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Abstract 

The relative contributions of additive versus non-additive interactions in the regulation of 

complex traits remains controversial. This may be in part because large-scale epistasis 

has traditionally been difficult to detect in complex, multi-cellular organisms. We 

hypothesized that it would be easier to detect interactions using mouse chromosome 

substitution strains that simultaneously incorporate allelic variation in many genes on a 

controlled genetic background. Analyzing metabolic traits and gene expression levels in 

the offspring of a series of crosses between mouse chromosome substitution strains 

demonstrated that inter-chromosomal epistasis was a dominant feature of these complex 

traits. Epistasis typically accounted for a larger proportion of the heritable effects than 

those due solely to additive effects. These epistatic interactions typically resulted in trait 

values returning to the levels of the parental CSS host strain. Due to the large epistatic 

effects, analyses that did not account for interactions consistently underestimated the true 

effect sizes due to allelic variation or failed to detect the loci controlling trait variation. 

These studies demonstrate that epistatic interactions are a common feature of complex 

traits and thus identifying these interactions is key to understanding their genetic 

regulation.  
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The genetic basis of complex traits and diseases results from the combined action of 

many genetic variants [1]. However, it remains unclear whether these variants act 

individually in an additive manner or via non-additive epistatic interactions. Epistasis has 

been widely observed in model organisms such as S. cerevisiae [2,3], C. elegans [4], D. 

melanogaster [5] and M. musculus [6]. However, it has been more difficult to detect in 

humans, potentially due to their diverse genetic backgrounds, low allele frequencies, 

limited sample sizes, complexity of interactions, insufficient effect sizes, and 

methodological limitations [7,8]. Nonetheless, a number of genome-wide interaction-

based association studies in humans have provided evidence for epistasis in a variety of 

complex traits and diseases [9–15]. However, concerns remain over whether observed 

epistatic interactions are due to statistical or experimental artifacts [16,17].  

To better understand the contribution of epistasis to complex traits, we studied mouse 

chromosome substitution strains (CSSs) [18]. In CSSs, a single chromosome in a host 

strain is replaced by the corresponding chromosome from a donor strain. This provides an 

efficient model for mapping quantitative trait loci (QTLs) on a fixed genetic background. 

This is in contrast to populations with many segregating variants such as advanced 

intercross lines [19], heterogeneous stocks [20], or typical analyses in humans. Given the 

putative importance of genetic background effects in complex traits [21,22], we 

hypothesized the fixed genetic backgrounds of CSSs can provide a novel means for 

detecting genetic interactions on a large-scale [18,23]. Previous studies of CSSs with only 

a single substituted chromosome suggested that non-additive epistatic interactions 

between loci were a dominant feature of complex traits [6]. However, to identify the 

interacting loci, or at least their chromosomal locations, requires the analysis of genetic 
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variation in multiple genomic contexts [24]. We thus extended the analysis of single 

chromosome substitutions by analyzing a series of CSSs with either one or two 

substituted chromosomes, collectively representing the pairwise interactions between 

genetic variants on the substituted chromosomes. This experimental design can directly 

identify and map loci that are regulated by epistasis by analyzing the phenotypic effects 

of genetic variants on multiple fixed genetic backgrounds. Here we report the widespread 

effects of epistasis in controlling complex traits and gene expression. The detection of 

true epistatic interactions will improve our understanding of trait heritability and genetic 

architecture as well as providing insights into the biological pathways that underlie 

disease pathophysiology [25]. Knowing about epistasis will also be essential for guiding 

precision medicine-based decisions by interpreting specific variants in appropriate 

contexts. 

Results 

Contribution of epistasis to metabolic traits. Body weight and fasting plasma glucose 

levels were measured in a total of 766 control and CSS mice (S1, S2 Tables, S1 Fig.). 

