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Summary statement 
 

TGFβ is crucial for optic fissure fusion, involving cdh6. TGFβ mediated optic fissure 

fusion is potentially hampered by BMP signaling, which is blocked by TGFβ induced 

BMP antagonists within the optic fissure margins. 

 

 
Abstract 
The optic fissure is a transient gap in the developing vertebrate eye, which must be 

closed as development proceeds. A persisting optic fissure, coloboma, is a major cause 

for blindness in children. Multiple factors are genetically linked to coloboma 

formation. However, especially the process of optic fissure fusion is still largely 

elusive on a cellular and molecular basis.  

We found a coloboma phenotype in mice with a targeted inactivation of the 

transforming growth factor 2 (TGFβ2). Here the optic fissure margins got in touch, 

however, failed to fuse. Transcriptomic analyses indicated TGFβ mediated ECM 

remodeling during optic fissure fusion. For functional analyses, we switched model 

systems and made use of zebrafish. We found TGFβ ligands expressed in the 

developing zebrafish eye, and the ligand binding receptor in the optic fissure. Using a 

new in vivo TGFβ signaling reporter, we also found active TGFβ signaling in the 

margins of the optic fissure. We addressed the function of Cadherin 6 (cdh6), one of 

the TGFβ regulated genes, by knock down experiments in zebrafish and found a 

prominent coloboma phenotype. Cdh6 was often found involved in processes of 

epithelial to mesenchymal transition (EMT), strengthening our hypothesis that an 

EMT-like process is also necessary for optic fissure fusion. Furthermore, we found 

Gremlin 2b (grem2b) and Follistatin a (fsta), homologs of TGFβ regulated bone 

morphogenetic protein (BMP) antagonists, expressed in the optic fissure margins, 

indicating the necessity of a localized inhibition of BMP signaling. Finally, we show 

that induced BMP expression is sufficient to inhibit optic fissure fusion. Together with 

our previous findings this indicates a dual role of BMP signaling during optic fissure 

closure.   
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Introduction 
The optic fissure is a transient gap in the ventral domain of the developing vertebrate 

eye. During a specific period of development, it is an entry route used by cells of the 

periocular mesenchyme and embryonic vasculature to enter the eye. However, it is 

necessary that the fissure is closed as development proceeds. A persisting fissure is 

termed coloboma. A coloboma can affect vision severely and is a frequent cause for 

blindness in children (Onwochei et al., 2000). Many genes and signaling pathways 

have been linked to coloboma formation (Graw, 2003, Westenskow et al., 2009, 

Bankhead et al., 2015, Chen et al., 2013, Cai et al., 2013, Miesfeld et al., 2015, Matt et 

al., 2008, Lupo et al., 2011, Lee et al., 2008, Heermann et al., 2015), resulting in a 

growing gene coloboma network (Gregory-Evans et al., 2004, 2013). Coloboma often 

is part of a multi organ syndrome, e.g. CHARGE syndrome or renal coloboma 

syndrome, linked to Pax2 and Chd7 respectively (Torres et al., 1996, Favor et al., 1996, 

Sanlaville and Verlores, 2007, Fletcher et al., 2006, Bower et al., 2011). Notably, the 

morphology of coloboma phenotypes is highly variable. Defects or alterations in some 

of these signaling pathways, for example, result in vast extended coloboma (Bankhead 

et al., 2015, Miesfeld et a., 2015), likely originating from morphogenetic defects. Such 

an early morphogenetic defect, resulting in coloboma, was demonstrated recently by a 

precocious arrest of the neuroretinal flow during optic cup formation, induced by 

ectopic expression of a BMP ligand (Heermann et al., 2015). Importantly, such 

massive coloboma phenotypes are different from colobomata resulting from a 

hampered fusion process of the optic fissure margins. Within these margins, the 

prospective neuroretina and the prospective retinal pigmented epithelium (RPE) share 

a basement membrane. With the onset of fissure fusion, the prospective neuroretina 

and RPE are separated and after that, reside on their own basement membrane 

respectively. This fusion of the two opposing fissure margins and the separation of the 

neuroretina from the RPE are demanding major structural remodeling. This includes 

the dissolution of the basement membrane within the margins (James et al., 2016), the 

