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Abstract

In many sensory systems the neural signal is coded by multiple parallel pathways, suggesting an evolutionary
fitness benefit of general nature. A common pathway splitting is that into ON and OFF cells, responding to
stimulus increments and decrements, respectively. According to efficient coding theory, sensory neurons have
evolved to an optimal configuration for maximizing information transfer given the structure of natural stimuli
and circuit constraints. Using the efficient coding framework, we describe two aspects of neural coding: how to
optimally split a population into ON and OFF pathways, and how to allocate the firing thresholds of individual
neurons given realistic noise levels, stimulus distributions and optimality measures. We find that populations
of ON and OFF neurons convey equal information about the stimulus regardless of the ON/OFF mixture, once
the thresholds are chosen optimally, independent of stimulus statistics and noise. However, an equal ON/OFF
mixture is the most efficient as it uses the fewest spikes to convey this information. The optimal thresholds
and coding efficiency, however, depend on noise and stimulus statistics if information is decoded by an optimal
linear readout. With non-negligible noise, mixed ON/OFF populations reap significant advantages compared to
a homogeneous population. The best coding performance is achieved by a unique mixture of ON/OFF neurons
tuned to stimulus asymmetries and noise. We provide a theory for how different cell types work together to
encode the full stimulus range using a diversity of response thresholds. The optimal ON/OFF mixtures derived
from the theory accord with certain biases observed experimentally.

Introduction

The efficient coding hypothesis states that sensory systems have evolved to optimally transmit information
about the natural world given limitations on their biophysical components and constraints on energy use [4].
This theory has been successfully applied to explain the structure of neuronal receptive fields in the mammalian
retina [2, 3] and fly lamina [23, 43] based on the statistics of natural scenes. Similar arguments have been made to
explain why early sensory pathways often split into parallel channels that represent different stimulus variables,
for example different auditory waveforms [37], or local visual patterns [35]. However, even neurons that encode
the same sensory variable often split further into distinct types. A commonly encountered diversification is
into ON and OFF types: ON cells fire when the stimulus increases and OFF cells when it decreases. This
basic ON-OFF dichotomy is found in many modalities, including vertebrate vision [22], invertebrate vision
[18], thermosensation [14], and chemosensation [9]. Furthermore, even among neurons that encode the same
sensory variable with the same sign, one often encounters distinct types that have different response thresholds,
for example among touch receptors [41] and electroreceptors [6]. The same principle seems to apply several
synapses downstream from the receptors [20], and even in the organization of the motor periphery, where motor
neurons that activate the same muscle have a broad range of response thresholds [17]. In the present article we
consider this pathway splitting among neurons that represent the same variable and explore whether it can be
understood based on efficient coding theory.

One reason why the ON and OFF pathways have evolved may be to optimize information about both
increments and decrements in stimulus intensity by providing excitatory signals for both [32]. For instance, if
there were only ON neurons, such a cell would need high baseline firing rate to encode stimulus decrements, which
can be very costly. A population of many neurons, however, could resolve this issue by tuning their thresholds
so that they jointly code for the stimulus. We have previously addressed the benefits for having ON and OFF
cells in a small population of just two cells [16]. Since ON and OFF neurons often exhibit a broad distribution
of firing thresholds [6, 41, 17, 20], an important question is thus, what distribution of thresholds yields the
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most efficient coding. Here we study optimal information transmission in sensory populations comprised of
different mixtures of ON and OFF neurons that code for a common stimulus variable. We develop the problem
parametrically in the neuronal noise and the distribution of stimuli that the cells encode.

The efficient coding hypothesis does not specify what quantity the neural population should optimize.
Therefore, we consider two alternative measures of optimal coding that are in common use: first we maximize
the mutual information between stimulus and response, and second we optimize the estimate of the stimulus
obtained by a linear decoder of the response. When constraining the maximal firing rate of each cell, we find
that counter to our expectations the mutual information is identical for any mixture of ON and OFF cells once
the thresholds of all cells are optimized. This result is independent of the shape of the stimulus distribution or
the level of neuronal noise. However, the total mean spike count is lowest for the population with equal numbers
of ON and OFF cells, making this arrangement optimal in terms of bits per spike. Optimizing the linear decoder
requires determining not only the cells’ thresholds, but also the decoding weights in order to minimize the mean
square error between the stimulus and its estimate. Under this criterion, the optimal ON/OFF mixture and
cells’ thresholds depend on the asymmetries in the stimulus distribution and the noise level. Our theory yields
surprising results regarding the optimal organization of sensory populations comprised of ON and OFF cells.
We make distinct predictions for the optimal distribution of thresholds under the two optimality measures,
providing insight into the diverse coding strategies of these populations across different sensory modalities and
species.