The CSSs included 240 mice that were heterozygous for one A/J-derived chromosome 

and 444 mice that were heterozygous for two different A/J-derived chromosomes, both 

on otherwise B6 backgrounds. The CSSs with two A/J-derived chromosomes represented 

all pairwise interactions between the individual A/J-derived chromosomes. For example, 

comparisons were made between strain B6, strains (B6.A3 x B6)F1 and (B6 x B6.A10)F1 

which were both heterozygous for a single A/J-derived chromosome (Chr. 3 and 10, 

respectively), and strain (B6.A3 x B6.A10)F1 which was heterozygous for A/J-derived 

chromosomes 3 and 10 (S2 Fig.). A complete list of the strains analyzed is shown in 
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Table S2. Quantitative trait loci (QTLs) were identified for both body weight and plasma 

glucose levels that were due to main effects and interaction effects. Due to the study 

design, only QTLs with dominant effects could be assessed.  

Omnibus tests for main effects on body weight indicated that some of the chromosome 

substitutions individually influenced body weight (males p=0.0028; females p=0.0008; 

meta p=1.4e-05). Similarly, omnibus tests for main effects on plasma glucose levels 

demonstrated a significant effect of the chromosome substitutions (males p=0.0082; 

females p=0.00011; meta p=1.4e-05). QTLs with main effects on body weight were 

mapped to chromosomes 8 (Main Effect: 1.23g; Average Effect: 1.02g) and 17 (Main 

Effect: -1.13g; Average Effect: -1.11g) (S3 Table). Note that we define main effects as 

the effect of a chromosome substitution as estimated by a model which includes all 

pairwise interaction terms, thus taking into account context-dependent genetic 

background effects. In contrast, the average effect is estimated using a model that does 

not include any interaction terms; the latter is similar to the analyses performed in a 

typical GWAS study. QTLs with main effects on fasting glucose were mapped to 

chromosomes 3 (Main Effect: 25.0 mg/dL; Average Effect: 9.61 mg/dL), 5 (Main Effect: 

15.6 mg/dL; Average Effect: 6.02 mg/dL), and 4 (Main Effect: 17.5 mg/dL; Average 

Effect: 6.61 mg/dL) (S3 Table). 

Omnibus tests for interaction effects on body weight were not significant (males p= 0.19; 

females p= 0.83; meta p= 0.44), and therefore epistatic interactions on body weight were 

not further investigated. However, omnibus tests for interaction effects on plasma glucose 

demonstrated the importance of epistasis in regulating this trait (males p= 0.002; females 

p= 0.003; meta p= 8.99e-05). In fact, among the males and females respectively, epistasis 
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accounted for 43% (95% confidence interval: 23%-75%) and 72% (95% confidence 

interval: 37%-97%) of the heritable effects on plasma glucose levels. The discrepant 

results for the contribution of interactions to body weight and plasma glucose are likely 

reflected in the difference between whether QTLs for these traits were detected using the 

main effect model or the average effect model (S3 Table). For plasma glucose, only 1 of 

the 3 QTLs identified using the main effect model was also identified using the average 

effect model, and no new QTLs were identified with the average effect model. In contrast, 

both of the QTLs for body weight identified using the main effect model were also 

identified using the average effect model, and 2 new QTLs were identified on 

chromosomes 6 and 10. This suggests that for a trait regulated by epistatic interactions, 

the ability to successfully identify QTLs is greatly enhanced by accounting for these 

interactions. However, for a trait regulated primarily by additive effects, a model 

incorporating interactions can be detrimental to QTL identification. 

To identify specific epistatic interactions, we tested explicit hypotheses for inter-

chromosomal pairwise interactions on plasma glucose levels. Among the 15 CSS crosses 

analyzed, 5 crosses demonstrated inter-chromosomal epistatic interactions that altered 

plasma glucose levels (Fig. 1, S3, S4 Figs.). Interestingly, in all 5 crosses demonstrating 

interactions, one chromosome substitution increased fasting glucose levels relative to the 

control B6 strain. These main effects raised plasma glucose levels by an average of 12.3 

mg/dL in males and 17.8 mg/dL in females. However, in all 5 observed interactions the 

average plasma glucose levels in the double CSSs were closer to the control B6 strain 

than any single CSS was. Furthermore, in 4 of the 5 interactions, the plasma glucose 

levels in the double CSS did not differ statistically from the control strain B6 (p value > 
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0.1). Thus, the chromosome substitution driving the increase in plasma glucose on a B6 

background had no effect on glucose levels when the genetic background was altered by 

the second chromosome substitution.  

