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Abstract1

In many sensory systems the neural signal is coded by the coordinated response of heterogeneous populations2

of neurons. What computational benefit does this diversity confer on information processing? We derive an3

efficient coding framework assuming that neurons have evolved to communicate signals optimally given natural4

stimulus statistics and metabolic constraints. Incorporating nonlinearities and realistic noise, we study optimal5

population coding of the same sensory variable using two measures: maximizing the mutual information between6

stimuli and responses, and minimizing the error incurred by the optimal linear decoder of responses. Our theory7

is applied to a commonly observed splitting of sensory neurons into ON and OFF that signal stimulus increases8

or decreases, and to populations of monotonically increasing responses of the same type, ON. Depending on9

the optimality measure, we make different predictions about how to optimally split a population into ON and10

OFF, and how to allocate the firing thresholds of individual neurons given realistic stimulus distributions and11

noise, which accord with certain biases observed experimentally.12

Introduction13

The efficient coding hypothesis states that sensory systems have evolved to optimally transmit information14

about the natural world given limitations on their biophysical components and constraints on energy use [1].15

This theory has been applied successfully to explain the structure of neuronal receptive fields in the mammalian16

retina [2,3] and fly lamina [4,5] based on the statistics of natural scenes. Similar arguments have been made to17

explain why early sensory pathways often split into parallel channels that represent different stimulus variables,18

for example different auditory waveforms [6], or local visual patterns [7]. Even neurons that encode the same19

sensory feature often split further into distinct types. One such commonly encountered diversification is into ON20

and OFF types: ON cells fire when the stimulus increases and OFF cells when it decreases. This basic ON-OFF21

dichotomy is found in many modalities, including vertebrate vision [8], invertebrate vision [9], thermosensation22

[10], and chemosensation [11]. Furthermore, among the neurons that encode the same sensory variable with the23

same sign, one often encounters distinct types that have different response thresholds, for example, among touch24

receptors [12] and electroreceptors [13]. The same principle seems to apply several synapses downstream from the25

receptors [14], and even in the organization of the motor periphery, where motor neurons that activate the same26

muscle have a broad range of response thresholds [15]. In the present article we consider this sensory response27

diversification among neurons that represent the same variable and explore whether it can be understood based28

on a nonlinear version of efficient population coding.29

One reason why the ON and OFF pathways have evolved may be to optimize information about both30

increments and decrements in stimulus intensity by providing excitatory signals for both [16]. For instance,31

if there were only one ON neuron, then such a cell would need high baseline firing rate to encode stimulus32

decrements, which can be very costly. We, and others have previously addressed the benefits for having ON and33

OFF cells in a small population of just two cells [17–19]. However, it remains unclear how a population of many34

neurons could resolve this issue by tuning their thresholds so that they jointly code for the stimulus. Since ON35

and OFF neurons often exhibit a broad distribution of firing thresholds [12–15], an important question is thus,36
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what distribution of thresholds yields the most efficient coding. Here we study optimal information transmission37

in sensory populations comprised of different mixtures of ON and OFF neurons, including purely homogeneous38

populations with neurons of only one type, e.g. ON, that code for a common stimulus variable by diversifying39

their thresholds.40

Traditionally, efficient population coding has either optimized linear features in the presence of noise [2, 3,41

20,21], or nonlinear processing in the limit of no noise or infinitely large populations [22–25]. We simultaneously42

incorporate neuronal nonlinearities and realistic noise at the spiking output, which have important consequences43

in finite populations of neurons, as encountered biologically. We develop the problem parametrically in the44

neuronal noise and the distribution of stimuli that the cells encode, allowing us to make general predictions45

applicable to different sensory systems.46

What quantity might neural populations optimize? We consider two alternative measures of optimal coding47

that are in common use [22, 26–30]: first we maximize the mutual information between stimulus and response48

without any assumptions about how this information should be decoded, and second we optimize the estimate49

of the stimulus obtained by a linear decoder of the response. The two criteria lead to different predictions both50

on the optimal ON/OFF ratio and the distribution of optimal thresholds. When constraining the maximal51

firing rate of each cell, we find that counter to our expectations the mutual information is identical for any52

mixture of ON and OFF cells once the thresholds of all cells are optimized. This result is independent of the53

shape of the stimulus distribution and the level of neuronal noise. However, the total mean spike count is the54

lowest for the population with equal numbers of ON and OFF cells, making this arrangement optimal in terms55

of bits per spike. Optimizing the linear decoder requires determining not only the cells’ thresholds, but also56

the decoding weights in order to minimize the mean square error between the stimulus and its estimate. Under57

this criterion, the optimal ON/OFF mixture and cells’ thresholds depend on the asymmetries in the stimulus58

distribution and the noise level, and can account for certain biases observed experimentally in different sensory59

systems. We also make distinct predictions for the optimal distribution of thresholds under the two optimality60

measures, noise level and stimulus distributions, providing insight into the diverse coding strategies of these61

populations across different sensory modalities and species where these differences are encountered.62

Results63

Population coding model64

We develop a theoretical framework to derive the coding efficiency and response properties of a population of65

sensory neurons representing a common stimulus (Fig. 1A). We specifically consider populations with responses66

of opposite polarity, ON and OFF, which increase or decrease their response as a function of the common sensory67

variable; thus, our theory applies to any sensory system where ON and OFF pathways have been observed, for68

example, heat-activated and cold-activated ion channels in thermosensation [31, 32], mechanosensory neurons69

[33, 34], or retinal ganglion cells which code for the same spatial location and visual feature with different70

thresholds [18]. As a special case, we consider populations of neurons with a single polarity, which increase71

their response as a function of the common sensory variable, for example, olfactory receptor neurons that code72

for the same odor at different concentrations [35–37]. Each model neuron encodes information about a common73

scalar stimulus through the spike count observed during a short coding window. The duration of this coding74

window, T , is chosen based on the observed dynamics of neuronal responses, which is typically in the range of75

10-50 ms [28,38]. Neuronal spike counts are stochastic and their mean is modulated by the stimulus through a76

discrete response function with a finite number of responses. Discretization in neural circuits occurs on many77

levels [39]; for example, previous experimental studies have found that sensory neurons use discrete firing rate78

levels to represent continuous stimuli [4, 27, 40]. Furthermore, theoretical work has shown that the optimal79

neuronal response functions are discrete under different measures of efficiency [27,41–43].80

The best way to discretize a neural signal depends on many factors, including noise, stimulus statistics81

and biophysical constraints [39]. Under the constraint of short coding windows encountered in many sensory82

areas, optimizing a single response function results in a discretization with two response levels, i.e. a binary83

response function [27, 28, 41–43]. Binary response functions also offer a reasonable approximation of neural84

behavior in several systems [28, 44, 45]. Therefore, we assumed that ON (OFF) neurons fire Poisson spikes85
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Figure 1. Neuron model and population coding framework. A. Framework schematic. A stimulus s from a
probability distribution p(s) is encoded by the spiking responses of a population of ON (red) and OFF (blue) cells. We
optimize the cells’ nonlinearities by maximizing the mutual information between stimulus and spiking response. B.
Each cell is described by a binary response nonlinearity ν with a threshold θ and maximal firing rate νmax. During a
coding window of fixed duration T the stimulus is constant and the spike count k is drawn from a Poisson distribution
with a mean rate ν. C. When measuring coding efficiency using the mutual information between stimulus and spike
count response, the neurons’ thresholds can be interpreted as quantiles of the original stimulus distribution, thus
mapping an arbitrary stimulus distribution p(s) into a uniform distribution (four thresholds shown).

with an average mean count νmax whenever the stimulus intensity is above (below) their threshold θi, and zero86

otherwise, i.e. νi(s) = νmaxΘ(s − θi) for ON neurons and νi(s) = νmaxΘ(θi − s) for OFF neurons (Fig. 1B),87

where Θ is the Heaviside function.88

Maximal mutual information for mixtures of ON and OFF neurons89

What should be the number of ON vs. OFF cells and the distribution of their firing thresholds in a population90

of neurons that optimally represent a given stimulus? To answer these questions, we first maximize the Shannon91

mutual information between stimulus and population response, in search of a simple efficient coding principle92

that could explain ON-OFF splitting and, more generally, threshold diversification. We perform the optimization93

while constraining the expected spike count R = νmaxT for each cell. Biophysically, such a constraint on the94

maximal firing rate arises naturally from refractoriness of the spike-generating membrane. We have analytically95

proven the following theorem (see Methods):96

Equal Coding Theorem: For a population of any number N of ON and OFF Poisson neurons coding a97

one-dimensional stimulus in a fixed time window T by binary rate functions with maximal firing rate νmax, the98

mutual information is identical for all ON/OFF mixtures when the thresholds are optimized, for all N , νmax99

and stimulus distributions.100

Specifically, the maximal information is achieved in the case when the ON and OFF cells do not overlap,101
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so that all ON thresholds are bigger than all OFF thresholds. For example, consider a mixed population of102

ON and OFF cells. To calculate the information conveyed by this entire population, we imagine first observing103

only the ON cells, and in a second step the remaining OFF cells. If one of the ON cells fired a spike, we104

know the stimulus is in that cell’s response range, and therefore we do not learn additional information from105

observing the OFF cells. If none of the ON cells fired, we gain additional information from observing the OFF106

cells. One can make the same argument if the remaining cells are all ON cells, or indeed any other mixture.107

Careful consideration shows that the maximal information gained from that remaining cell population is the108

same whether they are ON cells or OFF cells (see Methods and S1 Text). Hence, the homogeneous and any109

mixed ON-OFF population achieve the same maximal information.110

The value of this maximal information depends on the expected spike count, R = νmaxT . We introduce the111

parameter q = e−R, which ranges from q = 0 in the noiseless limit of high firing rate, and q = 1 in the high112

noise limit of low firing rate. We show that for any ON-OFF mixture (including the homogeneous with only113

ON cells), the maximal information achieved with optimized thresholds is (Fig. 2A, see Methods)114

I = log
(

1 +N(1− q)qq/(1−q)
)
. (1)

We further ensured that the conclusion of equal coding holds in a population of two cells independent of the115

