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Short Summary 36 

Sensorimotor transformations are mediated by premotor brain networks where individual neurons 37 

represent sensory, cognitive, and movement-related information. Such multiplexing poses a conundrum 38 

– how does a decoder know precisely when to initiate a movement if its inputs are active at times when 39 

a movement is not desired (e.g., in response to sensory stimulation)? Here, we propose a novel 40 

hypothesis: movement is triggered not only by an increase in firing rate, but critically by a reliable 41 

temporal pattern in the population response. Laminar recordings in the superior colliculus (SC), a 42 

midbrain hub of orienting control, and pseudo-population analyses in SC and cortical frontal eye fields 43 

(FEF) corroborated this hypothesis. We also used spatiotemporally patterned microstimulation to 44 

causally verify the importance of temporal structure. A spiking neuron model with dendritic integration 45 

was able to decode temporal structure. These findings offer an alternative perspective on movement 46 

generation and highlight the importance of short-term population history in neuronal communication 47 

and behaviour. 48 

 49 

Long Summary 50 

Sensorimotor transformations are mediated by premotor brain networks where individual neurons 51 

represent sensory, cognitive, and movement-related information. Such multiplexing poses a conundrum 52 

– how does a decoder know precisely when to initiate a movement if its inputs are active at times when 53 

a movement is not desired (e.g., in response to sensory stimulation)? Here, we propose a novel 54 

hypothesis: movement is triggered not only by an increase in firing rate, but critically by a reliable 55 

temporal pattern in the population response. Laminar recordings in the superior colliculus (SC), a 56 

midbrain region that plays an essential role in orienting eye movements, indicate that the temporal 57 

structure across neurons is a factor governing movement initiation. Specifically, using a measure that 58 

captures the fidelity of the population code - here called temporal stability - we show that the temporal 59 

structure fluctuates during the visual response but becomes increasingly stable during the movement 60 

command, even when the mean population activity is similar between the two epochs. Analyses of 61 

pseudo-populations in SC and cortical frontal eye fields (FEF) corroborated this model. We also used 62 

spatiotemporally patterned microstimulation to causally test the contribution of population temporal 63 

stability to movement initiation and found that stable stimulation patterns were more likely to evoke a 64 

movement, even when other features of the patterns such as mean pulse rates and population state 65 

subspaces were matched. Finally, a spiking neuron model was able to discriminate between stable and 66 

unstable input patterns, providing a putative biophysical mechanism for decoding temporal structure. 67 

These findings offer an alternative perspective on the relationship between movement preparation and 68 

generation by situating the correlates of movement initiation in the temporal features of activity in 69 

shared neural substrates. They also suggest a need to look beyond the instantaneous rate code at the 70 

single neuron or population level and consider the effects of short-term population history on neuronal 71 

communication and behaviour. 72 

 73 
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In order to successfully interact with the environment, the brain must funnel down the sensory inputs it 75 

receives to specific movements at specific times. Such sensory-to-motor transformations are critically 76 

mediated by premotor brain networks where evolving activities in individual neurons represent sensory, 77 

cognitive, and movement-related information
1-3

. For example, in brain regions involved in the control of 78 

gaze, including the SC, so-called visuomovement neurons burst a volley of spikes both in response to a 79 

visual stimulus and for generating a gaze shift or saccade to the location of the stimulus
1
. The dual 80 

nature of visuomovement neurons is best illustrated by examining their activity in the delayed response 81 

paradigm (left panel in Figure 1A), which requires the subject to withhold a saccade to a stimulus in the 82 

visual periphery until after the disappearance of a central fixation cue. We recorded population activity 83 

from the SC using laminar microelectrode arrays (right panel in Figure 1A) in two monkeys (Macaca 84 

mulatta). Figures 1B and 1C show responses on individual channels and population activity averaged 85 

across channels, respectively, aligned on target (left) and saccade (right) onsets for three example trials 86 

in one session. The population exhibits a high frequency visual burst following target onset and a 87 

subsequent premotor burst prior to a saccade. The peak magnitude of the visual burst is lower than that 88 

of the premotor burst on some trials (light traces in Figure 1C), but it is not uncommon for the peak 89 

visual response to match or exceed the premotor activity (medium and dark traces in Figure 1C), 90 

especially when accounting for the 10-20 ms efferent delay from neural initiation to movement onset
4
 91 