loosening of cell-cell contacts in between prospective neuroretinal cells and RPE 

precursors and eventually establishment of new connections within the prospective 

neuroretina and RPE, respectively. N-cadherin and α-catenin were shown to be 

important in this context (Masai et al., 2003, Chen et al., 2012). Although the overall 
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process that has to be executed is known quite well, only very little is known about 

how the actual fusion of the opposing optic fissure margins is achieved on a cellular 

and molecular basis. TGFβ is a well-known modifier of the extracellular matrix 

(ECM), in various processes during development and disease (Wu and Hill, 2016, 

Zhang et al., 2016, Thiery et al., 2009, Mercado-Pimentel and Runyan, 2007, 

Johansson et al., 2013). Here we address the role of TGFβ signaling for optic fissure 

fusion, making use of mouse (Mus musculus) and zebrafish (Danio rerio). 

 

Results and Discussion 

Loss of TGFβ2 results in coloboma  

In mouse, three TGFβ isoforms are encoded in the genome (TGFβ1, 2 and 3). 

Targeted inactivation of TGFβ2 results in several phenotypes, also affecting the eye 

(Sanford et al., 1997), e.g. a remaining primary vitreous, a Peters anomaly like 

phenotype and an altered neuroretinal layering. In addition to these phenotypes, we 

identified a persistent optic fissure in TGFβ2 mutant embryos (Figure 1B, see A as 

control). TGBβ2 dependent coloboma were first discovered in TGFβ2/GDNF double 

mutants, (Rahhal, Heermann et al., 2009 unpublished observations) and subsequently 

also in TGFβ2 single mutants (this study) but not in GDNF single mutants. Notably, 

no phenotype affecting eye development was described in any of the three 

independently generated GDNF mutant mouse lines (Pichel et al., 1996, Moore et al., 

1996, Sanchez et al., 1996), though GDNF expression in the developing eye was 

documented (Hellmich et al., 1996). Therefore, the coloboma phenotype must be 

assigned to TGFβ2 function. Notably, in the TGFβ2 mutants the optic fissure margins 

were able to get in close proximity to each other, but ultimately failed to fuse and 

instead grew inwards (Figure 1B).  TGFβ signaling is also necessary for the fusion of 

the palatal shelves during development (Sanford et al. 1997, Proetzel et al., 1995). 

There, the ligands TGFβ2 and TGFβ3 have slightly different functions. While in mice 

with targeted inactivation of TGFβ2, the palatal shelves stay apart and a gap remains 

(Sanford et al., 1997), in TGFβ3 mutant mice the palatal shelves touch, but do not fuse 

(Proetzel et al., 1995, Taya et al., 1999). The latter scenario is reminiscent of what we 

observed for optic fissure closure in TGFβ2 mutant mouse embryos. The fissure 

margins meet, but do not fuse (Fig. 1B, see A as control).  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2017. ; https://doi.org/10.1101/131599doi: bioRxiv preprint 

https://doi.org/10.1101/131599


Ocular expression of ECM genes during optic fissure fusion is TGFβ dependent  

Many genes have been linked to coloboma formation (Gregory-Evans et al., 2004, 

2013), however, the structural changes occurring at the optic fissure margins during 

fusion are still not well understood. At the time when the margins of the optic fissure 

get in touch, structural changes inside these margins are essential to occur in order to 

allow their fusion. The basal membrane must be dissolved (James et al., 2016) and the 

epithelial structure must be loosened and re-established after fusion, involving the 

setup of new cell- cell and cell- matrix connections. We propose that this process 

occurs in an “epithelial to mesenchymal transition (EMT) like” process. Here, after an 

initial disassembly and consecutive fusion of the fissure margins, two new epithelia 

are established. These new epithelia, the neuroretina and the RPE, each contain a 

separate basal membrane. For this process to occur, the ECM has to be remodeled 

intensively. TGFβ signaling is well known for its ECM remodeling activity in various 

processes (Wu and Hill, 2016, Zhang et al., 2016, Thiery et al., 2009, Mercado-

Pimentel and Runyan, 2007, Johansson et al., 2013). We thus addressed the potential 

transcriptional ECM regulation during optic fissure closure using our coloboma model.  