Poisson noise model we assumed, which has zero noise when the the firing rate of a neuron is zero. Specifically,116

we investigated information transmission introducing a spontaneous firing rate under the same Poisson model,117

as well as empirically measured sub-Poisson noise from salamander retinal ganglion cells [17,28] (see S1 Text).118

The above equation 1 allows us to exactly compute the maximal information that would be reached by a119

population of neurons as a function of the number of neurons N and the level of noise q assuming optimality,120

without resorting to expensive numerical calculations [46]. Even if real biological systems do not perform121

optimally, this quantity could be used as an upper bound for the largest possible information that the system122

could transmit under the appropriate constraints. In the noiseless limit, R→∞ (i.e. q = 0), where the neurons123

are deterministic, I reaches its upper bound I = log(N + 1). The effect of noise is most prominent when R124

is of order 1/N , so that the total spike count RN is of order 1, implying that the signal-to-noise of the entire125

population is of order 1. We call this the high noise regime, and here we obtain I → log(RN/e + 1), where126

e denotes exp(1).127

Optimal distribution of thresholds128

We next asked what distribution of thresholds in the population of ON and OFF cells achieves this maximal129

mutual information. In the case of a discrete rate function, we can replace θi by the corresponding cumulative130

threshold (fraction of stimuli below threshold), which essentially maps the stimulus distribution into a uniform131

distribution from 0 to 1 (Fig. 1C). Since the stimulus dependence enters only through these values, the maximal132

mutual information is independent of the stimulus distribution p(s), provided that the stimulus cumulative133

distribution is continuous. Instead, the information depends on the areas of p(s) between consecutive thresholds.134

It is therefore useful to define the optimal threshold intervals pi =
´ θi+1

θi
ds p(s) where the neurons’ thresholds135

are ordered θ1 ≤ . . . ≤ θN (and we define the special θ0 = −∞ and θN+1 =∞). We find a surprisingly simple136

structure for the optimal pi (Fig. 2B,C). The optimal thresholds divide stimulus space into intervals of equal137

area, which depend on the noise level, q,138

pi = p =

ˆ θi+1

θi

ds p(s) =
1− q

q−q/(1−q) +N(1− q)
(2)

for all i, except for the two ‘edge’ intervals,139

pedge =

ˆ θ1

−∞
ds p(s) =

ˆ ∞
θN

ds p(s) =
p

1− q
, (3)

and the ‘silent’ interval that separates the ON and OFF thresholds, p0 = 1− (N − 2)p− 2pedge (see Methods).140

Note that for the homogeneous population, p′0 = 1− (N − 1)p− pedge. We call this optimal threshold structure141

the infomax solution.142
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Figure 2. Mutual information when constraining the expected spike count. A. The mutual information
between stimulus and response for any mixture of N ON and OFF cells is identical when constraining the expected
spike count, R. B. The optimal threshold intervals for all possible mixtures of ON (red) and OFF (blue) cells in a
population of N = 6 cells that achieve the same mutual information about a stimulus from an arbitrary distribution
p(s). C. The optimal threshold intervals for the equal ON-OFF mixture in a population of N = 6 cells and different
values of R (equivalently, noise); see also D. Top: low noise (RN →∞); middle: intermediate noise (RN = 1); bottom:
high noise (RN → 0). D. The optimal threshold intervals as a function of 1/RN . E. The mean spike count required to
transmit the same information (see A) by populations with a different fraction of OFF cells (α), normalized by the
mean spike count of the homogeneous population with α = 0. The different curves denote RN = {0.1, 1, 5, 100}.

We consider several limiting cases: first, a large population N � 1 and maximal firing rate per neuron R,143

which is much larger than 1/N , i.e. 1− q = O(1). We call this the large population regime. In this regime,144

pedge = p = p0 = 1/(N + 1), so the N thresholds divide stimulus space into N + 1 equal intervals (Fig. 2C145

top, D). In this large population regime, we can rewrite the optimal thresholds as a continuous function of146

cumulative stimulus space; we replace θi with θ(x), where x = i/N is the threshold index between 0 and 1.147

Then the optimal thresholds equalize the area under the stimulus density, x(θ) =
´ θ
−∞ p(θ′) dθ′. Therefore,148

the population of cells achieves ‘histogram equalization’ in that it uses all the available response symbols at149

equal frequency, as has been shown before for a single cell with many discrete signaling levels in the limit of no150

noise [4, 47].151

In contrast, when the noise is high so that RN → 0, the system performs redundant coding so that each152

pi is infinitesimally small and the only two substantial threshold intervals are the edge intervals pedge = 1/e,153

and the silent interval, p0 = 1 − 2/e, which separates the ON and OFF thresholds (Fig. 2C bottom, D).154

This p0 is the only non-noisy response state where the firing rate of each cell is zero. This implies that the155

optimal solution is to place all ON thresholds at roughly the same value, and similarly all OFF thresholds at156

another value (Fig. 2C bottom). This solution maximizes redundancy across neurons in the interest of noise157
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reduction [2, 48, 49], consistent with various experimental and theoretical work [2, 48, 49]. Interestingly, for a158

small population of two cells, we (and others) have previously shown that in the presence of additional input159

noise before the signal passes through the nonlinearity, this ‘redundant coding’ regime exists for larger range of160

noise values [17–19].161

In summary, we have derived the total mutual information and distribution of optimal thresholds in a162

population of binary neurons coding for the same stimulus variable for any stimulus distribution and noise level.163

While our results agree with previous work in the limit of no noise and an infinite population, we make unique164

and novel predictions – notably the surprisingly regular structure of the threshold intervals and invariance in165

information transmission for any ON/OFF mixture – in populations of any number of neurons and with sizable166

noise relevant for majority sensory systems.167

Optimizing information per spike predicts equal ON/OFF mixtures168

Our analysis so far showed that maximizing the information equally favors all ON-OFF mixtures independent169

of the noise level, although the exact distribution of population thresholds at which this information is achieved170

depends on noise. However, different sensory systems show dominance of OFF [50], dominance of ON [34, 51],171

or similar numbers of ON and OFF [34]. Therefore, we next explored what other criteria might be relevant172

for neural systems under the efficient coding framework. We considered that neural systems might not just be173

optimized to encode as much stimulus information as possible, but might do so while minimizing metabolic cost.174

Therefore, for each ON-OFF mixed population achieving the same total information (Fig. 2A), we calculated175

the mean spike count used to achieve this information. In the large population regime, if α denotes the fraction176

of OFF cells, the mean spike count per neuron is r(α) = R(α2 + (1−α)2)/2 (Methods). This mean spike count177

per neuron is minimized at α = 1/2, where it is half of the mean spike count for the homogeneous population,178

r(0) = R/2 (Fig. 2E). This implies that it is most efficient to split the population into an equal number of ON179

and OFF cells. As the noise increases, the relative benefits of the equally mixed relative to the homogeneous180

population decrease (Fig. 2E). In the high noise regime, all mixtures produce roughly the same mean spike181

count per neuron of R/e (Fig. 2E). Therefore, if a sensory system is optimized to transmit maximal information182

at the lowest spike cost, our theory predicts similar numbers of ON and OFF neurons, which is consistent with183

ON-OFF mixtures encountered in some sensory systems [34].184

Minimizing mean square error of the optimal linear readout185

The efficient coding framework does not specify which quantity neural systems optimize to derive their structure.186

Until now, we have used the mutual information as a measure of coding efficiency because it tells us how well187

the population represents the stimulus without regard for how it can be decoded. An alternative criterion188

for coding efficiency is the ability of downstream neurons to decode this information. A simple biologically189

plausible decoding mechanism, commonly used in previous studies, is linear decoding [22, 26, 29, 30, 52]. Does190

this alternative measure of efficiency generate the same predictions for how sensory populations coding for the191

same stimulus variable should allocate their resources to ON vs. OFF neurons? Here, we examine the accuracy192

of a downstream neuron that estimates the stimulus value s using a weighted sum of spike counts ni of the193

upstream population of neurons with thresholds θi (Fig. 3A)194

y =
N∑
i=1

wi ni + w0. (4)

The weights wi, constant w0 and thresholds θi are optimized to minimize the mean square estimation error195

(MSE).196

Accuracy of the optimal linear readout without noise197

We first consider the scenario of low noise (q → 0, or equivalently, R → ∞), in which case the limitation on198

the accuracy of the stimulus reconstruction comes solely from the discreteness of the rate functions of each cell199
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in the population (Fig. 3B). Unlike maximizing the information, when minimizing the MSE both weights and200

thresholds depend on the stimulus distribution p(s) (Fig. 3).201

Interestingly, we find that in this low noise limit, the optimal MSE is proportional to 1/N2 and is the same202

for all ON/OFF mixtures, including the homogeneous population with all cells of the same type (Fig. 3C,D; see203

Methods). The optimal decoding weights are given by204

wi = 〈s〉i − 〈s〉i−1 (5)

where 〈s〉i are the centers of mass of intervals of p(s) intersected by neighboring thresholds205

∑
0≤j≤i

wj =

´ θi+1

θi
ds s p(s)´ θi+1

θi
ds p(s)

= 〈s〉i, 1 ≤ i ≤ N (6)

where we have defined θN+1 =∞. The optimal thresholds are the average of two neighboring centers of mass206

θi =
1

2
(〈s〉i + 〈s〉i−1). (7)

The constant term and the stimulus interval not coded by any cell depend on the ON/OFF mixture (Fig. 3C,D;207

Methods). This gives a recursive relationship that from a set of initial thresholds converges to the optimal208

solution (see Methods).209

To see how this threshold distribution is different than the one predicted by the mutual information, we210

first consider the large population regime. As for the mutual information, we can rewrite the thresholds θi as a211

continuous function θ(x) of the cumulative stimulus values x = i/N between 0 and 1. Interestingly, the optimal212

thresholds equalize not the area under the stimulus density, as in the case of the mutual information, but the213

area under its one-third power214

x(θ) = Z

ˆ θ

−∞
p(θ′)1/3 dθ′ (8)

where Z is a normalization factor. This result has been previously derived in the context of minimizing the215

distortion introduced in a pulse-coupled-modulation system due to quantization [53] (reviewed in [54]), as well216

as in the context of neural coding which maximizes the Lp reconstruction error of the maximum likelihood217

decoder, of which the mean squared error is the special case for p = 2 [25].218

We invert the relationship in equation 8 to derive the optimal thresholds θ(x). Since the optimal MSE219

depends on the stimulus distribution, from now on we consider the Laplace distribution p(s) = 1/2 e−|s|, which220

arises when evaluating natural stimulus distributions [23, 55] and has a higher level of sparseness than the221

Gaussian distribution. In this case, the optimal thresholds become (Fig. 3E,F; see Methods):222

θ(x) =

{
−3 log(2x), x ≤ 1

2

−3 log(2(1− x)), x > 1
2 .