(vertical dashed line in Figure 1C). Yet, on these trials, the visual burst does not trigger a movement, an 92 

observation that casts doubt on thresholding
5,6

 as a singular mechanism. Given that such neurons 93 

project directly to the brainstem saccade burst generator that initiates and guides saccadic gaze shifts
7,8

, 94 

we asked how downstream structures are able to differentiate between the two bursts. 95 

 96 

Quantification of population temporal structure 97 

We reasoned that if the mean rate of population activity is insufficient to discriminate between visual 98 

and premotor bursts, the answer likely resides in the spatiotemporal structure of activity during the two 99 

bursts. Indeed, a growing body of work has revealed that precise coordination in the timing of input 100 

spikes is more efficient at driving downstream cortical and subcortical neurons
9-11

. Specifically, we 101 

hypothesized that a critical criterion for a decoder to generate a movement should be a high level of 102 

certainty in the instructed movement and its metrics. Since the exact decoding scheme is unknown, we 103 

hypothesized that certainty is likely provided by consistency in the population pattern over the course of 104 

a burst, under any generalized weighted pooling scheme. To quantify this consistency, we first 105 

constructed a population firing rate trajectory as a function of time. Next, we normalized the population 106 

vector at each time point, constraining it to a unit hypersphere in state space. This step factors out 107 

global changes in firing across the population and focuses on the relative activity pattern. We then 108 

computed the dot product between two of these unit vectors separated in time (parametrized by �) - we 109 

call this measure the temporal stability of the population code. This procedure is schematized in Figure 110 

1D (for details, see Methods). 111 

 112 

Evolution of population temporal structure during sensorimotor tasks 113 

Figure 1E shows the evolution of temporal stability averaged across all sessions (n = 14, mean +/- s.e.m., 114 

coloured traces, also see EDF 1A). The stability of the population pattern decreased relative to baseline 115 
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during the visual burst and increased during the premotor burst. Moreover, this property was preserved 116 

when considering only the subset of trials where the peak visual response matched or exceeded the 117 

premotor activity 15 ms before saccade onset (gray trace in Figure 1E), and was significantly different 118 

from the trend in the null condition when the saccade was directed to a stimulus in the opposite 119 

hemifield (black trace in Figure 1E). The anti-phase relationship of stability between the visual and 120 

premotor bursts was also present across a range of separation times between the population vectors 121 

(EDF 1B). We also computed temporal stability by realigning activity on the peak population visual 122 

response, to discount any effect of visual response onset latency differences across the population, and 123 

found similar (if not stronger) effects (Figure 1F). Finally, scrambling the population code by shuffling the 124 

activations of individual neurons at each time point lowered the stability profile for the entire trial 125 

significantly (EDF 1C). Thus, population temporal stability seems to impose a constraint that prevents 126 

movement initiation at an undesirable time (visual epoch), allowing the animal to successfully perform 127 

the task at hand. Once cued to execute a gaze shift, the activity in the same population rises in a stable 128 

manner allowing saccade initiation. 129 

Next, we explored the robustness of the temporal stability hypothesis. We tested whether the 130 

properties of stability observed in other populations of neurons or conditions were consistent with its 131 

predicted role in movement initiation. For this part of the study we used data obtained from single-unit 132 

recordings in SC and the frontal eye fields (FEF), the latter of which plays a major role in the cortical 133 

control of saccade initiation
5,12

. Figure 2A shows the average normalized population activity of 57 SC and 134 

22 FEF neurons, affirming the visuomovement pattern of activity discussed above. We then used the 135 

trial-averaged activity of individual neurons to construct a pseudo-population, resulting in an “expected 136 

neural trajectory” on a given trial (Figure 2B), and used this as the input to the temporal stability 137 

computation (for more, see Methods and EDF 2). Since trial-averaged responses are much smoother 138 

than single trial population responses, the stability profiles observed here were relatively smoother and 139 

closer to unity overall compared to the profiles in the previous section, especially during the delay 140 

period (Figure 2C). Notably, the key observations were in line with those observed with simultaneous 141 

population recordings – the dramatic reduction in the stability during the visual burst, and stable activity 142 

during the premotor burst – in both SC and FEF, and were consistent across time separations (EDF 3A) 143 

and subjects (EDF 3B). 144 

We then tested whether the temporal stability framework was obeyed by SC neurons beyond those that 145 

are involved in the generation of large saccades. Neurons in the rostral SC are tonically active during 146 

fixation and reduce their activity during larger movements
13

 (Figure 2D).  Importantly, they also project 147 

to the saccade burst generator
14

.  Assuming population stability modulates the input drive to 148 

downstream structures, we hypothesized that the temporal structure in rostral SC neurons must 149 

decrease during large saccades but remain elevated during fixation, even when a visual burst occurs in 150 

other parts of SC and FEF. In other words, we expected the evolution of temporal stability across rostral 151 