We quantified the levels of mRNAs from E13.5 embryonic eyes using Agilent 

microarray chips. To this end we compared RNA, harvested from eyes of wildtype as 

well as TGFβ2/GDNF double mutant embryos, from which the coloboma phenotype 

was assigned to TGFβ2 function only (see above). Henceforth the effects are termed 

TGFβ dependent. We processed the obtained microarray data, focusing on the genes 

significantly down-regulated. Performing a functional analysis of these genes we 

found as most prominent terms ECM, ECM organization, mesenchyme development, 

epithelium development or proteoglycan binding (Figure 1C). Next, we analyzed the 

expression levels of distinct ECM genes (Figure 1D). We found reduced expression of 

collagen genes Col1a1, Col6a1, Col5a1, Col7a1, Col8a2 and Col27a1 in combination 

with reduced levels of Elastin (Eln) and Epiphycan (Epyc), pointing towards reduced 

levels of fibrillogenesis in the extracellular space. Reduced levels of Cadherin 6, a 

factor often linked to EMT (Gugnoni et al., 2017, Clay and Halloran, 2014), 

strengthened our hypothesis of an EMT-like process and reduced levels of Fibronectin 

1, indicated affected cell-matrix contacts. Furthermore, we found reduced levels of 

Keratocan (Kera), which was shown to be involved during TGFβ2 regulated corneal 

development (Saika et al., 2001). 
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TGFβ ligands, the ligand binding receptor and TGFβ signaling in zebrafish optic 

cups  
Next, we wanted to functionally address identified target genes with respect to their 

necessity for optic fissure fusion. The zebrafish model is well-suited to address genes 

in a loss of function context. In addition, zebrafish embryos are easily accessible for 

analysis, due to their extrauterine development and partial transparency. To assure that 

a switch of model system to zebrafish is feasible, we first investigated the expression 

of TGFβ ligands and the TGFβ ligand binding receptor during zebrafish eye 

development. We found tgfβ2 expressed mainly in periocular tissue (Figure 1E) 

whereas tgfβ3 was expressed mainly in the developing lens (Figure 1F). The ligand 

binding receptor tgfβrII we found expressed at the site of the optic fissure (Figure 1G). 

The expression of TGFβ ligands in the eye and especially the TGFβ ligand binding 

receptor within the optic fissure margins suggests that TGFβ is also involved in 

zebrafish optic fissure fusion. We next became interested in the activity of TGFβ 

signaling. To assess the dynamics of activated TGFβ signaling in vivo during zebrafish 

development, we established a transcriptional TGFβ sensor in a stable transgenic line. 

The reporter system is based on Smads, the canonical transcription factors transducing 

TGFβ signaling (Heldin et al., 1997). We used repetitive Smad Binding Elements 

(SBE) from the human plasminogen activator inhibitor (PAI). Such a reporter has been 

intensively used for years as a luciferase assay to assess the amount and activity of 

TGFβ in cell culture (Dennler et al., 1998) and in mice (Lin et al., 2005). The 

repetitive SBEs were combined with a minimal promoter element to drive the 

expression of a membrane bound GFP (GFPcaax) (Figure S1A). We then established a 

stable transgenic zebrafish line. Activated TGFβ signaling can be observed during 

development, e.g. by domains in the forebrain region as well as the distal tail (Figure 

S1B). We validated the functionality of this reporter line employing the established 

TGFβ signaling inhibitor SB431542 (Inman et al., 2002, Laping et al., 2002). We 

observed a drastic reduction in reporter activity after treatment with SB431542 (Figure 

S1C). Next, we wanted to know whether TGFβ signaling was active in the optic 

fissure margins. We employed the TGFβ signaling reporter line in combination with a 

reporter for Shh signaling (analog to Schwend et al., 2010) to relate the fissure to the 
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optic stalk and performed in vivo time-lapse analyses. We found the TGFβ signaling 

reporter active within the optic fissure margins (Figure 1H and I see J for shh reporter 

activity only). Taken together our data indicate that TGFβ signaling is indeed active in 

the optic fissure margins of the zebrafish.  