(9)

The thresholds derived from maximizing information are the same except that the pre-factor is 1 instead of223

3, making them less spread out in the tails (Fig. 3F). In particular, the largest thresholds (in magnitude) are224

±3 log(2N) when optimizing the MSE, three times as large as in the infomax case, ± log(2N). To highlight the225

different predictions for the optimal thresholds under the two efficiency measures, we also plot the cumulative226

optimal thresholds
´ θ(x)
−∞ p(θ′)dθ′ (Fig. 3G). While the optimal strategy when maximizing the information is to227

emphasize stimuli with higher likelihood of occurring, minimizing the MSE of the optimal linear readout pushes228

thresholds logarithmically towards relatively rare stimuli near the tails of the stimulus distribution (Fig. 3F,G).229

Taken together, we conclude that in the absence of noise our theory derives equal performance of all ON and230

OFF mixtures under the two optimality criteria, information maximization and minimizing the optimal linear231

readout. However, a key difference between the two criteria is the theoretically predicted optimal distribution232

of thresholds.233
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Figure 3. Optimal linear decoding of stimuli. A. Framework schematic. A stimulus s from a probability
distribution p(s) is encoded by the spiking responses of a population of ON (red) and OFF (blue) cells. We optimize
the cells’ nonlinearities by minimizing the mean squared error (MSE) between the original stimulus s and the linearly
reconstructed stimulus y from the spiking response. B. Minimizing the MSE between a stimulus s (black) and its linear
estimate y (blue) by a population of (6) ON and OFF cells, in the absence of noise. We show the optimal weight w1

and the center of mass 〈s〉1 of the first threshold interval (red dashes). C,D. Any ON-OFF population can achieve the
same error with the same set of optimal thresholds and weights but a different constant, w0. C. 6 ON cells (w0 < 0).
D. 3 OFF and 3 ON cells (w0 = 0). E. The optimal thresholds equalize not the area under the stimulus density (as in
the case of the mutual information), but the area under its one-third power (Eq. 8). The optimal thresholds are shown
for the Laplace distribution. F. The information maximizing thresholds partition the Laplace distribution into intervals
that code for stimuli with higher likelihood of occurrence (bottom), while minimizing the MSE pushes thresholds to
favor rarer stimuli near the tails of the distribution (top). Threshold distributions are the same as in E. G. The

cumulative optimal thresholds
´ θ(x)
−∞ p(θ′)dθ′ (compare to E).
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Figure 4. Optimal linear decoding of stimuli with noise depends on the ON/OFF mixture. A. The MSE
as a function of the fraction of OFF cells in the population, α, for a different expected spike count, R. The MSE was
normalized to the MSE for the homogeneous population of all ON cells. The MSE is shown for N = 100 cells and for
the Laplace distribution. Symbols indicate the MSE values realized with the thresholds in B and C. B. The optimal
thresholds for the homogeneous population (black) partition the Laplace stimulus distribution starting with a much
larger first threshold than the mixed population with 2/3 OFF cells (blue) and 1/3 ON cells (red). C. The optimal
thresholds for the Laplace distribution for a homogeneous population (black) and a mixed population with 2/3 OFF
cells (blue) and 1/3 ON cells (red). In B and C, R = 1. Note the difference in the optimal threshold distribution
between the mixed ON/OFF and the homogeneous ON population, especially for small x = i/N (logarithmic in blue
vs. linear in black).

Mixed ON/OFF populations in the presence of noise234

In biologically realistic scenarios with non-negligible noise, however, we find that mixed ON/OFF populations235

show a dramatic improvement of the MSE over predominantly homogeneous populations (Fig. 4A). For the236

Laplace distribution we have considered so far, and different noise values, we find that the optimal fraction237

of OFF cells in the population is α = 1/2. Although there is a unique best ON/OFF mixture, the best238

linear stimulus reconstruction achieved by other populations with ON-OFF mixtures closer to the optimal 1/2239

mixture is similar (i.e. the MSE around α = 1/2 is flat). The worst stimulus reconstruction is achieved by240

the homogeneous population with all cells of ones type (all ON or all OFF), which has the highest MSE. As241

the noise q decreases (R increases) further, this difference in performance between the mixed and homogeneous242

populations becomes quite dramatic, see for example R = 1 (Fig. 4A).243

In addition to the big difference in coding performance between mixed and homogeneous populations, in-244

corporating biologically realistic noise also affects the theoretically derived distribution of optimal thresholds245

(Fig. 4B). While in mixed populations the thresholds are distributed logarithmically towards relatively rare val-246

ues at the tails of the stimulus distribution (Eq. 9; see Fig. 4B,C and Methods), for the homogeneous population247

the optimal thresholds exhibit a distinct asymmetry. A large fraction of thresholds are distributed linearly as248

a function of their index, while the remaining thresholds are distributed logarithmically as before:249

θ(x) =

−(1− x) log(RN), 0 < x ≤
(

1−
√
2

log(RN)

)−1
−2 log(1− x),

(
1−

√
2

log(RN)

)−1
< x ≤ 1,

(10)

although the noise has the effect of concentrating the thresholds near more likely stimuli, increasing the redun-250

dancy of the code. Moreover, the smallest threshold for the homogeneous population is much larger than the251

smallest threshold for any mixed population, suggesting that there is a large region of stimuli that is not coded252

by any cell in the homogeneous case (Fig. 4C), which is the reason for the significantly lower MSE.253

In summary, using the MSE of the optimal linear decoder as a measure of efficiency can fundamentally alter254

our conclusions about how to split a population into ON and OFF cells and how to distribute the population255

thresholds to achieve the optimal stimulus reconstruction. At biologically realistic noise levels, coding by mixed256

ON-OFF populations is much better than by a homogeneous population, with qualitatively distinct optimal257
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threshold distributions.258

The optimal ON-OFF mixture of the linear readout depends on the asymmetry in259

the stimulus distribution260

Since the MSE as a measure of efficiency depends on the stimulus distribution, we asked how the stimulus261

distribution can affect optimal population coding. The distribution of natural stimuli may be asymmetric262

around the most likely stimulus. For example, the distribution of contrasts in natural images, and the intensity263

of natural sounds are indeed skewed towards more negative values [20, 56–61]. Therefore, we instead consider264

an asymmetric Laplace distribution p(s) ∝ es/τ− for s < 0 and p(s) ∝ e−s/τ+ for s ≥ 0 where we take τ− > τ+.265

Minimizing the MSE one finds that the optimal way to divide a population into ON and OFF respects these266

stimulus asymmetries. Increasing the negative stimulus bias τ−/τ+ favors more OFF cells (Fig. 5A,B). The267

optimal thresholds for these different stimulus biases are best compared in the cumulative space of stimulus268

(Fig. 5C). Increasing the bias also pushes the thresholds towards more negative stimulus values, which occur269

with higher probability than positive stimuli.270

At a fixed level of stimulus bias, increasing the noise further accentuates the asymmetry in the optimal271

ON-OFF mixture (Fig. 5D,E). As the noise becomes non-negligible, the optimal thresholds lose the logarithmic272

spread at the tails of the stimulus distribution and begin to code for more likely stimuli that occur with a higher273

probability. At the same time, a larger region of stimulus values near the median is no longer coded by any274

cells, i.e. the gap between ON and OFF thresholds becomes larger (Fig. 5F). Had we considered the limit of275

zero noise or infinitely large populations as previous studies [22–25], we would not have been able to identify276

these differences between the optimal thresholds that result in conditions of biologically realistic noise and finite277

populations.278

In summary, our theory predicts different optimal ON-OFF numbers at which the lowest MSE is achieved279

depending on asymmetries in the stimulus distribution and the noise level. Indeed in nature, the relative280

predominance of ON and OFF cells in diverse sensory systems can be different (Table 1). Therefore, if we know281

the natural stimulus distribution being encoded by a population and the bounds on cells’ firing rates, we can282

predict the optimal ON and OFF numbers, as well as the response thresholds of the cells and compare them to283

experimental observations.284

Predicting stimulus distributions from experimentally measured thresholds285

Here we propose to reverse our efficient coding framework and starting from an experimentally measured dis-286

tribution of thresholds, to predict the distribution of natural stimuli that the thresholds could be optimized to287

encode (Fig. 6A). This could be particularly relevant for sensory systems where the distribution of the sensory288

variable being encoded is unknown. We decided to test this approach on odor concentration coding in the289

olfactory system of Drosophila larvae given recently published data [37]. The first stage of olfactory processing290

in Drosophila larvae is implemented by a population 21 olfactory receptor neurons (ORNs), which code for a291

broad space of odorants and concentrations [37]. We hypothesized that these ORNs might have distributed292

their thresholds at different concentrations to optimally encode any particular odor. In the classical efficient293

coding approach, knowing the distribution of odor concentrations would allow us to predict the optimal thresh-294

olds. In the reversed approach that we use here, knowing the distribution of thresholds allows us to predict the295

distribution of concentrations of a known odor (Fig. 6A).296

A recent study estimated these thresholds by recording from the entire ORN population [37]. The responses297

for 34 odorants over a five-fold magnitude in concentration were well described by a common Hill function298

with a shared steepness, but different activation thresholds. Pooling all thresholds across the different odorants299

and concentrations revealed a power law distribution. To use this threshold distribution in our theoretical300

framework, where a range of thresholds codes for the intensity of a single stimulus, we had to make a critical301

assumption. Specifically, we assumed that the population thresholds spanning the range of concentrations for302

any one odor are a shuffled version of the population thresholds for other odorants. This was justified by an303

analysis of a related data set [35], in which the distribution of ORN firing rates was found to be stereotyped304

across different odors [36].305
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Figure 5. The optimal ON/OFF mixture derived from the linear readout is tuned to asymmetries in
the stimulus distribution. A. The MSE as a function of the fraction of OFF cells (α) normalized to that for the
homogeneous population of all ON cells (α = 0). The MSE is shown for an asymmetric Laplace distribution with
varying negative to positive bias −/+, expected spike count R = 1 and N = 100 neurons. B. The optimal fraction of
OFF cells as a function of stimulus bias of the asymmetric Laplace distribution and R = 1. C. The optimal thresholds
for the ON-OFF mixtures (50%, 66% and 75%) in A that yield the lowest MSE, while varying negative to positive bias
−/+ = {1, 2, 4}. D. Same as A but for an asymmetric Laplace distribution with a negative bias −/+ = 2 and varying
R (equivalently, noise). E. The optimal fraction of OFF cells as a function of R for different stimulus bias of the
asymmetric Laplace distribution. F. The optimal thresholds for the ON-OFF mixtures (84%, 70% and any) in D that
yield the lowest MSE, while varying R = {0.02, 0.1,∞}.