SC neurons to be the inverse of what occurs in caudal SC - Figure 2E confirms this prediction. In addition 152 

to the antiphase relationship with caudal SC during large saccades, rostral SC is also known to play a 153 

causal role in the generation of microsaccades
15

. Therefore, we considered whether the rostral SC 154 

population exhibits stable temporal structure during the burst that generates microsaccades. This was 155 

indeed the case (Figure 2F). Thus, the population activity of neurons in rostral SC, including its temporal 156 

structure, supplements the pattern in other parts of SC in suppressing and initiating movements. Finally, 157 
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pooling neurons in SC and FEF to form a combined population (since they all project to saccade-158 

generating structures) did not impact the main result (EDF 3C). 159 

 160 

Causal discrimination of population temporal structure 161 

Thus far, we have shown that population temporal structure is a candidate measure that can be used to 162 

discriminate between visual and premotor bursts, using only correlation with the presence or absence of 163 

a movement. To test whether this measure is actively used by the brain in a causal manner, we 164 

performed multi-site patterned microstimulation in SC. We first identified individual contacts of the 165 

laminar probe that evoked low-latency saccades with suprathreshold stimulation, to ensure their 166 

position within the intermediate layers of SC. We then designed temporally stable and unstable 167 

stimulation patterns restricted to these contacts, limiting stimulation parameters for individual sites to 168 

the sub-threshold regime and verifying that the overall stimulation was near-threshold (for details, see 169 

Methods). Stable patterns were created with a linearly decreasing inter-pulse interval (IPI) sequence for 170 

one contact (to simulate a burst) and scaling the IPIs for other contacts by a uniformly spaced factor. For 171 

each stable pattern, we also created a paired unstable pattern by jittering the pulse times within a 172 

window and shuffling spikes between contacts, preserving both the pulse count for each site and the 173 

average pulse rate across the “population”. An example pair of stable-unstable pulse trains is shown in 174 

Figure 3A (top row). The bottom row shows the pulse rates determined from these trains, illustrating 175 

the scaled rates for the stable pattern and the fluctuating rates for the unstable pattern for individual 176 

sites, despite the comparable population rates on individual trials (thick traces in the bottom row of 177 

Figure 3A; see EDF 4B,C for more examples). Note that the assignment of high and low rates to different 178 

contacts was randomized across trials, resulting in similar trial-averaged pulse rates for any given 179 

channel, for either type of pattern (Figure 3B). Figure 3C shows the temporal stability for stable and 180 

unstable patterns for all trials in the example session, confirming the impression provided by the pulse 181 

trains and rates, i.e., the scaled patterns are highly stable compared to the relative instability of the 182 

jittered patterns. 183 

We delivered these stimulation patterns during the “gap period” in a gap saccade task (EDF 4A). Figure 184 

3D shows a scatter plot of the stimulation-aligned saccade latencies observed using stable versus 185 

unstable stimulation patterns for all pairs from one session. For the majority of stable-unstable trial 186 

pairs, a saccade was evoked with the stable but not the unstable pattern (points in the blue shaded 187 

window spanning the stimulation duration in Figure 3D). The relative likelihood of evoking a movement 188 

with the stable stimulation pattern only (as described in the inset in Figure 3D) is shown as a function of 189 

session number in Figures 3E (blue points). For most sessions, the observed relative likelihood values 190 

were significantly higher (i.e., biased towards the stable pattern; p < 0.01, permutation tests) than the 191 

null distribution (gray points) obtained by shuffling trials with randomly assigned stable-unstable 192 

identities, reinforcing the observation that the stable pattern was more likely to evoke a movement 193 

compared to a state-matched unstable pattern. We also analyzed the movement vectors evoked by 194 

stable and unstable patterns – both sets of saccades, when they occurred, were similar to each other in 195 

both amplitude and direction (EDF 5; p > 0.01 for most sessions, Wilcoxon signed-rank tests) and to the 196 