 

Cadherin 6 is essential for optic fissure fusion 

Next, we aimed at addressing the functional implications of the TGFβ regulated ECM 

genes during optic fissure fusion in zebrafish. Among the set of identified TGFβ 

regulated target genes, we found Cdh6. Cdh6 was shown to be involved in processes 

of epithelial to mesenchymal transition (EMT) in development and disease (Gugnoni 

et al., 2017, Clay and Halloran, 2014, Sancisi et al., 2013) and was identified to be 

TGFβ dependent in thyroid cancer (Sancisi et al., 2013). During EMT, epithelialized 

cells exit the united cell structure and obtain mesenchymal features. We hypothesize 

that a part of the optic fissure fusion program is EMT-like, in which the basement 

membrane is degraded (James et al., 2016) and the cells of the optic fissure margins 

establish the contact between the margins (Eckert et al., in preparation). However, the 

process is somewhat reversed consecutively, because soon after the fusion is 

established, two separated epithelia, residing on an own basement membrane 

respectively, are generated, the neuroretina and the RPE. We found cdh6 expressed 

within the optic fissure margins (Figure 2A-C). We subsequently made use of a 

Morpholino oligonucleotide (MO) induced knock down approach using established 

MO sequences (Liu et al., 2008, Kubota et al., 2007).  

By screening with a stereomicroscope, we found that MO induced knockdown of cdh6 

caused coloboma in 31.6% (11.5ng of MO1) to 50.6% (4.5ng of MO2) of injected 

embryos (Figure 2J-L, M-O, Table, see 3D-I as control). Additional 20-32.9% of 

morpholino injected embryos showed an abnormally pigmented ventral retina, 

possibly indicating coloboma. 25.3% of cdh6 MO1 injected animals showed severe 

defects of gross morphology and the eyes. Embryos injected with a control MO as 

well as uninjected animals only sporadically showed abnormal pigmentation or severe 

defects. Optical sections performed by confocal imaging of embryonic eyes with a 

nuclear staining confirmed the persistence of the optic fissure in cdh6 morphants 

(Figure 2L, O). We also observed, in accordance with previous findings (Liu et al., 
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2008), that cdh6 morphant eyes are reduced in size and show delayed and defective 

retinal differentiation. 

 

TGFβ mediated BMP antagonism during optic fissure closure 

It is well-established that BMP4 in cooperation with Vax2 is important for the 

definition of cellular identities along the dorsal ventral axis within the vertebrate eye 

(Koshiba-Takeuchi et al., 2000, Sasagawa et al., 2002, Mui et al., 2005, Behesti et al., 

2006). In line with these data we found bmp4 expressed dorsally and vax2 expressed 

ventrally within the zebrafish optic cup (Figure 3A and B). Notably, BMP signaling is 

also important for other aspects of eye development, like the optic fissure generation 

(Morcillo et al., 2006) and the optic cup formation itself (Heermann et al., 2015). In 

the latter study, it was shown that an inhibition of BMP signaling is crucial for a 

bilateral neuroepithelial flow to occur over the distal rim of the developing optic cup. 

This BMP signaling inhibition is achieved by the BMP antagonist Follistatin a (fsta). 

We found two antagonists for BMP signaling, Follistatin and Gremlin 1, 

transcriptionally down-regulated in our murine coloboma model (Figure 3C). 

Furthermore, we found homologous genes (grem2b and fsta) expressed in the optic 

fissure margins of zebrafish (Figure 3D and E). BMP4 is a secreted ligand and can 

potentially diffuse and act over extended distances. The expression of the two BMP 

antagonists in the optic fissure hints at a functional requirement to locally suppress 

BMP activity in this domain. Above we showed that TGFβ is relevant for ECM 

remodeling during optic fissure fusion and overall TGFβ signaling is well-known for 

its ECM remodeling activity in various processes (Wu and Hill, 2016, Zhang et al., 

2016, Thiery et al., 2009, Mercado-Pimentel and Runyan, 2007, Johansson et al., 

2013). Notably, BMP signaling seems to counteract these TGF  induced changes 

often (Izumi et al., 2006, Zeisberg et al., 2003, Wang and Hirschberg, 2003, 2004). 