Using our optimal coding framework with a population of only ON neurons (since ORNs have monotonically306

increasing response functions with concentration), we derived the mostly likely stimulus distribution of odorant307

concentrations for each of the two efficiency measures. The predicted distribution of odorant concentrations308

follows a power law distribution with an exponent determined by the efficiency measure. Given a measured309

distribution of thresholds which follows a power law with an exponent of −0.58 (Methods, Fig. 6B,C) and310

assuming an infomax code we predict that the distribution of odorant concentrations should also be a power311

law with an exponent of −0.58 (Methods, Fig. 6D). In contrast, assuming a code that minimizes the stimulus312

reconstruction error, the distribution of odorant concentrations should be a power law with an exponent of313

−1.74 (Methods, Fig. 6D). Indeed, many processes like convection and turbulence can generate power law314

dynamics [62], but the exact exponents will need to be determined, for instance by measuring the volatiles from315

natural environments [63, 64]. Although complex temporal dynamics in the stimulus can further complicate316

ORN coding of fluctuating odorant concentrations, the measured temporal filter across ORNs is remarkably317

stereotyped, suggesting that the olfactory code is similar between static and dynamic odor environments.318

We note that in our analysis we explicitly assume that the goal of the olfactory system is to estimate the319

concentration of any one odor with high fidelity, therefore it is only valid for experiments where only one odor is320

present. However, the optimization problem faced by the olfactory system might be different, i.e. to determine321

which, of many, odors are present. Therefore, it is possible that the optimal thresholds in these two cases may322

be different.323
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Figure 6. Deriving a distribution of stimulus intensities from experimentally measured thresholds. A.
Our efficient coding framework enables us to predict the optimal distribution of thresholds given a known stimulus
distribution. By reversing our framework, we derive the stimulus distribution from a distribution of measured
thresholds assuming optimal coding under the two optimality criteria. B. Log-log plot of the cumulative distribution of
the inverse of thresholds from measured dose-response curves of the entire population of ORNs in the Drosophila larva
olfactory system [37]. This is well described by a power law with exponent −0.42. C. The probability distribution of
the inverse of optimal thresholds derived from the data in B. This is well described by a power law with exponent
−0.58. D. Predicted distribution of concentrations across different odorants when assuming optimal coding by
maximizing information or minimizing the MSE of the best linear decoder. This is well described by a power law with
exponents −0.58 and −1.74, respectively. The proportionality constant is not shown.

Discussion324

Information in neural circuits is processed by many different cell types, but it remains a challenge to understand325

how these distinct cell types work together. Here we treat a puzzling aspect of neural coding, how do discrete326

cell types conspire to collectively encode a single relevant variable in responses of opposite polarity? To evaluate327

such a population code we built on the framework of efficient coding and extended it in several novel ways: by328

considering nonlinear processing, biologically realistic levels of noise, short coding windows, and the coordination329

of responses in populations of any size – factors which may vary across sensory systems. We then derived two330

aspects of the population code, namely how to optimally split a population into ON and OFF cells, and how to331

allocate the thresholds of the individual neurons as a function of the noise level, the stimulus distribution and332

the optimality measure.333

Optimal ON-OFF mixtures and comparison to experimental data334

We considered two different measures of coding efficiency that are in common use [22, 26–30]: the mutual335

information between stimulus and responses, and the mean squared error of the linearly reconstructed stimulus.336

The first aspect of our predictions applies to the expected mixture of ON and OFF cells. If one chooses mutual337

information as the efficiency measure, then all ON/OFF mixtures in the population perform identically once the338

thresholds are adjusted (Fig. 2). This result holds independent of the noise level and the shape of the stimulus339

distribution, and generalizes for response functions with any number of discrete firing rate levels. However, the340

number of spikes required for this performance, and thus the metabolic cost, differs greatly depending on the341

ON/OFF ratio. If one considers the information per spike as the relevant measure, then a system with equal342

number of ON and OFF cells is most efficient.343

When we require the stimulus to be read out by an optimal linear readout, different ON/OFF mixtures344

also achieve similar coding performance but only in the absence of noise (Fig. 3). In the biologically relevant345

regimes of non-negligible noise, noise has a dramatic influence on the optimal performance realized by different346
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ON/OFF mixtures (Fig. 4). Populations with a similar number of ON and OFF cells have a much smaller347

decoding error than populations dominated by one cell type. The extreme case of the homogeneous population348

performs substantially worse that any mixed population (Fig. 4). In the case of asymmetries in the stimulus349

distribution, as encountered in many natural sensory stimulus distributions [20, 56–61], minimizing the linear350

reconstruction error predicts that the optimal ON/OFF mixture should be tuned to these asymmetries and the351

amount of noise (Fig. 5).352

How do these predictions accord with known neural codes? Since our theory applies to populations of sensory353

neurons that code for the same stimulus variable, we need to consider sensory systems where this is the case.354

Analyzing raw stimulus values, such as the light intensity in a natural scene or the intensity of natural sounds,355

results in distributions which are skewed towards negative stimuli [20,56–61]. Our linear decoding theory then356

predicts that more resources should be spent on OFF. Indeed, in the fly visual system, the OFF pathway is357

overrepresented in the circuit for computations that extract motion vision, with the L1 neurons being responsible358

for the processing of ON signals, while both L2 and L3 neurons for OFF [9,50]. These neurons are repeated in359

each cartridge, thus together code for the same spatial location. Hence, at least for the fly visual system, our360

efficient coding results are in accord with naturally encountered ON/OFF ratios. In contrast, the vertebrate361

retina represents a visual stimulus with spikes across diverse types of retinal ganglion cells, which differ in their362

spatial and temporal processing characteristics [65, 66]. Certain types of ganglion cell come in ‘paramorphic363

pairs,’ meaning an ON-type and an OFF-type that are similar in all other aspects of their visual coding. A364

previous study by Ratliff et al. (2010) derived the optimal numbers of ON and OFF retinal ganglion cells for365

encoding natural scenes assuming maximal information transmission, as a function of the spatial statistics in366

these natural stimuli. In their model, every ganglion cell in the population encodes a different stimulus variable,367

because it looks at a different spatial location. In contrast, our theory can only be applied to populations that368

code for the same same stimulus feature, which may in fact contain only one of each type (ON and OFF),369

but requires further experiments to determine the exact numbers. To properly account for all thirty types of370

retinal ganglion cells will require more complete models that include the spatial dimension and the encoding of371

different visual features.372

Besides the visual system, there are other examples in biology where different numbers of ON and OFF373

cells are encountered, and where our theory more naturally applies with populations of neurons encoding a374

one-dimensional stimulus (Table 1). Single neurons in monkey somatosensory cortex show diverse ON and OFF375

responses to the temporal input frequency of mechanical vibration of their fingertips. While most neurons376

in primary somatosensory cortex (S1) tune with a positive slope to the input frequency (ON), about half of377

the neurons in secondary somatosensory cortex (S2) behave in the opposite way (OFF) [33, 34]. Opposite378

polarity pathways are also observed in thermosensation, where receptor proteins activated directly by positive379

and negative changes in temperature enable the detection of thermal stimuli. Four mammalian heat-activated380

and two cold-activated ion channels have been shown to function as temperature receptors [31,32]. Given these381

observations of ON-OFF asymmetries, one is led to conclude that information per spike may not be the cost382

function that drove evolution of this system, since that would predict equal numbers of ON and OFF cells.383

Thus, whether these different experimental observations are consistent with maximizing mutual information,384

optimal linear decoding, or yet a different objective function or task (e.g. [67–69]), remains to be seen (see also385

our discussion on the generality of assumptions). Other neuronal systems are candidates for similar analysis,386

for instance, auditory nerve fibers [44], motor cortex [70], and primary vestibular neurons [71].387

Optimal threshold distributions and comparison to experimental data388

Beyond predicting ON-OFF numbers, which has been the main focus of different models about the vertebrate389

retina [20], we also predict the structure of response thresholds. Generally, maximizing information implements390

an optimal strategy which emphasizes stimuli that occur with higher probability (Fig. 3, 4). In the limit of391

low noise, this is consistent with the well-known strategy of ‘histogram equalization’ [4], but we generalize392

this result to any amount of biologically realistic noise. Importantly, the optimal interval size depends on the393

level of noise with larger noise favoring smaller threshold intervals, implying a strategy closer to redundant394

coding. In contrast to the information, minimizing the mean square error of the linear readout implements a395

more conservative strategy that utilizes more cells in the encoding of rarer stimuli due to a larger error penalty396
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Table 1. List of experimentally measured ON and OFF neuron numbers in different sensory systems.