Regulation of gene expression by epistasis. As hepatic gluconeogenesis is a key 

determinant of plasma glucose levels in healthy insulin-sensitive mice [26], the hepatic 

gene expression patterns of control and CSS mice were analyzed to better understand the 

molecular mechanisms underlying the epistatic regulation of plasma glucose. The RNA-

Seq data was filtered for genes expressed in the liver, leaving 13,289 genes that were 

tested for differential expression associated with both main and interaction effects. A 

total of 6,101 main effect expression QTLs (meQTLs) were identified (FDR < 0.05) (Fig. 

2, S4 Table). Those meQTL genes located on the substituted chromosome were classified 

as cis-meQTLs (Fig. 2, red) whereas the meQTL genes not located on the substituted 

chromosome were classified as trans-meQTLs (Fig. 2, blue). Among all possible genes 

regulated by a cis-meQTL, on average 11.48% of these genes in each strain had a cis-

meQTL (range: 5.54% - 22.09%) (S5 Table). Similarly, among all possible genes 

regulated by a trans-meQTL, on average 5.42% (range: 0.08% to 19.26%) of these genes 

were regulated by a trans-meQTL (S5 Table). The percentage of cis- and trans-meQTLs 

in each strain demonstrated a strong positive linear correlation (Spearman’s r = 1.0) but 

the proportion of cis-eQTLs was always greater than the proportion of trans-eQTLs. 

Strain (B6 x B6.A8)F1 had both the highest percentage of genes with cis-meQTLs 

(22.09%) and trans-meQTLs (19.26%), whereas strain (B6 x B6.A5)F1 had both the 

lowest percentage of genes with cis-meQTLs (5.54%) and trans-meQTLs (0.08%). This 

suggests that trans-meQTLs are being driven by the cumulative action of many cis-effects 
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rather than a single or small number or major transcriptional regulators (S5 Fig.). Among 

the genes regulated by a meQTL(s), 41.98% (1615 out of 3847) were regulated by 

multiple meQTLs (Range: 2-6) (S6, S7 Tables). For example, Brca2 is regulated by 5 

trans-meQTLs mapped to chromosomes 4, 6, 8, 10 and 14 (S6 Fig., S7 Table), 

demonstrating that hepatic Brca2 expression is regulated by allelic variation throughout 

the genome. In addition to the well-known role of Brca2 in breast cancer susceptibility, 

Brca2 has been implicated in hepatocellular carcinoma risk [27–29]. 

In addition to the meQTLs regulated by substitution of a single chromosome, the analysis 

of double CSSs enabled the detection of eQTLs with additive and interaction effects 

between the substituted chromosomes. The expression of Zkscan3 represents an example 

of additivity, with the substitution of A/J-derived chromosomes 8 and 17 each 

individually increasing the expression of Zkscan3 relative to control B6 mice (S7 Fig.). In 

the double CSS strain (B6.A17 x B6.A8)F1, the effects of each individual chromosome 

substitution are combined in an additive manner to result in yet higher expression than 

either of the single CSSs (S7 Fig.). The additive effects of the Zkscan3 meQTLs detected 

by RNA-Seq were confirmed by quantitative reverse transcription PCR (S7 Fig.), as were 

4/5 additional meQTLs demonstrating additivity (S8 Fig.).  

In addition to examples of additivity, interaction expression QTLs (ieQTLs) were 

identified that were jointly regulated by genetic variation on two substituted 

chromosomes. The ieQTLs, similar to the meQTLs, were divided into cis-ieQTLS and 

trans-ieQTLs, with cis-ieQTLs defined by differentially expressed genes located on either 

one of the two substituted chromosomes and trans-ieQTLs representing differentially 

expressed genes that are not located on either substituted chromosome. A total of 4,283 
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ieQTLs were identified (S9 Table). Among all possible genes regulated by a cis-ieQTL or 