Results

Population coding model. We study a population of ON and OFF neurons that respond to a common
stimulus. Model neurons are assumed to transmit information about a common scalar stimulus through the
spike count observed during a short coding window. The duration of this coding window, T , is chosen based on
the observed dynamics of neuronal responses; for instance, for retinal ganglion cells, T is typically in the range
of 10-50 ms [42, 29]. Neuronal spike counts are stochastic and their mean is modulated by the stimulus through
a binary response function: ON (OFF) neurons fire Poisson spikes with an average mean count νmax whenever
the stimulus intensity s is above (below) their threshold θi, and zero otherwise, i.e. νi(s) = νmaxΘ(s − θi) for
ON neurons and νi(s) = νmaxΘ(θi − s) for OFF neurons (Figure 1A), where Θ is the Heaviside function. The
binary response function is provably optimal under the constraint of Poisson spiking and short coding window
encountered in many sensory areas [38, 34, 7, 27] and offers a reasonable approximation of neural behavior in
several systems [24, 29].

Since we use a discrete rate function, we can replace θi by the corresponding cumulative threshold which
essentially maps any stimulus distribution into a uniform distribution from 0 to 1 (Figure 1B). Since the stimulus
dependence enters only through these values, the maximal mutual information is independent of the stimulus
distribution, provided that the stimulus cumulative distribution is continuous.

Maximal mutual information for mixtures of ON and OFF neurons. Population responses are
determined by the ratio of ON vs. OFF cells, as well as the distribution of firing thresholds of these cells. We
determine the values of these parameters that maximize the Shannon mutual information between stimulus
and population response, while constraining the maximum expected spike count R = νmaxT for each cell.
Biophysically, such a constraint on the maximal firing rate arises naturally from refractoriness of the spike-
generating membrane. We have analytically proven the following theorem (SI Appendix):
Equal Coding Theorem: For a population of N ON and OFF Poisson neurons coding a one-dimensional
stimulus in a fixed time window T by binary rate functions with maximal firing rate νmax, the mutual infor-
mation is identical for all ON/OFF mixtures when the thresholds are optimized, for all N , νmax and stimulus
distributions.

Optimized mutual information equals the negative log probability of the quiescent state. The
value of this maximal information depends on the maximal expected spike count, R = νmaxT , which controls
the Poisson noise level, since in the active state (where the cell’s firing rate is nonzero) the variance of spike
count is R. It is therefore useful to introduce the noise parameter q = e−R, ranging from q = 0 in the noiseless
limit and q = 1 in the high noise limit. We find that for all ON/OFF mixtures, the information with optimized
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Figure 1. Neuron model and population coding framework. A. A stimulus s is encoded by a population of
ON (red) and OFF (blue) cells. Each cell is described by a binary response nonlinearity ν with a threshold θ and
maximal firing rate νmax. During a coding window of fixed duration T the stimulus is constant and the spike count k is
drawn from a Poisson distribution with a mean rate ν. B. When measuring coding efficiency using the mutual
information between stimulus and spike count response, the neurons’ thresholds can be interpreted as quantiles of the
original stimulus distribution, thus mapping an arbitrary stimulus distribution p(s) into a uniform distribution (four
thresholds shown).

thresholds is given by (Figure 2A)

I = log
(
N(1− q) + q−q/(1−q)

)
+

q

1− q
log q (1)

Interestingly, we can write I = − logP (0) where P (0) denotes the probability that no cells fire, i.e. the quiescent
state. There are two contributions to P (0): (1) the probability that the stimulus is in an interval in stimulus
space which is not coded by any ON or OFF cells (white region in Figure 1B), and (2) the probability that
the stimulus is in an interval in stimulus space that is coded by a subset of ON or OFF cells (grey regions in
Figure 1B), but no cell fires due to the Poisson variability. In the noiseless limit, R→∞ (i.e. q = 0), I reaches
its upper bound I = log(N + 1). The effect of noise is most prominent when R is of order 1/N , so that the
total spike count RN is of order 1, implying that the signal-to-noise of the entire population is of order 1. We
call this the high noise regime, and here we obtain I → log(RN/e+ 1).