Sensory system ON/OFF numbers

Primary somatosensory ON dominance
cortex S1 (primate) [34]
Secondary somatosensory ON ≈ OFF
cortex S2 (primate) [34]
Visual system OFF dominance
(insect) [50]
Olfactory system Unknown
(mammalian, insect) [35,72,73]
Thermosensory system OFF dominance
(mammalian, insect) [31,32]
Mechanosensory system ON dominance
(mammalian) [51]

(Fig. 3, 4).397

Our theoretical framework applies to the case when the distribution of stimuli encoded by the cells is398

known, and the only problem is to estimate the value of the stimulus by appropriately distributing the cells’399

thresholds. In the case of vision, for example, this implies estimating the light intensity or contrast level. A direct400

test of our theoretical predictions for the optimal thresholds would require simultaneous measurement of the401

population response thresholds, which is within reach of modern technology [66]. In the meantime, we reversed402

our theoretical approach and starting from an experimentally measured distribution of thresholds, we predicted403

the distribution of natural stimuli that the thresholds might optimally encode. We applied this approach for404

the population of ORNs in the olfactory system of Drosophila larvae. However, unlike vision, applying our405

framework to olfaction presents a different problem. Here, the goal of the olfactory system is primarily to406

determine whether or not an odor is present, not its concentration. Therefore, our analysis is only appropriate407

when only one odor is present, and it can be inferred with high certainty. In this case, we assumed that the408

ORNs code for the distribution of concentrations of the present odor by diversifying their thresholds. The ORNs’409

experimentally described tuning curves were identical in shape, with response thresholds following a power law410

distribution [37]. Since the probability distribution of ORN firing rates is stereotyped across different odors [36],411

we assumed that the thresholds coding the range of concentrations for any one odor are a shuffled version of412

the thresholds for other odorants. We derived the stimulus distribution of concentrations for any one tested413

odor, under the two optimality measures, the maximal mutual information and the minimal error of the best414

reconstructed stimulus (Fig. 6). This threshold distribution was also a power law with an exponent dependent415

on the efficiency measure. Whether these distributions correspond to distributions of odorant concentrations416

found in natural olfactory environments remains to be tested, and techniques for collecting the volatiles from417

natural encountered odors now exist [63, 64]. These distributions would be strongly influenced by processes418

like convection and turbulence, which can give rise to power law dynamics [62]. Although these are dynamical419

variables that fluctuate in time, we propose that the distributions can be build by pooling different aspects of the420

dynamics over extended time periods. In that context, our theoretical framework would apply to populations421

which have been adapted to these distributions over those long periods of time. It is possible that when422

considering a different optimization problem implemented by the olfactory system which aims to determine423

which, of many, odors are present, a very different distribution of thresholds than those our theory predicts424

would be optimal.425

Generality of assumptions and relationship to previous work426

The two efficiency measures that we have used are entirely agnostic about the content of signal transmission.427

However, faithful encoding of signals is not the only fitness requirement on a sensory system, for example, some428

stimuli may have greater semantic value than others. Or, the aim may be to extract task-relevant sensory429
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information as in the case of the Information Bottleneck framework [67, 68], or to achieve optimal inference430

of behaviorally-relevant properties in dynamic stimulus environments [69]. Other recent approaches, such as431

Bayesian efficient coding, optimize an arbitrary error function [74]. Since our framework aims to encode a432

stimulus as best as possible, we propose that it may be most appropriate for early sensory processing, where433

stimulus representation might be the goal.434

The efficient coding hypothesis was originally proposed by Attneave [75] and Barlow [1], who studied deter-435

ministic coding, in the absence of noise. Since then, many studies have investigated efficient coding strategies436

under different conditions. Atick and Redlich introduced noise and demonstrated that efficient coding can be437

used to explain the center-surround structure of receptive fields of retinal ganglion cells, which changes to center-438

only structure as the signal-to-noise increases [2, 76]. Including nonlinear processing in the limit of low noise439

produced Gabor-like filters encountered in the primary visual cortex [13]. However, we now know that already440

the very first stages of processing in many sensory systems are nonlinear, consist of many parallel pathways441

and exhibit substantial amount of noise [77] – important aspects of coding that we simultaneously incorporate442

in our analysis. Our work differs from a previous report on ON and OFF cells in the vertebrate retina which443

proposed a simplified noise model implemented by assuming a finite number of signaling levels (i.e. firing rates),444

which does not incorporate spiking [20].445

We considered a Poisson noise model of spiking which is commonly used in many studies. Our results are446

especially relevant in the high noise regime, which corresponds to short coding windows commonly encountered447

in biology, for instance, a few spikes per coding window [28, 38, 78]. In the low noise regime when the coding448

window is sufficiently long, or there is a large number of neurons, our results agree with previous studies on449

infomax and the optimal linear readout [4,25,79]. Efficient coding in the high noise regime has previously been450

examined, but only in terms of the transfer function of a single neuron, which was shown to be binary [27,43].451

We go beyond this work and provide analytical solutions for how a population of neurons should coordinate452

their response ranges to optimally represent a given stimulus in the realistic regimes of short encoding times.453

We used a binary rate function to describe single neuron responses because it gives our problem analytical454

tractability and it still represents a significant departure from previous efficient coding frameworks based on455

linear processing [2,3,20,21], long coding windows or infinitely large populations [22–25]. Indeed, discretization456

in neural circuits is a common phenomenon that is not only relevant for sensory coding, but also for neuropeptide457

signaling, ion channel distributions and information transmission in genetic networks [39,80]. Considering more458

general nonlinearities is currently only tractable with numerical simulations or in the case of optimizing a local459

efficiency measure, the Fisher information, which may not accurately quantify coding performance in finite size460

populations or biologically realistic noise (e.g. low firing rates or short coding windows) [25,49,81–83].461

Summary462

Given the ubiquity of ON/OFF pathway splitting in different sensory modalities and species, our framework463

provides predictions for the optimal ON/OFF mixtures and the functional diversity of sensory response proper-464

ties that achieve this optimality in many sensory systems based on the distribution of relevant sensory stimuli,465

the noise level and the measure of optimality. Our theoretical approach is sufficiently general and is not fine-466

tuned to the specifics of any one experimental system. The different predictions that we make depending on the467

model assumptions could help determine the specific optimality criteria operating in different sensory systems468

where different ON-OFF mixtures and tuning properties have been observed. Directed experiments to compare469

the predicted and measured threshold distributions will test whether the efficient coding criteria proposed here470

are a likely constraint shaping the organization and adaptation of sensory systems.471
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Materials and Methods472

Mutual information and proof of the Equal Coding Theorem473

First we prove the Equal Coding Theorem for a general population with N binary neurons. Without loss of474

generality we assume that the neurons’ thresholds are:475

θ1 ≤ . . . ≤ θN (11)

and we define the special θ0 = −∞ and θN+1 = ∞. The Shannon mutual information between the stimulus s476

and the spiking response n of the population is the difference between response and noise entropy:477

I(s,n) = H(n)−H(n|s) = −〈log p(n)〉n +
N∑
i=1

〈log p(ni|s)〉ni,s (12)

where 〈·〉x denote averages over the distribution p(x) and p(n) = 〈p(n|s)〉s. We assume that stimulus encoding478

by all neurons is statistically independent conditional on s so that479

p(n|s) =

N∏
i=1

p(ni|s). (13)

Given the Poisson noise model, knowing the stimulus s unambiguously determines the response firing rate ν;480

for instance, for an ON cell if s < θ, ν = 0 and if s ≥ θ, ν = νmax. We can replace p(ni|s) with p(ni|ν) which is481

Poisson distributed: p(ni|ν) = [νT ]ni

ni!
e−νT .482

We prove that I(s;n) = I(ν,n). To see this, we write

I(s,n) =
∑
n

ˆ
s

ds p(s) p(n|s) log
p(n|s)
p(n)

(14)

= H(n) +
∑
n

ˆ
s

ds p(s) p(n|s) log p(n|s). (15)

Using Eq. 13, this becomes

I(s,n) = H(n) +
∑
n

ˆ
s

ds p(s)
∏
j

p(nj |s)
∑
i

log p(ni|s) (16)

= H(n) +
∑
i

∑
ni

ˆ
s

ds p(s)p(ni|s) log p(ni|s) (17)

Similarly, we derive

I(ν,n) =
∑
n

∑
ν
p(ν) p(n|ν) log

p(n|ν)

p(n)
(18)

= H(n) +
∑
n

∑
ν
p(ν) p(n|ν) log p(n|ν) (19)

which since483

p(n|ν) =

ˆ
s

ds p(n|s)p(s|ν) =
∏
i

ˆ
s

ds p(ni|s)p(s|ν) =
∏
i

p(ni|ν) =
∏
i

p(ni|νi) (20)

becomes

I(ν,n) = H(n) +
∑
n

∑
ν
p(ν) p(n|ν)

∑
i

log p(ni|νi) (21)

= H(n) +
∑
i

∑
ni

∑
νi

p(νi)p(ni|νi) log p(ni|νi). (22)
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Now, for a given i and a corresponding given spike count ni, which without loss of generality we assume is
an ON cell with threshold θi, we take the second term from Eq. 17 and split the integral:

ˆ
s

ds p(s)p(ni|s) log p(ni|s) =

ˆ θi

−∞
ds p(s)p(ni|s) log p(ni|s) +

ˆ ∞
θi

ds p(s)p(ni|s) log p(ni|s) (23)

=

ˆ θi

−∞
ds p(s)p(ni|νi = 0) log p(ni|νi = 0) +

ˆ ∞
θi

ds p(s)p(ni|νi = νmax) log p(ni|νi = νmax)

=
∑
νi

p(νi)p(ni|νi) log p(ni|νi) (24)

because we can just integrate out the s. Therefore, from Eqs. 17, 22 and 24, we get I(s;n) = I(ν,n). Note484

that for a single cell, Nikitin et al. [43] also proved the same equality of information using a different approach.485

For a binary response function with two firing rate levels, 0 and νmax, we can lump together all states with
nonzero spike counts into a single state which we denote as 1. Correspondingly, the state with zero spikes is
0. Hence, we can evaluate the mutual information between stimulus and spiking response using the following
expressions for the spike count probabilities:

p(0|ν = 0) = 1, p(1|ν = 0) = 0,

p(0|ν = νmax) = q, p(1|ν = νmax) = 1− q, (25)

where q = e−R and R = νmaxT denote the level of noise in the system.486

We can derive the expression for the mutual information between stimulus and response given the N intervals487

ui =

ˆ ∞
θN+1−i

ds p(s), i = 1, . . . ,m (26)

for the m ON cells and488

ui =

ˆ θi−m

−∞
ds p(s), i = m+ 1, . . . , N (27)

for the OFF cells, see Figure 7.489

We prove the Equal Coding Theorem by showing that the mutual information coded by a population of N490