trans-ieQTL, 2.01% and 2.16% of genes were regulated by a cis- or trans-ieQTL 

respectively (Table 1). The combination of A/J-derived chromosomes 8 and 14 yielded 

the most ieQTLs (n=2,305) including cis-ieQTLs regulating the expression of 17.56% of 

all genes on chromosomes 8 or 14 and trans-ieQTLs regulating the expression of 17.32% 

of all genes throughout the remainder of the genome. Overall, the ieQTLs demonstrated a 

similar positive linear correlation as the meQTLs (Spearman’s r = 0.92) (S8 Fig.), 

although there was no enrichment for cis-ieQTLs. Among the genes regulated by an 

ieQTL(s), 32.35% (945 out of 2921) were regulated by multiple ieQTLs (Range: 2-7) 

(S10, S11 Tables). For example, Agt expression is decreased in strain (B6.A8 x B6)F1 

relative to control B6 mice; however, interactions between alleles on chromosome 8 and 

chromosomes 6, 3, 17, and 14 all result in expression levels of Agt that did not differ 

from the control strain (Fig. 3).  

Context-dependent effects on gene expression. We next tested whether the interaction 

effects on gene expression were synergistic (positive epistasis) or antagonistic (negative 

epistasis) (S9 Fig.). Synergistic refers to an increased difference in gene expression levels 

between the double CSS and the control B6 strain beyond that expected based on an 

additive model, whereas antagonistic refers to a decreased difference. The regulation of 

Agxt was an example of an antagonistic interaction, with main effects from substituted 

chromosomes 6 and 8 each individually decreasing Agxt expression, whereas this effect 

was lost in the double chromosome substitution strain (Fig. 4A). In contrast, the 

regulation of Cyp3a16 represented an example of synergistic interaction with the 

detection of an ieQTL in the absence of a meQTLs (Fig. 4B). Among the ieQTLs, 
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antagonistic interactions accounted for 96% (n=4101) while synergistic interactions 

accounted for 4% (n=182) (Table 1). Remarkably, for 80% of the antagonistic 

interactions (3285/4101), gene expression in one or both of the single CSSs differed from 

the control B6 strain (a meQTL), whereas expression in the double CSS reverted to 

control levels (p > 0.1 relative to strain B6). To again validate the RNA-Seq data using an 

independent method, RT-qPCR was performed for a subset of genes with antagonistic 

(n=13) and synergistic (n=10) interactions. Replication by RT-qPCR confirmed the 

detection of epistasis in 61% (p <0.05) of the genes tested (Antagonistic: 8/13; 

Synergistic: 6/10) (S8 Table).  

Significant contribution of epistasis to trait heritability. Given that the ieQTLs 

regulated approximately 2% of all genes expressed in the liver (Table 1), we sought to 

quantify the contribution of genetic interactions to the heritable component of all genes. 

First, an omnibus test identified 6,684 genes out of the 12,325 genes expressed in the 

liver for which there was evidence of genetic control within the population of CSSs. The 

average proportion of heritable variation attributable to interactions across these genes 

was 0.56 (1st quartile: 0.43 – 3rd quartile: 0.68) (Fig. 5A). When the same analysis was 

restricted to only genes with a statistically significant contribution of interactions to gene 

expression levels (n=3,236 genes), the proportion of heritable variation attributable to 

interactions increased to 0.66 (1st quartile: 0.56 – 3rd quartile: 0.74) (Fig. 5B).  

Discussion 

CSSs, which have a simplified and fixed genetic background, were used to identify 

widespread and likely concurrent epistatic interactions. This systematic analysis of 
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mammalian double CSSs demonstrated that epistatic interactions controlled the majority 

of the heritable variation in both fasting plasma glucose levels and hepatic gene 

expression (Fig. 5). Among genes expressed in the liver, the expression level of 24% 

were regulated, at least in part, by epistasis (Fig. 5). This number is remarkable 

considering that only dominant effects were tested, only a single tissue and time point 

were examined, allelic variation from only two inbred strains of mice were included, and 

only 15 pairwise strain combinations of CSSs were tested out of a possible 462 

combinations of double CSSs. The prevalence of epistatic interactions provides a 

potential molecular mechanism underlying the highly dependent nature of complex traits 