We propose that TGFβ induced local BMP antagonism is unleashing the ECM 

remodeling capacity of TGFβ (Figure 4F, scheme). This concept is new for optic 

fissure fusion, however, was shown to be accurate in the context of glaucoma (Zode et 

al., 2009). The BMP antagonist Gremlin has been linked to cleft lips in humans (Al 

Chawa et al., 2014) indicating that the level of BMP signaling is also tightly controlled 

during fusion processes there. We suggest that the combined expression of two BMP 

antagonists is important to provide robustness to the system. BMP antagonists are 
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often expressed redundantly (Khokha et al., 2005, Eggen and Hemmati-Brivanlou 

2001, Stottmann et al., 2001) pointing at the importance of their function. According 

to this it is not surprising that the loss of a single BMP antagonist does not result in 

coloboma (Grem1 knock out, not shown).  

We next wanted to functionally test our hypothesis, that localized BMP inhibition in 

the optic fissure margins is necessary for TGFβ induced ECM remodeling and 

consecutive optic fissure fusion. To this end, we generated a transgenic line allowing 

for heat shock inducible bmp4 expression (tg(hsp:bmp4 cmlc2:GFP)). With the help 

of this transgenic line we aimed at an oversaturation of the BMP antagonists and test 

whether or not this affects optic fissure fusion. Since the morphogenesis of the optic 

cup is dependent on BMP antagonism (Heermann et al., 2015), the timing of the heat 

shock induced expression of bmp4 was critical. Thus, we first tested the outcome of 

heat shock induced bmp4 expression at different successive stages of development 

(Figure S2, Figure 4). Induced expression at 21hpf and 22hpf resulted in a vast 

coloboma phenotype (Figure S2 A-A’’ and B-B’’, see D-D’’ and E-E’’ as control), 

well in line with the coloboma observed in our previous analyses (Heermann et al., 

2015). This indicates that the transgenic line is functional but it also indicates that the 

onset of induction was too early and was affecting optic cup morphogenesis. The 

induced expression of bmp4 at 23hpf resulted in a milder coloboma phenotype, with 

less affected cup morphogenesis (Figure S2 C-C’’, see F-F’’ as control). Notably, the 

resulting coloboma phenotype from induced bmp4 expression at 24hpf, 25hpf and 

26hpf was comparable, not showing defects in optic cup morphogenesis (Figure 4 A-

C’’, see D-H’’ as control). According to our hypothesis (Figure 3F, scheme), active 

BMP signaling would suppress TGFβ induced structural remodeling within the optic 

fissure margins. In order to test this hypothesis further, we investigated cdh6 

expression in control embryos and heat shock induced bmp4 expressing embryos. 

Indeed, the bmp4 expression resulted in reduced levels of cdh6 within the zebrafish 

eye (Figure 4 I, J, see K, L as control), indicating that our hypothesis is accurate. 

 

Conclusion  

In this study, we present evidence for a role of TGFβ signaling in optic fissure fusion 

by ECM remodeling, functionally involving cdh6. Our data further indicate a 

requirement of local inhibition of BMP signaling within the optic fissure margins 
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during this process. This is facilitated by the TGFβ dependent induction of BMP 

antagonists in the margins of the optic fissure.  
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Experimental Procedures 
Zebrafish husbandry 
Zebrafish (Danio rerio) were kept as closed stocks in accordance with local animal 

welfare law. The facility is under supervision of the local representative of the animal 

welfare agency. The fish were maintained in a constant recirculating system at 28°C 

on a 12h light/12h dark cycle. Fish lines used in this study were created in the AB wild 

type strain. 

 
Gene knock down 
We used three different Morpholino oligonucleotides (Gene Tools Llc) with 3’-

fluorescein labels. A standard control MO (5’-CCT CTT ACC TCA GTT ACA ATT 

TAT A-3’), cdh6 MO1 (5’-AAG AAG TAC AAT CCA AGT CCT CAT C-3’), and 

cdh6 MO2 (5’-TCC GCT CTT AGG GTG TCT TAC AGG G-3’, both Kubota et al., 

2007; Liu et al., 2008). MOs were microinjected into the cytoplasm of zebrafish 

zygotes at concentrations of 750µM (control MO and cdh6 MO1) and 500µM (cdh6 

MO2). The desired injection volume was calibrated using a slide with 0.01mm scale 

(Bresser, Germany). The phenotype of morphants was assessed at 3dpf using a Nikon 

SMZ18 stereomicroscope, followed by fixation in 4%PFA for further analysis. 