Optimal distribution of thresholds. In the case of a discrete rate function, the information does not
depend directly on the stimulus distribution p(s), but only on the areas of p(s) between consecutive thresholds.

It is therefore useful to define the optimal threshold intervals pi =
´ θi+1

θi
ds p(s) where the neurons’ thresholds

are ordered θ1 ≤ . . . ≤ θN (and we define the special θ0 = −∞ and θN+1 = ∞). We find a surprisingly
simple structure for the optimal pi. The optimal thresholds divide stimulus space into intervals of equal area, p
(Eq. 11), except for the ‘edge’ intervals, pedge (Eq. 12), and the ‘silent’ interval, p0, which separates the ON and
OFF thresholds (Figure 2B). This p0 is the only non-noisy response state where the firing rate of each cell is
zero. We call this optimal threshold structure the infomax solution. We consider several limiting cases: first, a
large population N � 1 and maximal firing rate per neuron R, which is much larger than 1/N , i.e. 1−q = O(1).
We call this the large population regime. In this regime, pedge = p = p0 = 1/(N + 1), so the N thresholds
divide stimulus space into N + 1 equal intervals.

In this large population regime, we can rewrite the optimal thresholds as a continuous function of cumulative
stimulus space; we replace θi with θ(x), where x = i/N is between 0 and 1. Then the optimal thresholds equalize
the area under the stimulus density,

x(θ) =
1

Z

ˆ θ

−∞
p(θ′) dθ′, (2)

where Z is a normalization factor. Therefore, the population of cells achieves ‘histogram equalization’, a strategy
that has been proven optimal for a single cell, which codes a stimulus using a continuous function (the cell’s
graded response) [23, 26].

In contrast, in the high noise regime, the system performs redundant coding so that p� 1 and the only two
substantial threshold intervals are the edge intervals pedge = 1/e, and the silent interval, p0 = 1− 2/e, where e
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Figure 2. Mutual information when constraining the maximal spike count. A. The mutual information
between stimulus and response for any combination of N ON and OFF cells is identical when constraining the
maximum expected spike count, R. B. The optimal threshold intervals for all possible mixtures of ON (red) and OFF
(blue) cells in a population of six cells that achieve the same mutual information about a stimulus s from an arbitrary
distribution p(s). C. The optimal threshold intervals in the high noise regime, RN → 0, for the homogeneous mixture
of all ON cells (top) and for the equal ON/OFF mixture (bottom). D. The optimal threshold intervals as a function of
1/RN . E. The mean spike count required to transmit the same information (see A) by populations with a different
fraction of OFF neurons (α), normalized by the mean spike count of the homogeneous population with α = 0. The
different curves denote RN = {0.1, 1, 5, 100}.

denotes exp(1) (Figure 2C,D). This implies that the optimal solution is to place all ON thresholds, and similarly
all OFF thresholds, at roughly the same value, maximizing redundancy and noise reduction.

Mean population firing rate depends on the ON/OFF mixture. Despite equality in information
for all ON/OFF mixtures (Figure 2A), each optimized ON/OFF population uses a different mean spike count
to achieve this information. In the large population regime, the mean spike count per neuron is r(α) =
R(α2 + (1 − α)2)/2 where α is the fraction of OFF cells. This mean spike count per neuron is minimized at
α = 1/2, where it is half of the mean spike count for the homogeneous population, r(0) = R/2 (Figure 2E,
yellow). As the noise increases, the relative benefits of the equally mixed relative to the homogeneous population
decrease (Figure 2E). In the high noise regime, all mixtures produce roughly the same mean spike count per
neuron of R/e (Figure 2E, brown).