on genetic background [21,22,30,31]. Interpreting the effect of individual allelic variants 

will thus be severely limited by population-style analyses that fail to account for possible 

contextual effects. Nonetheless, progress is being made in this field, including in diseases 

such as multiple sclerosis (MS), which is a complex genetic disease whose risk is highly 

associated with family history [32]. For example, MS risk alleles in DDX39B (rs2523506) 

and IL7R (rs2523506A) together significantly increase MS risk considerably more than 

either variant independently [15]. Based on the considerable number of interactions 

detected in the CSS crosses, context-dependent interactions such as that between 

DDX39B and IL7R in MS are likely widespread and may therefore represent a 

significant source of missing heritability for complex traits and diseases [33,34].  

Although epistasis was a dominant factor regulating fasting glucose levels, the same 

effect was not detected in the regulation of body weight. It is not clear if this is due to 

different genetic architectures between these two traits or whether this was due to the 

limited genetic variation between the B6 and A/J strains. The body weight studies were 
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conducted in mice fed a standard rodent chow, whereas differences in body weight 

between strains B6 and A/J are significantly more pronounced when challenged with a 

high-fat diet [35,36]. Alternately, a recent meta-analysis of trait heritability in twin 

studies identified significant variation in the role of additive and non-additive variation 

among different traits, with suggestive evidence for non-additive effects in 31% of traits 

[37]. Among the traits analyzed, genetic regulation of neurological, cardiovascular, and 

ophthalmological traits were among the most consistent with solely additive effects, 

whereas traits related to reproduction and dermatology were more often consistent with 

non-additive interactions. Among the metabolic traits studied, 40% of the 464 traits 

studied were consistent with a contribution of non-additive interactions [37]. It is 

interesting to speculate whether some traits that may have a more direct effect on fitness 

(e.g. reproduction) are more likely to involve multiple non-additive effectors in order to 

maintain a narrow phenotypic or developmental range [38]. 

Although many inter-chromosomal non-additive interactions were identified in mice, it 

remains unclear whether these interactions are attributable to bigenic gene-gene 

interactions or to higher-order epistasis involving multiple loci located on a substituted 

chromosome. Studies in yeast that dissected the genetic architecture of epistasis 

demonstrated that gene-gene interactions played a minor role among the heritable effects 

attributable to epistasis, thus primarily implicating higher order interactions [2]. Yet, 

other studies in yeast that methodically tested pairs of gene knockouts for interactions 

identified a number of gene-gene interactions [39]. Additional evidence for both high-

order epistasis with three, four, and even more mutations [40] as well as bigenic gene-

gene interactions [41] have been identified and it seems likely that both will underlie 
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interactions detected in the CSS studies. However, to formally test this and determine the 

relative contribution of each, higher resolution genetic mapping of the epistatic 

interactions will be necessary to better understand their molecular nature [42]. 

Perhaps the most significant outcome of the epistasis detected was the high degree of 

constancy in the light of context dependence, such that the interactions usually returned 

trait values to the levels detected in control mice. Remarkably, this is just as Waddington 

predicted 75 years ago, a phenomenon he referred to as canalization [43] and has been 

observed in crosses between other inbred mouse strains [44,45]. Canalization refers to the 

likelihood of an organism to proceed towards one developmental outcome, despite 

variation in the process along the way. This variation can be influenced by among other 

things the numerous functional genetic variants present in a typical human genome, 

which may contain thousands of variants that alter gene function [46]. We find that most 

genetic interactions return trait values to levels seen in control strains, which would act to 

reduce phenotypic variation among developmental outcomes. This robustness in the face 

of considerable genetic variation is central to the underlying properties of canalization. 

These genetic interactions therefore represent a mechanism for storing genetic variation 

within a population, without reducing individual fitness. This stored genetic variation 

could then enable populations to more quickly adapt to environmental changes [47].   