ON cells is the same as that for any arbitrary mixture of ON and OFF cells, for instance, a population with m491

ON cells (with indices 1, 2, . . .m) and N −m OFF cells (with indices m + 1, . . . , N). At the optimal solution492

the ON cells have larger thresholds than the OFF cells. This is due to the assumed Poisson noise model, where493

the states at which a given cell’s firing rate is 0 are non-noisy and determine the stimulus with certainty. The494

total information can be described as the information from observing the ON cells 1, . . .m, plus any additional495

information gained from observing cells m+ 1, . . . , N . Below we demonstrate that this additional information496

is identical independent of whether the N −m cells are ON (in which case the population is homogeneous and497

comprised of all ON cells) or OFF type (in which case the population is mixed). This turns out to be the case,498

as long as the thresholds of the additional N −m cells are appropriately adjusted.499

If a spike was observed from ON cells 1, 2, . . .m, then no additional information is gained from cells m +500

1, . . . , N , independent of their type because their firing rate is constant over the entire stimulus interval in which501

cells 1, . . . ,m fire. Then, the total mutual information achieved by all N cells, IN (s,n), is equal to the mutual502

information obtained from observing the m ON cells, Im(s,n):503

IN (s,n; {u1, . . . , uN}) = Im(s,n; {u1, . . . , um}) (28)

where we explicitly denote the dependence of the mutual information on the threshold intervals, ui’s. If no504

spike was observed from the ON cells 1, 2, . . .m, then we get additional information from the remaining cells505

m + 1, . . . , N , but we need to consider the change in the stimulus distribution posterior to seeing no spike.506

Such a change in the stimulus distribution is equivalent to adjusting the thresholds of cells m + 1, . . . , N , and507
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...

Figure 7. Thresholds θi and intervals between thresholds ui for a population of 6 cells. Top: a homogeneous
population with 6 ON cells; bottom: a mixed population with 3 ON and 3 OFF cells.

as a result, the threshold intervals. If none of the ON cells 1, . . .m fired, then, we can formally write the total508

information as follows (see Fig. 7):509

IN (s,n; {u1, . . . , uN}) = Im(s,n; {u1, . . . , um}) +QmIm+1,...,N |1,...,m(s,n; {u′m+1, . . . , u
′
N}) (29)

where Qm is the probability that none of the ON cells 1, . . .m fired, and Im+1,...,N |1,...,m is the additional510

mutual information gained from the remaining N−m cells with adjusted thresholds, and consequently threshold511

intervals, u′i.512

By writing the information in this manner, we have only assumed that the first m cell are ON, but have513

not assumed anything about the type of the additional N −m cells. In fact, for any ON-OFF mixture given514

by the number of ON cells m, one can choose the same thresholds θ1, . . . , θm (and thus thresholds intervals515

u1, . . . , um) for the first m ON cells, and then change the thresholds θm+1, . . . , θN (and thus threshold intervals516

um+1, . . . , uN ) of the remainingN−m cells so as to produce the same adjusted threshold intervals, u′m+1, . . . , u
′
N .517

How can this readjustment be done for the different mixtures? If no spike was observed from the518

ON cells 1, . . . ,m, then the stimulus distribution to be coded by the remaining cells changes from the prior p(s)519

to a new posterior distribution520

p(s|0) = p(0|s) p(s)
p(0)

= p(s)
p(0|s)
Qm

. (30)

1. If the remaining N −m cells are ON, the region of reduced p(s) is entirely within the response region.521

Thus, the revised probability of having the stimulus in the response region is522

u′i =

ˆ +∞

θi

ds p(s|0) =
1

Qm

ˆ +∞

θi

ds p(0|s)p(s)

523

=
1

Qm

ˆ 1

1−ui

dx p(0|x) =
ui − (1−Qm)

Qm
. (31)

where x =
´ s
0
p(s′)ds′.524
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2. If the remaining N −m cells are OFF, the region of reduced p(s) is entirely outside their response525

region. Thus, their revised probability is526

u′i =

ˆ θi

0

ds p(s|0) =
1

Qm

ˆ θi

0

ds p(0|s)p(s) =
1

Qm

ˆ ui

0

dx p(0|x) =
ui
Qm

. (32)

Therefore, the readjustment of the threshold intervals can be done differently for a homogeneous population527

when the remaining N − m cells are all ON, vs. a mixed population when the remaining N − m cels are all528

OFF. Since m can be anything between 1 and N , this covers all possible mixtures of ON and OFF cells, where529

u′i =

{
ui−(1−Qm)

Qm
, homogeneous population with N ON cells

ui

Qm
, mixed population with m ON cells and N −m OFF cells

(33)

To find the maximal mutual information one needs to maximize Eq. 29 with respect to all the thresholds530

(i.e. threshold intervals). Since the homogeneous population of N ON cells and the mixed population of m ON531

cells and N −m OFF cells share the same m ON cells, maximizing the total mutual information IN in Eq. 29 is532

equivalent to maximizing the additional mutual information Im+1,...,N |1,...,m gained from the remaining N −m533

cells with adjusted threshold intervals according to Eq. 33. This explains why the maximum information is534

identical between the purely homogeneous population with N ON cells and a mixed population where N −m535

cells are OFF.536

Thresholds when optimizing the mutual information: a homogeneous population537

Next we derive the optimal thresholds for the homogeneous population with N ON cells, and later derive the538

thresholds of the N −m OFF cells after swapping.539

If the thresholds are ordered in ascending order as assumed above, then u1 < u2 < . . . < uN (S3 Figure).540

The mutual information of N ON cells can be written as follows. First, for a population of N = 1 cells this has541

the form542

I1 = H(n1)−H(n1|s) = h(u1(1− q))− u1h(1− q), (34)

where h is the entropy of a binary variable, h(u) = −u log u − (1 − u) log(1 − u). For a population of N = 2543

cells it has the form544

I2 = I1 + P (n1 = 0)I2|1 = g(u1) + (1− u1(1− q))g
(
u
(1)
2

)
(35)

where we have defined g(u) = h(u(1− q))− uh(1− q). Here, u
(1)
2 denotes the revised value of u2 following the545

observation of cell 1. In general, we use u
(j)
i to denote the revised value of ui after the observation that cell546

j < i did not spike. Therefore, for a population of N = 3 cells it has the form547

I3 = g(u1) + (1− u1(1− q))
[
g
(
u
(1)
2

)
+
(

1− u(1)2 (1− q)
)
g
(
u
(2)
3

)]
. (36)

Generalizing this for N cells, the information is548

IN = g(u1) + (1− u1(1− q))
[
g
(
u
(1)
2

)
+ . . .

(
1− u(N−2)N−1 (1− q)

)
g
(
u
(N−1)
N

)
. . .
]
. (37)

The revised values of u
(j)
i for i = 2, . . . N and j = 1, . . . i−1 follow based on readjusting the thresholds depending549

on the observation of cells 1, . . . N − 1 one at a time. For example, following the observation that cell 1 did not550

spike, the effective values of u2, u3, . . . uN are revised to551

u
(1)
i =

ui − u1(1− q)
1− u1(1− q)

, for i = 2, . . . N. (38)

Following the observation that cell 2 did not spike, u
(1)
3 , u

(1)
4 . . . u

(1)
N are further revised to552

u
(2)
i =

u
(1)
i − u

(1)
2 (1− q)

1− u(1)2 (1− q)
, for i = 3, . . . N. (39)
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This process continues, until the observation of cell N − 1 with the final set of u
(N−2)
N being revised to553

u
(N−1)
N =

u
(N−2)
N − u(N−2)N−1 (1− q)

1− u(N−2)N−1 (1− q)
. (40)

We maximize the information in Eq. 37 with respect to each u
(j)
i . We can do this sequentially: first maximize554

I with respect to u
(N−1)
N , which results in maximizing g

(
u
(N−1)
N

)
. The maximum is obtained at555

u
(N−1)
N =

1

(1− q) + q−q/(1−q)
(41)

yielding a maximal value of556

log
(

1 + (1− q)qq/(1−q)
)
. (42)

Next, we maximize I with respect to u
(N−2)
N−1 , which results in maximizing557

g
(
u
(N−2)
N−1

)
+
(

1− u(N−2)N−1 (1− q)
)

log
(
1 + (1− q)q−q/(1−q)

)
. The maximum is obtained at558

u
(N−2)
N−1 =

1

2(1− q) + q−q/(1−q)
(43)

yielding a maximal value of559

log
(

1 + 2(1− q)qq/(1−q)
)
. (44)

Finally, we maximize I with respect to u1, which results in maximizing560

g(u1) + (1− u1(1− q)) log
(
1 + (N − 1)(1− q)q−q/(1−q)

)
. The maximum is obtained at561

u1 =
1

N(1− q) + q−q/(1−q)
(45)

yielding a maximal value of the mutual information as in Eq. 1 in the Results section562

I = log
(

1 +N(1− q)qq/(1−q)
)
. (46)

Based on these derivations we can obtain the sequence of563

ui =
1 + (i− 1)(1− q)

N(1− q) + q−q/(1−q)
, for i = 1, . . . N (47)

where the difference between consecutive thresholds is given by Eq. 2564

p = ui+1 − ui =
1− q

N(1− q) + q−q/(1−q)
, for i = 1, . . . N − 1 (48)

and the ‘edge’ threshold is Eq. 3565

pedge = u1 =
1

N(1− q) + q−q/(1−q)
. (49)

Thresholds when optimizing the mutual information: a mixed population566

With the Equal Coding Theorem we showed that the information for any ON/OFF mixture is the same (Eq. 46).567