Minimizing mean square error of the optimal linear readout. The mutual information tells us how
well the population represents the stimulus without regard for how it can be decoded. An alternative criterion
for coding efficiency is the ability of downstream neurons to decode this information. A simple biologically
plausible decoding mechanism is linear decoding [11, 33, 46]. Here we study the accuracy of a downstream
neuron that estimates the stimulus value s using a weighted sum of spike counts ni of the upstream population
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Figure 3. Optimal linear decoding of stimuli without noise is independent of ON/OFF mixture. A.
Minimizing the MSE between a stimulus s drawn from distribution p(s) (black) and its linear estimate y (blue) by a
population of (6) ON and OFF cells, in the absence of noise, i.e. R→∞. The optimal weights wi are the difference
between, while the optimal thresholds θi are the average of two centers of mass 〈s〉i of each interval between
neighboring thresholds (red dashes). B,C. Any ON/OFF population can achieve the same error with the same set of
optimal thresholds and weights but a different constant, w0. B: 6 ON cells (w0 < 0), and 3 OFF and 3 ON cells
(w0 = 0). D. The optimal thresholds equalize not the area under the stimulus density (as in the case of the mutual
information, Eq. 2), but the area under its one-third power (Eq. 6). The optimal thresholds are shown for the large

population regime and a Laplace distribution. E. The cumulative optimal thresholds
´ θ(x)
−∞ p(θ′)dθ′. F. The infomax

thresholds partition the Laplace distribution into intervals that code for stimuli with higher likelihood of occurrence,
while minimizing the MSE favors rarer stimuli near the tails of the distribution.

of binary Poisson neurons with thresholds θi

y =
N∑
i=1

wi ni + w0. (3)

The weights wi, constant w0 and thresholds θi are optimized to minimize the mean square estimation error
(MSE).

Accuracy of the optimal linear readout without noise. We first consider the scenario of low noise
(R → ∞), in which case the limitation on the accuracy of the stimulus reconstruction comes solely from the
discreteness of the rate functions of each cell in the population. Unlike maximizing the information, when mini-
mizing the MSE both weights and thresholds depend on the stimulus distribution p(s) (Figure 3). Interestingly,
we find that in this low noise limit, the optimal MSE is proportional to 1/N2 and is the same for all ON/OFF
mixtures, including the homogeneous population. The optimal weights are given by

wi = 〈s〉i − 〈s〉i−1 (4)

where 〈s〉i are the centers of mass of intervals of p(s) intersected by neighboring thresholds (Methods Eq. 15,
Figure 3A). The optimal thresholds are the average of two neighboring centers of mass

θi =
1

2
(〈s〉i + 〈s〉i−1). (5)

The constant term and the stimulus interval not coded by any cell depend on the ON/OFF mixture (Fig-
ure 3B,C). In the large population regime, we can rewrite the thresholds θi as a continuous function θ(x) of the
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cumulative stimulus space x = i/N between 0 and 1. Interestingly, the optimal thresholds equalize not the area
under the stimulus density, as in the case of the mutual information (Eq. 2), but the area under its one-third
power

x(θ) =
1

Z

ˆ θ

−∞
p(θ′)1/3 dθ′ (6)

where Z is a normalization factor. We invert this relationship to derive the optimal thresholds θ(x). Since
the optimal MSE depends on the stimulus distribution, from now on we consider the Laplace distribution
p(s) = 1/2 e−|s|, which arises from fits produced by filtering natural images with difference-of-Gaussian linear
filters corresponding to center-surround receptive fields [13, 5]. In this case, the optimal thresholds can be
derived from Eq. 6 (Figure 3D):

θ(x) =

{
3 log(2x), x ≤ 1

2

−3 log(2(1− x)), x > 1
2 .

(7)

The infomax thresholds are the same except that the pre-factor is 1 instead of 3, making them less spread out in
the tails (Figure 3D). In particular, the largest thresholds (in magnitude) are ±3 log(2N) when optimizing the
MSE, three times as large as in the infomax case, ± log(2N). To further compare the optimal thresholds from

minimizing the MSE and the infomax solution, we also plot the cumulative optimal thresholds
´ θ(x)
∞ p(θ′)dθ′

(Figure 3E). While the optimal strategy when maximizing the information is to emphasize stimuli with higher
likelihood of occurring, minimizing the MSE of the optimal linear readout pushes thresholds towards relatively
rare stimuli near the tails of the stimulus distribution (Figure 3F).