 
Heat shocks and controls 
tg(hsp70:bmp4, cmlc2:eGFP) eggs were kept in a petri dish at 28°C after fertilization. 

To induce bmp4 expression, 21-26hpf embryos were transferred to a 1.5ml reaction 

tube and incubated for 1h at 37°C in a heating block. Afterwards, they were returned 

to a dish at 28°C. Embryos were fixed with 4%PFA at 30hpf for in situ hybridization 

and at 3dpf for morphological analysis. 

We used tg(hsp70:bmp4, cmlc2:eGFP) embryos which were not heat shocked as 

controls, as well as heat shocked wild type siblings from the same clutch of eggs. 

 
Transgenic zebrafish 
Plasmid DNA containing Smad binding elements (SBE) in combination with a 

minimal promoter, were kindly provided by Peter tenDijke ((CAGA)12 MLP Luc). 

Here repetitive SBEs derived from the promoter of the human plasminogen activator 

inhibitor gene (Dennler et al., 1998) were used to drive a luciferase gene.  
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We cloned the SBEs with the minimal promoter into a Gateway 5’ entry vector 

(Invitrogen). A multisite Gateway reaction (Kwan et al., 2007) was subsequently 

performed resulting in an SBE driven GFPcaax construct (SBE:GFPcaax). A 

Zebrafish line was generated with SB (sleeping beauty) transgenesis according to 

Kirchmaier et al (Kirchmaier et al., 2013). Shh reporter zebrafish were generated 

according to Schwend et al (Schwend et al., 2010). The plasmid was kindly provided 

by Sara Ahlgren. 

We assembled the expression construct for Tg(hsp70:bmp4, cmlc2:eGFP) in a 

Gateway reaction, using a Tol2 destination vector including cmlc2:eGFP (Kwan et al., 

2007), a 5’Entry vector containing the hsp70 promotor, a pENTR D-TOPO 

(ThermoFisher Scientific) vector containing the CDS of bmp4 (Heermann et al., 2015) 

and a 3’Entry vector with a polyadenylation site (Kwan et al., 2007). The construct 

(10ng/µl) was injected into wild type zebrafish zygotes together with Tol2 transposase 

mRNA (7ng/µl). Embryos with strong GFP expression in the heart were selected as 

founders. Lines were kept in closed stocks and validated in every generation. 

 

Drug treatments 

Zebrafish embryos were treated with SB431542 (8µl/ml) to inhibit TGFβ mediated 

signaling. The substance was dissolved in DMSO (10 mmol stock). Controls were 

treated with equally concentrated DMSO without the inhibitor. 

 

Microscopy 
Signaling reporter fish were imaged with a Leica SP5 setup, samples mounted in glass 

bottom dishes (MaTek). For time-lapse imaging embryos were embedded in 1% low 

melting agarose covered with zebrafish medium an anesthetized with tricain. Left and 

right eyes were used and oriented to fit the standard views. A stereomicroscope 

(Olympus/ Nikon) was used for recording brightfield and fluorescent images of TGFβ 

signaling reporter fish. Whole mount in situ hybridizations were recorded with a 

stereomicroscope (Olympus) as well as an upright microscope (Zeiss). For time-lapse 

imaging embryos were embedded in 1% low melting agarose covered with zebrafish 

medium an anesthetized with tricain. Left and right eyes were used and oriented to fit 

the standard views.  
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Whole mount in situ hybridization 
Whole mount in situ hybridizations were performed according to Quiring et al. 

(Quiring et al., 2004). 

 

Mice 
For this study TGFb2+/- (Sanford et al., 1997) and GDNF+/- (Pichel et al., 1996) mice 

were used for breeding. Timed matings were performed overnight and the day on 

which a vaginal plug was visible in the morning was considered as day 0.5. Analyses 

were restricted to embryonic stages because of perinatal lethality of the individual 

mutants. For analysis of embryonic tissue, the mother was sacrificed and the embryos 

were collected by caesarean sectio. All of the experiments were performed in 

agreement with the ethical committees. Genotyping was performed according to 

Rahhal, Heermann et al., 2009.  

