Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Causal epigenome-wide association study identifies CpG sites that influence cardiovascular disease risk

Tom G. Richardson, Jie Zheng, George Davey Smith, Nicholas J. Timpson, Tom R. Gaunt, Caroline L. Relton, Gibran Hemani
doi: https://doi.org/10.1101/132019
Tom G. Richardson
1MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Tom.G.Richardson@bristol.ac.uk
Jie Zheng
1MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George Davey Smith
1MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicholas J. Timpson
1MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tom R. Gaunt
1MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Caroline L. Relton
1MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gibran Hemani
1MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

The extent to which genetic influences on complex traits and disease are mediated by changes in DNA methylation levels has not been systematically explored. We developed an analytical framework that integrates genetic fine mapping and Mendelian randomization with epigenome-wide association studies to evaluate the causal relationships between methylation levels and 14 cardiovascular disease traits.

We identified 10 genetic loci known to influence proximal DNA methylation which were also associated with cardiovascular traits (P < 3.83×10-08). Bivariate fine mapping suggested that the individual variants responsible for the observed effects on cardiovascular traits at the ABO, ADCY3, ADIPOQ, APOA1 and IL6R loci were likely mediated through changes in DNA methylation. Causal effect estimates on cardiovascular traits ranged between 0.109-0.992 per standard deviation change in DNA methylation and were replicated using results from large-scale consortia.

Functional informatics suggests that the causal variants and CpG sites identified in this study were enriched for histone mark peaks in adipose tissue and gene promoter regions. Integrating our results with expression quantitative trait loci data we provide evidence that variation at these regulatory regions is likely to also influence gene expression at these loci.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted April 29, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Causal epigenome-wide association study identifies CpG sites that influence cardiovascular disease risk
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Causal epigenome-wide association study identifies CpG sites that influence cardiovascular disease risk
Tom G. Richardson, Jie Zheng, George Davey Smith, Nicholas J. Timpson, Tom R. Gaunt, Caroline L. Relton, Gibran Hemani
bioRxiv 132019; doi: https://doi.org/10.1101/132019
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Causal epigenome-wide association study identifies CpG sites that influence cardiovascular disease risk
Tom G. Richardson, Jie Zheng, George Davey Smith, Nicholas J. Timpson, Tom R. Gaunt, Caroline L. Relton, Gibran Hemani
bioRxiv 132019; doi: https://doi.org/10.1101/132019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4239)
  • Biochemistry (9171)
  • Bioengineering (6804)
  • Bioinformatics (24062)
  • Biophysics (12154)
  • Cancer Biology (9564)
  • Cell Biology (13825)
  • Clinical Trials (138)
  • Developmental Biology (7656)
  • Ecology (11736)
  • Epidemiology (2066)
  • Evolutionary Biology (15540)
  • Genetics (10670)
  • Genomics (14358)
  • Immunology (9511)
  • Microbiology (22901)
  • Molecular Biology (9129)
  • Neuroscience (49112)
  • Paleontology (357)
  • Pathology (1487)
  • Pharmacology and Toxicology (2583)
  • Physiology (3851)
  • Plant Biology (8351)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2301)
  • Systems Biology (6205)
  • Zoology (1302)