Finally, the consistently greater effect sizes of main effects relative to average effects 

suggests that GWAS-type studies consistently underestimate true effect sizes in at least a 

subset of individuals. Therefore, the key to enabling precision medicine is to identify in 

which subset of individuals a particular variant has a significant effect. The consideration 

of epistasis in treatment, although in its infancy, remains a promising avenue for 
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improving clinical treatment regimens, including predicting drug response in tumors [48] 

and guiding antibiotic drug-resistance [49]. However, true precision medicine will 

necessitate a more comprehensive understanding of how genetic background, across 

many loci, affects single variant substitutions.  
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Method: 

Mice. Chromosome substitution strains (CSS) and control strains were purchased 

fromThe Jackson Laboratory. These strains include C57BL/6J-Chr3A/J/NaJ mice (Stock 

#004381) (B6.A3), C57BL/6J-Chr4A/J/NaJ mice (Stock #004382) (B6.A4), C57BL/6J-

Chr5A/J/NaJ mice (Stock #004383) (B6.A5), C57BL/6J-Chr6A/J/NaJ mice (Stock #004384) 

(B6.A6), C57BL/6J-Chr8A/J/NaJ mice (Stock #004386) (B6.A8), C57BL/6J-Chr10A/J/NaJ 

mice (Stock #004388) (B6.A10), C57BL/6J-Chr14A/J/NaJ mice (Stock #004392) 

(B6.A14), C57BL/6J-Chr17A/J/NaJ mice (Stock #004395) (B6.A17) and C57BL/6J 

(Stock #000664). Mice were maintained by brother-sister matings. All mice used for 

experiments were obtained from breeder colonies at Case Western Reserve University. 

Mice were housed in ventilated racks with access to food and water ad libitum and 

maintained at 21°C on a 12-hour light/12-hour dark cycle. All mice were cared for as 

described under the Guide for the Care and Use of Animals, eighth edition (2011) and all 

experiments were approved by IACUC and carried out in an AAALAC approved facility. 

Male mice from strains B6, B6.A4, B6.A5, B6.A10 strains and B6.A8 were bred with 

female mice from strains B6, B6.A3, B6.A6, B6.A14 and B6.A17 strain. The offspring 

were weaned at 3 weeks of age. The number of offspring analyzed from each cross is 

shown in S2 Table for both body weight and plasma glucose, although glucose levels 

were not measured in one mouse each from the following strains: (B6 x B6.A10)F1, 

(B6.A14 x B6)F1, (B6.A17 x B6.A10)F1, (B6.A3 x B6.A10)F1, (B6.A6 x B6.A4)F1, 

(B6.A14 x B6.A5)F1 and (B6.A6 x B6.A5)F1. The mice analyzed from each cross were 

derived from at least three independent breeding cages. No blinding to the genotypes was 

undertaken. 
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Mouse phenotyping. At 5 weeks of age, mice were fasted 16 hours overnight and body 

weight was measured. Mice were anesthetized with isofluorane and fasting blood glucose 

levels were measured via retro orbital bleeds using an OneTouch Ultra2 meter (LifeScan, 

Milpitas, CA, USA). Mice were subsequently sacrificed by cervical dislocation and the 

caudate lobe of the liver was collected and immediately placed in RNAlater (Thermo 

Fisher Scientific, Waltham, MA, USA).  

Trait analysis. To analyze the body weight and fasting plasma glucose data, linear 

regression was used with a main effects term and a term for each pairwise interaction for 

the males and females separately. In the glucose data, 5 observations were Winserized by 

setting a ceiling of 4 median absolute deviations from the median. Any values larger than 

the ceiling (165 mg/dL) were set to the ceiling. Additionally, interactions where one of 

the crosses contained less than 5 mice were not analyzed leading to the removal of the 

(B6.A4 x B6.A3)F1 mice, the female (B6.A8 x B6.A14)F1 and the male (B6.A8 x 

B6.A3)F1 mice. For each sex, two omnibus tests were performed to see if (1) there were 

any main effects and (2) there were any interaction effects. Fisher’s method was used to 

combine the omnibus p-values from males and females[50]. Inverse-variance meta-

analysis was used to combine the coefficient estimates from the males and females. To 

account for potential non-normality, heteroscedasticity and multiple testing, we created 

