Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Retinotopic Organization of Scene Areas in Macaque Inferior Temporal Cortex

Michael J. Arcaro, Margaret S. Livingstone
doi: https://doi.org/10.1101/131409
Michael J. Arcaro
1Department of Neurobiology, Harvard Medical School, Boston MA 02115
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: michael_arcaro@hms.harvard.edu
Margaret S. Livingstone
1Department of Neurobiology, Harvard Medical School, Boston MA 02115
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

Primates have specialized domains in inferior temporal (IT) cortex that are responsive to particular image categories. Though IT traditionally has been regarded as lacking retinotopy, several recent studies in monkeys have shown that retinotopic maps extend to face patches along the lower bank of the superior temporal sulcus (STS) in IT cortex. Here, we confirm the presence of visual field maps within and around the lower bank of the STS and extend these prior findings to scene-selective cortex in the ventral-most regions of IT. Within the occipito-temporal sulcus (OTS), we identified two retinotopic areas, OTS1 and OTS2. The polar angle representation of OTS2 was a mirror reversal of the OTS1 representation. These regions contained representations of the contralateral periphery and were selectively active for scene vs. face, body, or object images. The extent of this retinotopy parallels that in humans and shows that the organization of the scene network is preserved across primate species. In addition retinotopic maps were identified in dorsal extrastriate, posterior parietal, and frontal cortex as well as the thalamus, including both the LGN and pulvinar. Taken together, it appears that most, if not all, of the macaque visual system contains organized representations of visual space.

SIGNIFICANCE STATEMENT Primates have specialized domains in inferior temporal (IT) cortex that are responsive to particular image categories. Though retinotopic maps are considered a fundamental organizing principle of posterior visual cortex, IT traditionally has been regarded as lacking retinotopy. Recent imaging studies have demonstrated the presence of several visual field maps within lateral IT. Using neuroimaging, we found multiple representations of visual space within ventral IT cortex of macaques that included scene-selective IT cortex. The scene domains were biased towards the peripheral visual field. These data demonstrate the prevalence of visual field maps throughout the primate visual system, including late stages in the ventral visual hierarchy, and support the idea that domains representing different categories are biased towards different parts of the visual field.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted April 27, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Retinotopic Organization of Scene Areas in Macaque Inferior Temporal Cortex
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Retinotopic Organization of Scene Areas in Macaque Inferior Temporal Cortex
Michael J. Arcaro, Margaret S. Livingstone
bioRxiv 131409; doi: https://doi.org/10.1101/131409
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Retinotopic Organization of Scene Areas in Macaque Inferior Temporal Cortex
Michael J. Arcaro, Margaret S. Livingstone
bioRxiv 131409; doi: https://doi.org/10.1101/131409

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4230)
  • Biochemistry (9123)
  • Bioengineering (6767)
  • Bioinformatics (23970)
  • Biophysics (12109)
  • Cancer Biology (9511)
  • Cell Biology (13753)
  • Clinical Trials (138)
  • Developmental Biology (7623)
  • Ecology (11675)
  • Epidemiology (2066)
  • Evolutionary Biology (15492)
  • Genetics (10632)
  • Genomics (14310)
  • Immunology (9473)
  • Microbiology (22824)
  • Molecular Biology (9087)
  • Neuroscience (48920)
  • Paleontology (355)
  • Pathology (1480)
  • Pharmacology and Toxicology (2566)
  • Physiology (3841)
  • Plant Biology (8322)
  • Scientific Communication and Education (1468)
  • Synthetic Biology (2295)
  • Systems Biology (6180)
  • Zoology (1299)