Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology, 276, 307-326.
Pape, T., \& Schneider, T. R. (2004). HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Cryst., 37, 843-844.
Parra, F., Britton, P., Castle, C., Jones-Mortimer, M. C., \& Kornberg, H. L. (1983). Two separate genes involved in sulphate transport in Escherichia coli K12. J Gen Microbiol, 129(2), 357-358.
Pellegrini-Calace, M., Maiwald, T., \& Thornton, J. M. (2009). PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure. PLoS Comput Biol, 5(7), e1000440. doi:10.1371/journal.pcbi. 1000440
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., \& Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 25(13), 1605-1612. doi:10.1002/jcc. 20084
Punta, M., Love, J., Handelman, S., Hunt, J. F., Shapiro, L., Hendrickson, W. A., \& Rost, B. (2009). Structural genomics target selection for the New York consortium on membrane protein structure. J Struct Funct Genomics, 10(4), 255-268. doi:10.1007/s10969-009-9071-1
Quick, M., \& Javitch, J. A. (2007). Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc Natl Acad Sci U S A, 104(9), 3603-3608. doi:0609573104 [pii]
10.1073/pnas. 0609573104

Rapp, M., Granseth, E., Seppala, S., \& von Heijne, G. (2006). Identification and evolution of dual-topology membrane proteins. Nat Struct Mol Biol, 13(2), 112-116. doi:10.1038/nsmb1057
Rigaud, J. L., Pitard, B., \& Levy, D. (1995). Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta, 1231(3), 223-246.
Schrodinger, LLC. (2010). The PyMOL Molecular Graphics System, Version 1.3r1.
Sheldrick, G. M. (2010). Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr, 66(Pt 4), 479-485. doi:S0907444909038360 [pii]
10.1107/S0907444909038360

Sirko, A., Zatyka, M., Sadowy, E., \& Hulanicka, D. (1995). Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfatebinding proteins. J Bacteriol, 177(14), 4134-4136.
Stein, N. (2008). CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. Journal of Applied Crystallography, 41, 641-643. doi:10.1107/S0021889808006985

Stockbridge, R. B., Kolmakova-Partensky, L., Shane, T., Koide, A., Koide, S., Miller, C., \& Newstead, S. (2015). Crystal structures of a double-barrelled fluoride ion channel. Nature, 525(7570), 548-551. doi:10.1038/nature14981
Stockbridge, R. B., Robertson, J. L., Kolmakova-Partensky, L., \& Miller, C. (2013). A family of fluoride-specific ion channels with dual-topology architecture. Elife, 2, e01084. doi:10.7554/eLife. 01084
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., \& Wilson, K. S. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr, 67(Pt 4), 235-242. doi:10.1107/S0907444910045749
Yang, T., Liu, Q., Kloss, B., Bruni, R., Kalathur, R. C., Guo, Y., Kloppmann, E., Rost, B., Colecraft, H. M., \& Hendrickson, W. A. (2014). Structure and selectivity in bestrophin ion channels. Science, 346(6207), 355-359. doi:10.1126/science. 1259723
Ye, L., Jia, Z., Jung, T., \& Maloney, P. C. (2001). Topology of OxlT, the oxalate transporter of Oxalobacter formigenes, determined by site-directed fluorescence labeling. J Bacteriol, 183(8), 2490-2496. doi:10.1128/JB.183.8.2490-2496.2001
Zhang, L., Jiang, W., Nan, J., Almqvist, J., \& Huang, Y. (2014). The Escherichia coli CysZ is a pH dependent sulfate transporter that can be inhibited by sulfite. Biochim Biophys Acta, 1838(7), 1809-1816. doi:10.1016/j.bbamem.2014.03.003

[^0]: * To whom correspondence should be addressed: E-mail fm123@cumc.columbia.edu (F.M.)