Mixed ON/OFF populations in the presence of noise. When we introduce noise into the system so
that the maximum expected spike count R is order 1, mixed ON/OFF populations show a dramatic improvement
of the MSE over predominantly homogeneous populations (Figure 4A). For the Laplace distribution we have
considered so far, and different noise values, the optimal fraction of OFF cells in the population is α = 1/2.
Although there is a unique best ON/OFF mixture, the performance of populations with similar proportions
of ON and OFF neurons is similar (i.e. the MSE around α = 1/2 is flat), while the homogeneous population
has the highest MSE. As the noise decreases (R increases), this difference in performance between the mixed
and homogeneous populations becomes even more dramatic, see for example R = 1 (Figure 4A). For a large
population, where we assume small difference between two neighboring thresholds, we can can derive the
asymptotic limit (SI Appendix) by expanding p(s) around each threshold to determine how the MSE scales with
the population size N and the noise level R. For mixed ON/OFF populations, the variance term dominates
the MSE scaling as 1/N , while the constant term (determined solely by the discreteness of the rate functions)
remains proportional to 1/N2 [33]. For homogeneous populations, the variance term still dominates the MSE
scaling as log2(RN)/(RN), while the constant term as log(RN)/(RN).

In addition to the big difference in coding performance between mixed and homogeneous populations, the
presence of noise also qualitatively changes the distribution of optimal thresholds (Figure 4B). In the asymptotic
limit, the thresholds for a mixed population with an equal number of ON and OFF cells follow logarithmic
profiles as a function of cumulative stimulus space (x = i/N) similar to the noiseless case (Eq. 7), except that
the pre-factor is 2 instead of 3. This is also the case for any population where neither cell type predominates over
the other, see for instance the population with 2/3 OFF cells and 1/3 ON cells (Figure 4C, red, blue). Thus,
the noise has the effect of concentrating the thresholds near more likely stimuli, increasing the redundancy of
the code.

When there is a pronounced over-representation of one cell type in the mixture (as in the extreme case of
the homogeneous population), the optimal thresholds θ(x) exhibit a distinct asymmetry. The thresholds corre-
sponding to the more abundant population are distributed linearly with x, while the thresholds corresponding to
the less abundant population are distributed logarithmically with x, as before (SI Appendix). We demonstrate
this asymmetry in the extreme case of the homogeneous population, e.g. all ON neurons (Figure 4B,C, black):

θ(x) =

−(1− x) log(RN), 0 < x ≤
(

1−
√
2

log(RN)

)−1
−2 log(1− x),

(
1−

√
2

log(RN)

)−1
< x ≤ 1.

(8)
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Figure 4. Optimal linear decoding of stimuli with noise favors different ON/OFF mixtures. A. The MSE
as a function of the fraction of OFF cells, α, for a different maximum spike count, R. The MSE was normalized to the
MSE for the homogeneous population of all ON cells. The MSE is shown for N = 100 cells and for the Laplace
distribution. B. The optimal thresholds for the homogeneous population partition the Laplace stimulus distribution
starting with a much larger threshold than the mixed population with 2/3 OFF cells (blue) and 1/3 ON cells (red). C.
The optimal thresholds for the Laplace distribution for a homogeneous population (black) and a mixed population with
2/3 OFF cells (blue) and 1/3 ON cells (red). In B and C, R = 1. Note the difference in the optimal threshold
distribution between the mixed ON/OFF and the homogeneous ON population, especially for small x = i/N
(logarithmic vs. linear).

Moreover, the smallest threshold for the homogeneous population is much larger than the smallest threshold
for any mixed population, suggesting that there is a large region of stimuli that is not coded by any cell in the
homogeneous case.

In summary, we conclude that introducing noise has a dramatic effect on the coding efficiency of different
ON/OFF mixtures when the MSE of the optimal linear readout is minimized: coding by mixed ON/OFF popu-
lations is much better compared to coding by populations dominated by one cell type, such as the homogeneous
population. When considering the optimal thresholds, we find that introducing noise does not qualitatively
affect the shape of the optimal threshold profile for mixed ON-OFF populations compared to the noiseless case
(except for a constant pre-factor). However, for the homogeneous population, the addition of noise qualitatively
changes the shape of the optimal thresholds, leaving a large stimulus region that is not coded by any cell.