Next, we show how to derive the thresholds for a mixed population since we know that it will have the same568

mutual information as the homogeneous population. We do this by swapping N −m of the ON cells into OFF569

cells, knowing that the thresholds of the ON cells in the new mixed population remain the same, and derive the570

thresholds for the swapped OFF cells. This means that we need to derive a new set of umix
m+1, . . . , u

mix
N for the571
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OFF population, while keeping u1, . . . um the same for the ON population. To do this, recall that the thresholds572

for the OFF cells follow different update rules every time an ON cell is observed (see Eq. 33). In particular,573

u
(k)
i =

u
(k−1)
i

1− u(k−1)k (1− q)
, for i = m+ 1, . . . N. (50)

Additionally, following the observation of OFF cell k (where k = m+ 1, . . . , N − 1)574

u
(k)
i =

u
(k−1)
i − u(k−1)k (1− q)
1− u(k−1)k (1− q)

, for i = k + 1, . . . N. (51)

Using these recursions and the values u
(j)
i for the ON cells derived previously (Eq. 41 – 45) one can recover the575

thresholds:576

ui =
1 + (i− 1)(1− q)

N(1− q) + q−q/(1−q)
, for i = 1, . . .m (52)

for the ON cells and577

umix
i =

1 + (m− i+ 1)(1− q)
N(1− q) + q−q/(1−q)

, for i = m+ 1, . . . N (53)

for the OFF cells (in the mixed population case) where the difference between consecutive thresholds (except578

between the smallest ON and the largest OFF) is given by Eq. 48 and the ‘edge’ thresholds by Eq. 49. From579

here we can derive the ‘silent’ interval between the smallest ON and the largest OFF that separates the ON580

and OFF thresholds, p0 = 1− (N − 2)p− 2pedge.581

Mean firing rate when optimizing the mutual information582

Given the optimal thresholds, the mean firing rate per neuron in a population with m ON cells is:583

r = R

[
pedge +

p

2

(
m2 + (N −m)2

N
− 1

)]
(54)

In the large population regime, with α = m/N the fraction of ON cells, the mean firing rate per neuron is584

r(α) =
R

2

(
α2 + (1− α)2

)
, (55)

however, in the high noise regime this becomes independent of α585

r(α) =
R

e
. (56)

Optimal linear readout without noise586

We present here the derivation for the homogeneous population with only ON cells when R → ∞. The linear587

stimulus estimate of s (Eq. 4) can be written as:588

y =
N∑
i=1

wiΘ(s− θi) + w0 (57)

where wi represent the decoding weights and the responses are given by the binary Heaviside functions with589

thresholds θi. Then the mean square error between the original and the estimated stimulus can be written as:590

E = 〈(y − s)2〉. (58)
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In the case of the homogeneous population, we can emulate the constant term w0 as the weight of an591

additional neuron with threshold θ0 = −∞. Then592

Ci = 〈Θ(s− θi)〉 and Ui = 〈sΘ(s− θi)〉 (59)

so the error can be written as:593

E = wTCw − 2UTw + 〈s2〉 (60)

where since 〈Θ(s − θi)Θ(s − θj)〉 = 〈Θ(s − max(θi, θj)), for i ≥ j, we can write: Cij = Ci. Optimizing with594

respect to the weight will gives us595

w = C−1U (61)

which we can rewrite as (Eq. 6 in the Results section):596

∑
j≤i

wj =

´ θi+1

θi
ds s p(s)´ θi+1

θi
ds p(s)

= 〈s〉i, 0 ≤ i ≤ N (62)

with θN+1 =∞ and (Eq. 5 in the Results section):597

wi = 〈s〉i − 〈s〉i−1, i = 1, ..., N and w0 = 〈s〉0. (63)

Optimizing with respect to the thresholds:598 ∑
j≤i

wj = θi +
wi
2

(64)

which gives599

θi − θi−1 =
1

2
(wi − wi−1) (65)

and from this we can derive (Eq. 7 in the Results section):600

θi =
1

2
(〈s〉i + 〈s〉i−1) , i = 1, ..., N. (66)

Optimizing with respect to the constant term yields:601

w0 =

´ θ1
−∞ ds s p(s)´ θ1
−∞ ds p(s)

. (67)

To solve these equations numerically, we implement an iterative procedure that rapidly converges to the optimal602

solution: starting from an ansatz for the thresholds, we compute 〈s〉i and obtain wi, which is used to derive the603

new set of thresholds.604

In the case of the mixed population with ON and OFF cells, the optimal solution is one where the ON605

and OFF responses do not overlap; thus, there is no correlation between them. Therefore, we can treat each606

subpopulation separately, and in identical manner to the purely homogeneous case. The optimal weights and607

thresholds are identical to the homogeneous population population, with the exception of the constant term:608

wm0 =

´ θON
1

θ1OFF ds s p(s)´ θON
1

θ1OFF ds p(s)
(68)

where θ1
OFF denotes the largest OFF threshold and θ1

ON denotes the smallest ON threshold in the population.609
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Thresholds when optimizing the linear readout without noise610

Now we consider the case of large N (for any mixture of ON and OFF cells) to derive the thresholds in the611

asymptotic limit where the threshold intervals (differences between neighboring thresholds) are small. We use612

a first order expansion of the stimulus distribution p(s) around each threshold θj in the expressions for 〈s〉j .613

〈s〉j =

´ θj+1

θj
ds s p(s)´ θj+1

θj
ds p(s)

= θj +

´ θj+1

θj
ds(s− θj)p(s)´ θj+1

θj
ds p(s)

≈ θj +
θj+1 − θj

2
+

p′(θj)

12p(θj)
(θj+1 − θj)2 (69)

and similarly,614

〈s〉j−1 ≈ θj +
θj−1 − θj

2
+

p′(θj)

12p(θj)
(θj−1 − θj)2. (70)

Combining Eq. 69 and Eq. 70 into Eq. 66, yields615

2θj − θj+1 − θj−1
4

=
p′(θj)

24p(θj)

[
(θj+1 − θj)2 + (θj−1 − θj)2

]
. (71)

Taking the continuous limit so that j maps onto x with j = 1 corresponding to x = 0, j = N corresponding to616

x = 1, and dx = 1/N , we can write617

θj+1 − θj = dx θ′(x) (72)
618

θj+1 − 2θj + θj−1 = (dx)2 θ′′(x) (73)

turning Eq. 71 into:619

θ”(x) = g(x) (θ′(x))2. (74)

We can further define:620

g(x) = −dp(θ(x))/dθ

3p(θ(x))
=
G(x)

θ′(x)
where G(x) = − d

3dx
log p(θ(x)). (75)

Denoting y(x) = θ′(x) gives the differential equation621

y′(x) = G(x) y(x) (76)

which has the solution622

log y =

ˆ x

duG(u) + c (77)

and consequently we obtain the differential equation623

θ′(x) =
c

p(θ(x))1/3
(78)

where c is a constant. This can be inverted into624

x(θ) = c

ˆ θ

−∞
p(θ′)1/3dθ′ + c′ (79)

where x = i/N is the threshold index. We can determine the constants c and c′ from the boundary conditions:625

x(−∞) = 0, x(∞) = 1 (80)

such that (as Eq. 8 in the Results section),626

x(θ) = Z

ˆ θ

−∞
p(θ′)1/3dθ′, Z−1 =

ˆ ∞
−∞

p(θ′)1/3dθ′. (81)

Inverting this relationship, we can obtain the threshold distribution θ(x) as a function of the index x = i/N .627

An expression for the optimal thresholds for the Laplace distribution: p(s) = 1/2e−|s| is provided in Eq. 9 in628

the Results section.629
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Optimal linear readout with noise: homogeneous population630

For convenience, we normalize the linear readout631

y =
1

R

∑
i

wini + w0. (82)

The error can be written as before (Eq. 60) with different correlations632

Cij =
1

R
〈〈ni〉n〈nj〉n〉+

1

R2
δij〈〈ni〉n〉 = 〈Θ(s− θi)Θ(s− θj)〉+

1

R
δij〈Θ(s− θi)〉 (83)

If we define, as before:633

Ci = 〈Θ(s− θi)〉 (84)

then for 〈Θ(s− θi)Θ(s− θj)〉 = 〈Θ(s−max(θi, θj)), and for i ≥ j:634

Cij = Ci +
1

R
δijCi (85)

and635

Ui = 〈sΘ(s− θi)〉 − w0〈Θ(s− θi)〉. (86)

Optimizing with respect to the weights:636

w = C−1U (87)

and637

w0 = 〈s〉 −
N∑
i=1

wi〈Θ(s− θi)〉. (88)

Optimizing with respect to the thresholds:638

θi = w0 +
∑
j≤i

wj −
wi
2

(
1−R−1

)
, i = 1, ..., N. (89)

To solve these equations numerically, we implement an iterative procedure that rapidly converges to the optimal639

solution: starting from an ansatz for the thresholds, we compute C and U and obtain w from Eq. 87, which is640

used to derive the new set of thresholds.641

Thresholds when optimizing the linear readout with noise: homogeneous popula-642

tion643

We provide an expression for the optimal thresholds for the general Laplace distribution:644

p(s) =

{
A+e

−s/τ+ , s ≥ 0,

A−e
s/τ− , s < 0.