 
Histological analysis 
Tissue was processed for paraffin sectioning. Frontal sections of control and TGFb2 -

/- embryos were performed and stained with haematoxylin and eosin. 

 

Microarray data 
RNA was extracted from whole eyes of E13.5 embryos (controls and TGFb2-/- 

(GDNF-/-) respectively). RNA was reverse transcribed, amplified and loaded on 

Agilent one-color microarray chips. Experiments were performed in triplicates.  

Further analysis was performed using R (R Core Team, 2014) and the bioconductor 

packages Agi4x44PreProcess, limma and mgug4122a.db as annotation database. For 

background correction we used the following parameters: BGmethod = ”half”, 

NORM-method = ”quantile”, foreground = ”MeanSignal”, background 

= ”BGMedianSignal” and offset = 50. The probes were filtered using the 

recommended thresholds and afterwards the replicated non-control probes were 

summarized. Then the method lmFit was used to fit a linear model on the arrays. 

Finally, the differential expression statistics were computed using the methods eBayes. 

Next only those genes with fold change higher than 1.5 were considered, then a 

multiple comparison correction was performed on the p-values using the BH 

(Benjamini & Hochberg) method. The genes with corrected p-value lower than 0.05 

were defined as significantly differentially expressed genes. 
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Functional analysis of gene sets 
We used the tool gProfiler (J. Reimand et al., 2016) (http://biit.cs.ut.ee/gprofiler/)) 

version 6.7 to find enriched terms on the set of significantly down-regulated genes 

from the mouse arrays. We provided the official gene symbol of these genes as input 

and used the default set of databases.  
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Figure legends: 

Figure 1: Loss of TGFβ2 ligand results in coloboma, ECM remodeling is affected and 

TGFβ ligands and TGFβ signaling in the developing zebrafish eye 

(A) Frontal section of a wildtype embryo (E18.5) as control (H&E staining). (B) 

Frontal section of a TGFβ2 KO embryo (E18.5) (H&E staining). Note the persisting 

optic fissure (boxed). Importantly the fissure margins must have met, but grew 

inwards, rather than fusing. Scale bars represent 200µm. (C) Selected terms enriched 

in the set of down-regulated genes in TGFb2/GDNF KO microarray based on the 

analysis with the tool gProfiler. BP=Biological Process, CC=Cellular Component, 

MF=Molecular Function. SP_PIR_KEYWORDS=Swiss-Prot Protein Information 

Resource. (D) Level of misregulation for several ECM related genes represented as 

fold change (FC). Error bars represent the 95% confidence interval. (E) in-situ 

hybridization of tgfb2 (30 hpf), frontal view. Note expression of tgfb2 in the periocular 

mesenchyme (arrows). (F) in-situ hybridization of tgfb3 (30 hpf), lateral view. Note 

expression of tgfb3 in the distal part of the developing lens. (G) in-situ hybridization 

of tgfβrII (30 hpf), lateral view. Note expression of tgfβrII in the optic fissure region 

(arrow). (H) combination of in vivo signaling for TGFβ (green) and Shh (red) split into 

the single reporter for TGFβ (I) and Shh (J). Note the active TGFβ signaling in the 

optic fissure margins (I, arrows). 

 

Figure 2: Knockdown of cdh6 causes coloboma in zebrafish.  

(A, B) Whole mount in situ hybridization for cdh6 in lateral (A) and dorsal perspective 

(B), please note the cdh6 expression within the optic fissure (C) confocal image of 

cdh6 whole mount in situ hybridization, (D, G, J, M) gross morphology of control 

embryos and morphants at 3dpf. (E, H, K, N) lateral view of the eyes of control 

embryos and morphants at 3dpf. cdh6 morphants show coloboma, decreased eye size. 
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(F, I, L, O) whole-mount eyes of control embryos and morphants at 3dpf, stained with 

DAPI. In addition to coloboma, cdh6 morphants also show disrupted retinal layering 

(O). scale bars represent 50µm, orientation: nasal to the left 

 

Figure 3:  
BMP antagonists are expressed in the optic fissure margins opposing the dorsally 

expressed BMP4, TGFβ interplay in optic fissure closure (scheme) 

(A) in-situ hybridization of BMP4 (30 hpf), lateral view. Note the localized dorsal 

expression of bmp4 (arrow) within the optic cup. (B) in-situ hybridization of vax2 (30 

hpf), lateral view. Note the localized ventral expression of vax2 within the optic cup. 