The optimal ON-OFF mixture of the linear readout depends on the asymmetry in the stimulus
distribution. Depending on the sensory modality, the distribution of natural stimuli may be asymmetric around
the most likely stimulus. In the case of vision, it has been shown that the distribution of contrasts in natural
images is indeed skewed towards more negative values [30, 39]. Therefore, we instead consider an asymmetric
Laplace distribution p(s) ∝ es/τ− for s < 0 and p(s) ∝ e−s/τ+ for s ≥ 0. In this case, by minimizing the MSE
we predict that the optimal ON/OFF mixture will be tuned to these stimulus asymmetries. At a fixed noise
(or maximum spike count R), increasing the negative stimulus bias favors more OFF cells of the optimally
configured population (Figure 5A,B). Similarly, increasing the positive bias in the stimulus distribution would
favor an increase of the ON cells in the population. At a fixed level of stimulus bias, increasing the value of the
noise accentuates the asymmetry in the optimal ON/OFF mixture (Figure 5C).

In summary, our theory predicts different optimal ON-OFF mixtures at which the lowest MSE is achieved
depending on an asymmetry in the stimulus distribution and changing the noise level. Even in nature, the
relative predominance of ON and OFF cells in populations can be different, for instance in the retinas of
different species [10, 30]. Therefore, if we know the natural stimulus distribution being encoded by a population
and the bounds on cells’ firing rates, we can predict the optimal ON/OFF ratio, as well as the tuning properties
of the cells and compare them to experimental observations. We anticipate that our theory would be a good
match in early sensory populations of primary sensory neurons, which have mostly likely been adapted to the
statistics of the stimulus distribution.
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Figure 5. The optimal ON/OFF mixture derived from the linear readout is tuned to asymmetries in
the stimulus distribution. A. The MSE as a function of the fraction of OFF cells in a population when constraining
the maximum spike count, R. The MSE was normalized to the MSE for the homogeneous population of all ON cells.
The MSE is shown for an asymmetric Laplace distribution with varying negative to positive bias −/+ and noise level
R = 1 and N = 100. B. The optimal fraction OFF cells as a function of stimulus bias for the asymmetric Laplace
distribution and noise level R = 1. C. Same as A but for an asymmetric Laplace distribution with a negative bias
−/+ = 2 and varying noise.

Discussion

Information in neural circuits is processed by many different cell types, but it remains a challenge to understand
how these distinct cell types work together. Here we treat a puzzling aspect of neural coding, how do discrete
cell types conspire to collectively encode a single relevant variable? We use information theoretic measures to
offer a plausible explanation: that neurons diversify their responses to maximize the coding efficiency of the
range of occurring stimuli given biophysical constraints. The efficient coding framework we developed covers
two aspects of the population code: (1) how to optimally split a population into ON and OFF pathways, and
(2) how to allocate the thresholds of the individual neurons in the population as a function of the noise level,
the stimulus distribution and the optimality measure.

We first examined optimal coding by maximizing mutual information: when constraining the maximum
firing rate, all ON/OFF mixtures yield the same maximal information about the stimulus when thresholds are
optimized (Figure 2). The optimal thresholds divide stimulus space into equal intervals with size dependent on
the noise, except for the edge intervals coded by the largest ON and OFF thresholds. However, the system with
an equal number of ON and OFF cells is most efficient, because it conveys the highest information per spike
(Figure 2). The invariance in coding performance by different ON/OFF mixtures is also present when we demand
the stimulus to be read out by an optimal linear readout, but only in the absence of noise (Figure 3). In the
biologically relevant regimes of non-negligible noise, noise has a dramatic influence on the optimal performance
realized by different ON/OFF mixtures (Figure 4). Populations with a similar number of ON and OFF cells
have a much smaller decoding error than populations dominated by one cell type. The extreme case of the
homogeneous population performs dramatically worse than any mixed population. Our theory predicts the
optimal ON/OFF mixture depending on the asymmetry in the stimulus distribution and the amount of noise
– thus making it relevant for sensory systems beyond the retina where ON and OFF pathways are encountered
(Figure 5). However, the distribution of optimal thresholds is not much affected by the presence of noise, except
for a scaling factor. The huge difference in performance reflected in the MSE between the homogeneous and any
mixed population seems to be due to the threshold distribution – the optimal thresholds acquire qualitatively
a very different structure in the homogeneous case, leaving a large stimulus region not coded by any cell.

