New Results
Learning mutational graphs of individual tumor evolution from multi-sample sequencing data
View ORCID ProfileDaniele Ramazzotti, Alex Graudenzi, Luca De Sano, Marco Antoniotti, Giulio Caravagna
doi: https://doi.org/10.1101/132183
Daniele Ramazzotti
1Department of Pathology, Stanford University, California 94305, USA
Alex Graudenzi
2Department of Informatics, Systems and Communication, University of Milan-Bicocca, 20126 Milan, Italy
Luca De Sano
2Department of Informatics, Systems and Communication, University of Milan-Bicocca, 20126 Milan, Italy
Marco Antoniotti
2Department of Informatics, Systems and Communication, University of Milan-Bicocca, 20126 Milan, Italy
Giulio Caravagna
3School of Informatics, University of Edinburgh, Edinburgh EH8 9YL, United Kingdom

Article usage
Posted September 04, 2017.
Learning mutational graphs of individual tumor evolution from multi-sample sequencing data
Daniele Ramazzotti, Alex Graudenzi, Luca De Sano, Marco Antoniotti, Giulio Caravagna
bioRxiv 132183; doi: https://doi.org/10.1101/132183
Subject Area
Subject Areas
- Biochemistry (14121)
- Bioengineering (10790)
- Bioinformatics (34225)
- Biophysics (17608)
- Cancer Biology (14700)
- Cell Biology (20721)
- Clinical Trials (138)
- Developmental Biology (11155)
- Ecology (16470)
- Epidemiology (2067)
- Evolutionary Biology (20773)
- Genetics (13649)
- Genomics (19056)
- Immunology (14196)
- Microbiology (33066)
- Molecular Biology (13790)
- Neuroscience (72195)
- Paleontology (539)
- Pathology (2274)
- Pharmacology and Toxicology (3852)
- Physiology (6089)
- Plant Biology (12362)
- Synthetic Biology (3447)
- Systems Biology (8353)
- Zoology (1905)