(C) Expression analysis of gremlin and follistatin, both being BMP antagonists, 

revealed a decrease in TGFb2 KO (TGFb2/GDNF KO) as represented by the fold 

change (FC). Error bars represent the 95% confidence interval. Corrected p-value of 

control gene expression compared to KO for follistatin and gremlin, 1.2E-3 and 5.5E-3 

respectively. (D) in-situ hybridization of grem2b (30 hpf), lateral view. Note 

expression of grem2b in the optic fissure margins (arrow). (E) in-situ hybridizations of 

fsta (30 hpf), lateral view. Note expression of fsta in the optic fissure margins (arrow) 

and the developing CMZ (arrowhead). (F) TGFβ is inducing the expression of BMP 

antagonists, expressed in the optic fissure margins. We propose that this local 

inhibition of BMP signaling unleashes the capacity of TGFβ to remodel the ECM, 

enabling optic fissure fusion. 

 

Figure 4: bmp4 inhibits optic fissure closure and decreases expression of TGF -

regulated cdh6. (A-H) Gross morphology of (A-D) tg(hsp70:bmp4, cmlc2:GFP) 

embryos and (E-H) wild type clutch mates at 3dpf after heat shock at timepoints 

between 24 and 26hpf. (A’-H’) lateral and (A’’-H’’) ventral views of the same 

embryos. (A’-C’’) Transgene embryos with induced ubiquitous expression of bmp4 

exhibit coloboma and a lateral dislocation of the lens when expression was induced 

between 24 and 26hpf. (D’-H’’) Uninduced transgene embryos and their wild type 

clutchmates do not develop this phenotype. (I-L) Whole mount in situ hybridization 

for cdh6 in 30hpf embryos (prim-15). (I) Lateral and (J) dorsal view of a 

tg(hsp70:bmp4, cmlc2:GFP) embryo after heat shock at 24hpf. (K) Lateral and (L) 
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dorsal view of a wild type embryo. cdh6 expression in the forebrain (arrowhead) and 

the optic fissure (arrow) is strongly decreased by ubiquitous bmp4 expression. 

 

Figure S1: Establishment of a TGFβ signaling reporter in zebrafish 

(A) construct generated for the TGFβ signaling reporter. Multimerized Smad Binding 

Elements (SBEs) in combination with a minimal promoter (MP) drive membrane 

localized GFP (GFPcaax). (B) Brightfield, fluorescent and merged images of a 

zebrafish larvae expressing the TGFβ signaling reporter construct (21.5 hpf). Note the 

expression domains in the forebrain (encircled) and the tail. (C) In order to test the 

functionality, de-chorionated zebrafish larvae expressing the TGFβ signaling construct 

were exposed to a TGFb signaling inhibitor (SB431542). The inhibitor suppressed the 

activity of the TGFb signaling reporter dramatically (recorded at postembryonic 

stages). Please see the DMSO treated fish as control. 

 
Figure S2: Early ubiquitous bmp4 expression causes defects in optic cup 

morphogenesis. (A-F) Gross morphology of (A-C) tg(hsp70:bmp4, cmlc2:GFP) 

embryos and (D-F) wild type clutch mates at 3.5dpf after heat shock at timepoints 

between 21 and 23hpf. (A’-F’) lateral and (A’’-F’’) ventral views of the same embryos. 

(A’-C’’) Transgene embryos with ubiquitous expression of bmp4 induced between 21 

and 23hpf show coloboma caused by impaired optic cup morphogenesis as revealed by 

the lack of ventral retina and increased size of the temporal retinal domain. (D’-F’’) 

Uninduced transgene embryos and their wild type clutchmates do not develop this 

phenotype. 

 

 

a abnormal pigmentation of the ventral retina 
 

Table: Results of cdh6 MO injection. The table shows combined numbers of 3 
independent experiments for each condition. 
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