10,000 bootstrap data sets by sampling with replacement from each cross and sex 

combination. Studentized bootstraps (i.e. using pivotal statistics) were used to create 

confidence intervals for the coefficients and p-values. Multiple tests were adjusted for by 

comparing the observed test statistics to the maximum bootstrap test statistic as 

described[51].  P-values were adjusted for multiple comparisons separately for each trait 
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and separately for the main effects and interactions. The proportion of the genetic 

variance explained by interactions was estimated as (RFull – RAdditive)/ RFull where RAdditive 

and RFull are the adjusted coefficients of determination for the model with only main 

effects and for the full interaction model respectively. The adjusted coefficients of 

determination are an estimate of the proportion of variation in the trait which is explained 

by the model. Note that RFull and RAdditive share the same denominator (i.e. the total trait 

variation). Thus, total trait variation cancels out of the quantity (RFull - RAdditive)/ RFull so 

that the quantity represents the amount of genetic variation that cannot be explained by 

main effects only. Using the adjusted version of the coefficient of determination helps 

account for potential overfitting. Bootstrap confidence intervals of this proportion were 

calculated. 

Sample preparation for RNA-Seq. Liver tissue stored in RNAlater was homogenized 

using a Tissumizer Homogenizer (Tekmar, Cincinnati, OH, USA). Total RNA was 

isolated using the PureLink RNA purification kit (Thermo Fisher Scientific, Waltham, 

MA, USA). A sequencing library was generated using the TruSeq Stranded Total RNA 

kit (Illumina, San Diego, CA, USA). RNA samples were sequenced on Illumina 

HiSeq2500s with single-end 50 base pair reads [52]. Library preparation and RNA 

sequencing were performed by the CWRU genomics core (Director, Dr. Alex Miron). A 

total of 7,808,410,316 reads were generated across four flow cells, with an average of 

49,735,098 reads per sample. Sequencing quality was assessed by FastQC [53], which 

identified an average per base quality score of 35.46. 

RNA-Seq data analysis. To maximize statistical power, 20 samples were selected for 

analysis from the control B6 group, 8 samples were selected from the single CSS groups, 
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and 5 samples were selected from the double CSS groups. A total of 154 control and CSS 

mice were analyzed, including 20 B6 mice, 63 mice that were heterozygous for one A/J-

derived chromosome, and 71 mice that were heterozygous for two different A/J-derived 

chromosomes. The B6.A4 x B6.A3 and B6.A8 x B6.A3 crosses were poor breeders and 

thus we did not obtain 5 samples to analyze from these crosses.  

Reads were aligned using TopHat2 (2.0.10) [54] to the reference mm10 genome. Because 

the reference genome is comprised of sequence from strain B6, sequencing reads from a 

B6-derived chromosome are more accurately mapped than reads from an A/J-derived 

chromosome [55]. To avoid potential mapping biases, we created an “individualized 

genome” of the A/J mouse strain using the program Seqnature [55] with variant calls from 

the Mouse Genomes Project that were downloaded from The Sanger Institute [56]. Reads 

that were not mapped to the B6 genome were then mapped to the individualized AJ 

genome with TopHat2. HTSeq-count [57] and the GENCODE vM7 gene annotations[46] 

were used to count the number of reads for each gene feature. Graphical depictions of the 

distribution CPM (counts per million) were used to remove 3 outlier samples. Genes 

where less than 75% of the samples had a count greater than or equal to 15 were 

considered to be expressed at low levels in liver and were removed leaving 13,289 genes 

that were considered expressed. To enhance reproducibility and reduce the dependence 

between the genes, svaseq [59] was used to create 5 surrogate variables that served as 

covariates in subsequent modeling.  

EdgeR [58] was used to fit a model with main effects and pairwise interactions between 

each chromosome substitution. EdgeR uses a log link function, and thus departure from 

additivity in EdgeR is departure from a multiplicative model on the gene expression level. 
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The chromosome-chromosome interactions with FDR < 0.05 were divided into the 

categories synergistic and antagonistic based on the gene expression differences between 

the double CSS strain and the control strain relative to that predicted by an additive 

model (S9 Fig.). 