(90)

The symmetric Laplace distribution is one example, p(s) = 1/2e−|s|, with A+ = A− = 1/2 and τ+ = τ− = 1. In645

the limit of large population size N , we again derive the thresholds in the asymptotic limit where the threshold646

intervals are small. Assuming θ1 < 0,647

x(θ) =
1´ 0

θ1
du
√

1−A−τ− eu/τ− + 2τ+
√
A+τ+

{´ θ
θ1

du
√

1−A−τ− eu/τ− , θ ≤ 0´ 0
θ1

du
√

1−A−τ− eu/τ− + 2τ+
√
A+τ+(1− e−θ/2τ+), θ > 0

(91)
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and assuming |θ1| is large so that
´ θ
θ1

du
√

1−A−τ− eu/τ− ≈ θ − θ1, we can approximate648

x(θ) ≈ 1

−θ1 + τ+
√
A+τ+

{
θ − θ1, θ ≤ 0

−θ1 + 2τ+
√
A+τ+(1− e−θ/2τ+), θ > 0

(92)

inverting this relationship, the optimal thresholds are:649

θ(x) ≈


θ1 + (−θ1 + 2τ+

√
A+τ+)x, 0 ≤ x ≤ 1

1−2τ+
√
A+τ+/θ1

,

−2τ+ log

[(
1− θ1

2τ+
√
A+τ+

)
(1− x)

]
, 1

1−2τ+
√
A+τ+/θ1

≤ x ≤ 1.
(93)

To fully determine the optimal thresholds, this requires knowledge of the first threshold, θ1. In the asymptotic650

limit, where the thresholds θi are close to each other, again expanding p(s) around each threshold, we derive651

θ1 ≈ τ− log

(
log(RNA−τ−)

RNA−τ2−

)
. (94)

Optimal linear readout with noise: mixed ON-OFF population652

So far we have not explicitly treated the ON and OFF populations separately, because both when maximizing653

the mutual information for all noise levels, and minimizing the MSE in the limit of no noise, the performance654

and optimal thresholds were the same for all populations independent of the ON/OFF mixture. Now, we must655

treat the two populations separately.656

Assume we have m ON cells and N −m OFF cells. We order the thresholds in the following manner (since657

non-overlapping ON and OFF cells is the optimal solution),658

θOFF
N−m ≤ θOFF

N−m−1 ≤ ... ≤ θOFF
1 ≤ θON

1 ≤ θON
2 ≤ ... ≤ θON

m−1 ≤ θON
m (95)

so that we can proceed in the same manner for each subpopulation as for the homogeneous population. The659

readout can be written as660

y =
1

R

N−m∑
i=1

wOFF
i nOFF

i +
1

R

m∑
i=1

wON
i nON

i + w0. (96)

The error then is (assuming the optimal ON and OFF thresholds do not overlap – so that the ON-OFF cross-661

correlation is zero):662

E = 〈(y− s)2〉 = (wON)TCONwON + (wOFF)TCOFFwOFF− 2(wON)TUON− 2(wOFF)TUOFF + 〈(s−w0)2〉 (97)
663

CON
ij = CON

i and COFF
ij = COFF

i for i ≥ j, (98)

and664

CON
i = 〈Θ(s− θON

i )〉+
1

R
δij〈Θ(s− θON

i )〉 (99)

665

COFF
i = 〈Θ(θOFF

i − s)〉+
1

R
δij〈Θ(θOFF

i − s)〉, (100)

666

UON
i = 〈sΘ(s− θON

i )〉 − w0〈Θ(s− θON
i )〉 (101)

667

UOFF
i = 〈sΘ(θOFF

i − s)〉 − w0〈Θ(θOFF
i − s)〉 (102)

Optimizing with respect to the weights we get very similar expressions for each subpopulation (ON and OFF)668

as for the homogeneous population:669

wON = (CON)−1UON and wOFF = (COFF)−1UOFF (103)
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and optimizing the thresholds:670 ∑
j≤i

wON
j = θON

i − w0 +
wON
i

2
(1−R−1), i = 1, ...,m (104)

for the ON cells, and similarly for the OFF:671 ∑
j≤i

wOFF
j = θOFF

i − w0 +
wOFF
i

2
(1−R−1), i = 1, ..., N −m. (105)

The difference from the homogeneous population is in the constant term:672

wm0 = 〈s〉 −
m∑
i=1

wON
i CON

i −
N−m∑
j=1

wOFF
j COFF

j . (106)

Thresholds when optimizing the linear readout with noise: mixed ON-OFF popu-673

lation674

We proceed in a similar fashion as with the homogeneous population to obtain the approximation in the case675

of large N : Let fON = m/N be the fraction of ON cells and fOFF = (N −m)/N be the fraction of OFF cells676

in the population. We remap the thresholds, so that in the continuum limit θOFF
N−m ≤ θOFF

N−m−1 ≤ ... ≤ θOFF
1677

becomes θOFF(xOFF) and θON
1 ≤ θON

2 ≤ ... ≤ θON
m−1 ≤ θON

m becomes θON(xON). Thus, the threshold index678

x = i/N ∈ [0, 1] for the homogeneous population becomes xON = i/m ∈ [0, fON] and i = 1, 2, . . . ,m being the679

indices of the ON cels, and xOFF = i/(N −m) ∈ [0, fOFF] and i = 1, 2, . . . , N −m being the indices of the OFF680

cells. Figure 8 illustrates the mapping.681

Figure 8. The mapping of the threshold indices from the homogeneous population with only ON cells to the
mixed population with ON and OFF cells.

We provide an expression for the optimal thresholds for the general Laplace distribution (Eq. 90), and for a682

population that is unbalanced and has more ON cells, fON > fOFF. If θOFF
1 ≤ θON

1 ≤ 0, for the ON thresholds683

and weights the solution is similar to the case of the homogeneous population, i.e.684

xON(θON) =
fON

´ 0
θON
1

du
√

1−A−τ− eu/τ− + 2τ+
√
A+τ+

ˆ θON

θON
1

du
√

1−A−τ− eu/τ− , θON ≤ 0 (107)

and685

xON(θON) = fON

1−
2τ+

√
A+τ+e

−θON/2τ+´ 0
θON
1

du
√

1−A−τ− eu/τ− + 2τ+
√
A+τ+

 , θON > 0. (108)

These expressions have to be inverted to obtain θON(xON), which has to be done numerically. We proceed very686

similarly for the OFF cells. Namely, if θOFF
1 < 0 and assuming |θOFF

N−m| is large687

xOFF(θOFF) = fOFF
(

1− e(θ
OFF−θOFF

1 )/2τ−
)

(109)
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inverting this relationship is possible analytically688

θOFF(xOFF) = θOFF
1 + 2τ− log

(
1− x/fOFF

)
. (110)

To fully determine the optimal thresholds, this requires knowledge of the first ON and OFF thresholds, θON
1689

and θOFF
1 .690

When the population is mixed so that neither population dominates, the first ON and OFF thresholds are691

order 1. Assuming that they are close in stimulus space, so that θON
1 − θOFF

1 � 1, we can use the equations692

from optimizing the thresholds and weights to obtain the following equation which can be solved for φ = θOFF
1 :693

X(φ) =
2τ−

√
1−A− τ−e−φ/τ−´ 0

θON
1

du
√

1−A−τ−eu/τ− + 2τ+
√
A+τ+

(
1

A−τ−
eφ/τ− − 1

)
(111)

For the symmetric Laplace distribution with A+ = A− = 1/2 and τ+ = τ− = 1, the equation to solve for φ694

reduces to (Fig. 9):695

X(φ) =
2
√

1− 1
2e
−φ

√
2 +
´ 0
−φ du

√
1− 1

2e
u

(
2eφ − 1

)
. (112)

As shown in Figure 9, when there is an equal number of ON and OFF cells, X = 1 and θON
1 ≈ θOFF

1 ≈ 0. If there696

are 20% OFF cells and 80% ON cells in the population, then X = (1/5)/(4/5) = 1/4, and the first thresholds697

of each subpopulation are θON
1 ≈ θOFF

1 = −0.79. In the Results section we also considered asymmetric stimulus698

distributions where we varied the negative-to-positive bias τ−/τ+ and derived the solutions in a similar manner699

(Fig. 5).700

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Figure 9. Determining the first thresholds for a mixed population of ON and OFF cells, φ = |θON
1 | ≈ |θOFF

1 |
as a function of X = fOFF/fON. For a symmetric Laplace distribution p(s) = 1/2e−|s|.

Deriving the stimulus distribution from measured ORN thresholds701

From the study of Si and colleagues we extracted the distribution of measured thresholds (referred to as EC50702

values) [37]. The cumulative distribution of the inverse of thresholds is703

Pθ

(
X >

1

θ

)
∝
(

1

θ

)−λ
(113)
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where λ = 0.42 (Fig. 6B). This enables us to derive the probability density function of the inverse of thresholds704

(Fig. 6C)705

pθ

(
1

θ

)
∝
(

1

θ

)−λ−1
. (114)

This distribution has a cut-off of θc = 4.22 · 104 as reported in [37]. From this, we can derive the distribution706

of measured thresholds707

pθ(θ) =
1

θ2
p

(
1

θ

)
such that pθ(θ) ∝ θ−λ+1. (115)

Next, we assume that these measured thresholds implement an optimal code first under the infomax criterion.708

Now, using the equation for the cumulative distribution of optimal thresholds in the large population limit,709

x(θ) =
´ θ
−∞ pc(z) dz, we can derive the stimulus distribution of odorant concentrations, pc,710

pc(C) ∝ C−λ+1 = C−0.58. (116)

However, if we assume that these measured thresholds implement an optimal code under the criterion of minimiz-711

ing the mean squared error of the optimal linear decoder, x(θ) =
´ θ
−∞ p

1/3
c (z) dz, then the stimulus distribution712

of odorant concentrations, pc, is713

pc(C) ∝ C3(−λ+1) = C−1.74. (117)

These are both shown in Fig. 6D.714

Supporting information715

S1 Figure. Binary neurons with spontaneous firing rate and Poisson noise. A framework with716

binary neurons that have two firing rate levels, r if the stimulus is smaller (bigger) than a threshold, and R if717

the stimulus is bigger (smaller) than a threshold for ON (OFF) cells. We compare two systems, left: one ON718

(red) and one OFF (blue) cells, and right, two ON cells, where the information is maximized by optimizing the719

cells thresholds.720

S2 Figure. Sigmoidal neurons with sub-Poisson experimentally measured noise. Two sigmoidal721

nonlinearities for an ON cell (red) and an OFF cell (blue), describing the firing rate as a function of stimulus722

with the maximum expected spike count R, the gain β, and the threshold θ. The shaded curve denotes the723

Laplace stimulus probability distribution.724

S1 Text. Mutual Information for a system with two cells. The mutual information for different noise725

models.726

S1 Table. Conditional probability matrix. Conditional probability matrix p(k1, k2|s) for a mixed ON-727

OFF system.728

S2 Table. Conditional probability matrix. Conditional probability matrix p(k1, k2|s) for a homogeneous729

ON-ON system.730

S3 Table. Mutual information for a two-cell system. Mutual information for a two-cell system with731

spontaneous firing rate and Poisson noise.732

S4 Table. Mutual information for a two-cell system. Mutual information for a two-cell system with733

empirically measured sub-Poisson noise from salamander retinal ganglion cells.734
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