How comparable is coding by different ON/OFF mixtures for the two optimality measures? Generally, the
infomax criterion implements an optimal strategy which emphasizes stimuli that occur with higher probability.
In contrast, minimizing the mean square error of the linear readout implements a more conservative strategy
that utilizes more cells in the encoding of rarer stimuli due to a larger error penalty (Figure 3F, 4B). What
ON-OFF thresholds one finds in a biological system could be indicative of the optimality measure utilized by
that system.
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Our work predicts the firing thresholds of neuronal populations in the high noise regime, which corresponds
to short coding windows commonly encountered in biology; for instance, in the mammalian retina computations
can be performed with an average of a few spikes per coding window [28, 42, 29]. In the low noise regime when
the coding window is sufficiently long, or there is a large number of neurons, our results agree with previous
studies on infomax and the optimal linear readout [23, 25, 45]. Efficient coding in the high noise regime has
previously been examined, but only in terms of the transfer function of a single neuron [7, 27]. Using numerical
simulations it was shown that the optimal transfer function is binary, as commonly encountered in biological
systems [7, 27]. We go beyond this work and provide analytical solutions for how a population of binary neurons
should coordinate their response ranges to optimally represent a given stimulus in the realistic regimes of short
encoding times.

In our theory we assumed that variability in the spiking output of each cell is the dominant source of noise;
this is in agreement with the small shared variability observed among retinal ganglion cells [29]. However,
nearby ganglion cells can also exhibit strong noise correlations under certain conditions, presumably arising
from noise in shared presynaptic neurons as early as the photoreceptors [1], or produced by circuit interactions
[40, 47]. We expect that our results will continue to hold at low levels of input noise. At high levels of input
noise, a different coding strategy may be optimal as previous work has shown that neurons perform redundant
coding whereby the thresholds converge to the same value [40, 16, 21, 8].

Our predictions for the optimal ON/OFF mixture and the population thresholds could be directly compared
to experiment. For instance, when deriving the optimal ON/OFF mixture based on the optimal linear readout,
the imbalance in ON vs. OFF cell arises as a result of asymmetries in the stimulus distribution and the amount of
noise. Indeed, if one analyzes raw stimulus values, such as the light intensity in a natural scene or the intensity of
natural sounds, the resulting distributions can be very skewed towards negative stimuli [31, 12, 44, 39, 36, 15, 30].
Our theory then predicts that more resources should be spent on OFF, which is consistent with the predominance
of OFF retinal ganglion cells in the retinas of a variety of species [10, 30]. Other related theories of ON/OFF
splitting which have examined efficient coding including the spatial dimension, have also shown that OFF cells
predominate [19, 30]. Besides predicting the optimal ON/OFF ratio, in our encoding model of one stimulus
variable, we derive how the optimal ON and OFF subpopulations should coordinate their thresholds to achieve
optimal encoding.

Given the ubiquity of ON/OFF pathway splitting in different sensory modalities and species, it may be
possible to test our predictions in other sensory systems where the neuronal responses properties may be
different, depending on differences in the natural stimulus distribution and the bounds on cells’ firing rates.
The challenge in each case might be to determine the natural stimulus distributions that the populations
might be optimized to encode. Comparing the predicted optimal and the measured threshold distributions
would provide a test whether the efficient coding criteria proposed here are a likely constraint that shapes the
evolution of sensory systems.

Materials and Methods

Mutual information. The Shannon mutual information between the stimulus s and the spiking response n
of the population is the difference between response and noise entropy:

I(s,n) = H(n)−H(n|s) = −〈log p(n)〉n +
N∑
i=1

〈log p(ni|s)〉ni,s (9)

where 〈·〉x denote averages over the distribution p(x) and p(n) = 〈p(n|s)〉s. We assume that stimulus encoding
by all neurons is statistically independent conditional on s. Given the noise model, knowing the stimulus s
unambiguously determines the response firing rate ν. Therefore, we can replace p(ni|s) with p(ni|ν) which is

Poisson distributed: p(ni|ν) = [νT ]ni

ni!
e−νT .