To estimate the amount of variation attributable to interaction, we fit an additive model in 

EdgeR which did not include any interaction terms. We then calculated for each 

individual and gene the fitted values assuming that the individual’s covariates (i.e. the 

SVA surrogate variables) were set to 0. We then calculate SSFull as the sum of the mean 

centered and squared fitted values for the full model including interaction, SAdditive was 

calculated similarly for the additive model. We calculated the amount of the genetic 

variation explained by the interaction as (SSFull - SAdditive) / SFull. This estimate may be 

slightly biased upward due to overfitting. However, the mean value for this statistic 

among the genes with no significant interaction (FDR > 0.5) was 0.25 (1st quartile: 0.20, 

3rd quartile: 0.32) (Fig. 5B), which gives an estimate of the upper bound on the possible 

bias. 

Quantitative PCR (qPCR). Tissue was homogenized using TissueLyser II (Qiagen, 

Valencia, CA, USA) and total RNA was isolated using the PureLink RNA purification kit 

with TRIzol protocol (Thermo Fisher Scientific, Waltham, MA, USA). Total RNA was 

reverse transcribed using the high capacity cDNA reverse transcription kit (Applied 

Biosystems, Carlsbad, CA, USA). The sequences for each primer are listed in S13 Table. 

The qPCR reactions were performed with the power SYBR green PCR Master Mix 

(Thermo Fisher Scientific, Waltham, MA, USA) and run on a Bio Rad CFX Connect 
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Real Time System (Bio Rad, Hercules, CA, USA). Expression levels were calculated 

using the ΔΔCt method relative to the Rplp0 control gene.  

Data availability. The RNA-Seq data is available from GEO under the accession number 

GSE93591.  
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Figure 1. Inter-chromosomal epistasis between chromosomes 5 and 6 regulates 

fasting plasma glucose levels in mice. Plasma glucose levels were measured in 5-week-

old mice that were fasted overnight. Each dot represents the glucose level of a single 

mouse. “Others” represents the data from all mice in this study excluding the other 4 

strains shown in that panel. The black horizontal line indicates the mean glucose level for 

each group. The red horizontal line indicates the predicted trait level based on a model of 

additivity. 
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Figure 2. Identification of meQTLs that regulate hepatic gene expression. A circos 

plot of meQTL locations in the genome where each layer of the circle represents the 

comparison between a CSS strain and control B6 mice. From the inner circle, the CSS 

strains are (B6 x B6.A5)F1, (B6.17 x B6)F1, (B6.A3 x B6)F1, (B6.A6 x B6)F1, (B6 x 

B6.A10)F1, (B6 x B6.A4)F1, (B6.A14 x B6)F1 and (B6 x B6.A8)F1. Cis-meQTLs and 

trans-meQTLs are marked with red and blue, respectively. The width of each 

chromosome is proportional to its physical size. The height of each meQTL bar is 

proportional to the number of meQTLs in that genomic interval. 
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Figure 3. Identification of 4 ieQTLs that regulate the hepatic expression of Agt. 

Gene expression levels of Agt in the liver are shown for strain B6, 5 single CSS strains, 

and 4 double CSS strains. Each dot represents Agt expression in an individual mouse. 

The mean value for each strain is indicated by a solid line. The expected expression level 

of Agt in the double CSS strains based on a model of additivity is indicated with a red 

line. The Agt gene is located on mouse chromosome 8. 
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Figure 4. Examples of synergistic and antagonistic ieQTLs. Each dot represents the 

gene expression data from one mouse. The horizontal bar indicates the mean value for 

each strain (A) An antagonistic ieQTL regulates the expression of Agxt in the liver. (B) A 

synergistic ieQTL regulates the expression of Cyp3a16 in the liver.  
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Figure 5.  Contribution of epistasis to the genetic regulation of hepatic gene 

expression. (A) Diagrams representing the estimated proportion of genetic variation due 

to interactions for (A) all genes expressed in the mouse liver whose expression was under 

genetic control in the CSS strains studied and (B) the same data segregated based on the 

statistical evidence supporting an effect of interaction on gene expression. 
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