For a binary response function with two firing rate levels, 0 and νmax, we can lump together all states with
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nonzero spike counts into a single state which we denote as 1. Correspondingly, the state with zero spikes is 0:

p(0|ν = 0) = 1, p(1|ν = 0) = 0,

p(0|ν = νmax) = q, p(1|ν = νmax) = 1− q, (10)

where q = e−R and R = νmaxT denote the level of noise in the system.
The optimal cumulative thresholds θ1 ≤ . . . ≤ θN divide the stimulus into N + 1 intervals which have equal

area

pi = p =

ˆ θi+1

θi

ds p(s) =
1− q

q−q/(1−q) +N(1− q)
(11)

except for the two ‘edge’ intervals,

pedge =

ˆ θ1

−∞
ds p(s) =

ˆ ∞
θN

ds p(s) =
p

1− q
, (12)

and the ‘silent’ interval that separates the ON and OFF thresholds, p0 = 1− (N − 2)p− 2pedge (SI Appendix).
Note that for the homogeneous population, p′0 = 1− (N − 1)p− pedge.

Optimal linear readout. No noise (R→∞). Here we consider the ON and OFF thresholds separately.
In a population of N neurons, we assume that there are N− OFF neurons and N+ ON neurons. The mean
square error can be written as:

E = 〈(s− y)2〉 = 〈(s− w0)2〉+ wTCw − 2wTU (13)

where y is the stimulus estimate from Eq. 3, C denotes the matrix of pairwise correlations between the cells’
responses, Cij = Ci for i ≥ j,and U denotes the correlation between response and stimulus:

Ci = 〈Θ(s− θi)〉 and Ui = 〈sΘ(s− θj)〉 (14)

with i = 1, . . . , N+ for the ON cells and similarly for the OFF cells with i = 1, . . . , N−. In the optimal solution
the ON and OFF responses do not overlap; thus, there is no correlation between them. Optimizing the error
with respect to the weights gives Eq. 4 for the optimal weights, while optimizing with respect to the threshold
gives Eq. 5 for the optimal thresholds, with the centers of mass 〈s〉i defined as:

∑
0≤j≤i

wj =

´ θi+1

θi
ds s p(s)´ θi+1

θi
ds p(s)

= 〈s〉i, 1 ≤ i ≤ N (15)

where we have defined θN+1 = ∞. Optimizing with respect to the constant term yields for the homogeneous
population:

w0 =

´ θ1
−∞ ds s p(s)´ θ1
−∞ ds p(s)

(16)

and for a mixed population:

wm0 =

´ θON
1

θ1OFF ds s p(s)´ θON
1

θ1OFF ds p(s)
(17)

where θ1
OFF denotes the largest OFF threshold and θ1

ON denotes the smallest ON threshold in the population.
Non-negligible noise (finite R). We normalize readout, for convenience

y =
1

R

∑
i

wini + w0. (18)

The error can be written as before (Eq. 13) with correlations

Cij =
1

R
〈〈ni〉n〈nj〉n〉+

1

R2
δij〈〈ni〉n〉 = 〈Θ(s− θi)Θ(s− θj)〉+

1

R
δij〈Θ(s− θi)〉 (19)
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where δij = 1 if i = j and otherwise 0. If we define Ci = 〈Θ(s− θi)〉 as before, then for i ≥ j:

Cij = Ci +
1

R
δijCi and now Ui = 〈sΘ(s− θj)〉 − w0Ci (20)

with i = 1, . . . , N+ for the ON cells and similarly for the OFF cells with i = 1, . . . , N−. Optimizing with respect
to the ON (OFF) weights:

w = C−1U (21)

and optimizing with respect to the ON (OFF) thresholds:

θi = w0 +
∑
j≤i

wj −
wi
2

(
1−R−1

)
, (22)

with i = 1, . . . , N+ for the ON cells and similarly for the OFF cells with i = 1, . . . , N−. To solve these equations
numerically, we implement an iterative procedure that rapidly converges to the optimal solution: starting from
an ansatz for the thresholds, we compute C and U and obtain w from Eq. 21, which is used to derive the new
set of thresholds.
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