“fixed vector saccades” evoked by constant frequency multi-channel stimulation, in amplitude (EDF 5; p 197 

> 0.01 for most sessions, Wilcoxon rank-sum tests; for details, see Methods). 198 

 199 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/132514doi: bioRxiv preprint 

https://doi.org/10.1101/132514
http://creativecommons.org/licenses/by/4.0/


6 

 

Comparison with other population-based models of movement generation 200 

Having demonstrated the role of population temporal structure in saccade initiation using both 201 

correlative and causal approaches, we sought to disambiguate the stability framework from extant 202 

models of movement initiation. We earlier argued for the implausibility of threshold-based gating based 203 

on the fact that the population activity during the visual burst can sometimes exceed premotor activity 204 

(Figure 1C). Could other population activity-based mechanisms, such as the optimal or potent subspace 205 

model that seems to govern movement generation in the skeletomotor system
16-18

, play a role here? To 206 

verify this, we first used factor analysis (FA) to visualize the low-dimensional neural states in the visual 207 

and premotor bursts
19

. An example 3-dimensional FA projection of the two bursts is shown in Figure 4A 208 

– the two sets of states are clearly separable, likely an effect of the subtle yet distinct trends in visual 209 

versus premotor activity levels along the dorso-ventral extent of the SC (e.g., Figure 1B). Indeed, a linear 210 

discriminant analysis (LDA) classifier was able to easily discriminate between the visual and premotor 211 

states, confirming the result of visualization (purple points in Figure 4B, also see EDF 6). The properties 212 

of neural activity in SC therefore seem to be consistent with a static state space code as well. 213 

Next, we used data from the patterned microstimulation experiments to disambiguate between the 214 

optimal subspace and temporal stability frameworks. Using a representative low-dimensional FA 215 

projection to visualize the stimulation patterns was infeasible because all the electrode sites contributed 216 

equally to the patterns, due to the random assignment of pulse rates across sites on different trials. 217 

Indeed, it was evident that the stable and unstable patterns were indiscriminable in state space as 218 

shown in an example 3-dimensional projection (Figure 4C; the eigenspectrum in the inset shows 219 

gradually increasing cumulative variance with FA dimension). To confirm this, we trained an LDA 220 

classifier to discriminate between stable and unstable patterns based on population pulse states alone, 221 

and never observed above-chance classification (Figure 4D, also see EDF 6). This result provides a key 222 

piece of evidence in support of the notion that the brain in fact uses temporal stability information, 223 

since the evoked behavior reflected the difference between stable and unstable patterns while a linear 224 

readout of population states did not. However, it is still possible that certain sites or dimensions are 225 

more potent in evoking movements compared to others, a property which may not be revealed when 226 

classifying patterns based on stability alone. 227 

To explicitly test this possibility, we trained another LDA classifier to discriminate between trials in which 228 

stimulation evoked a movement and those where no movements were evoked. In order to estimate the 229 

effect of population states independent of the contribution of temporal stability, we divided the pairs of 230 

stable-unstable trials into two subsets – the stability subset (SS), which was made up of trial pairs where 231 

only one of the stable-unstable pair evoked a movement, and the neutral subset (NS), made up of trial 232 

pairs where either both or neither of the stable-unstable pair evoked a movement (Figure 4E). When 233 

trained on the NS trials alone, the linear decoder was able to successfully discriminate trials in which a 234 

movement was evoked (orange points in Figure 4F), indicating that the population pulse states 235 

contained significant information about movement initiation likelihood. Since the stable-unstable pairs 236 

were matched in terms of whether a movement was evoked or not for this subset, this readout of the 237 

population pattern was independent of its temporal structure. In contrast, a linear decoder trained on 238 

the SS trials was unable to determine whether a movement was evoked on a given trial with above-239 

chance accuracy (brown points in Figure 4F). Crucially, when the population pulse states were 240 

supplemented with stability information (added as a native dimension in the input to the decoder), 241 

classifier performance increased to reflect the trend in relative likelihood estimates in Figure 3E (green 242 
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points in Figure 4F, also see EDF 6). This analysis thus reveals two independent contributors to 243 

movement initiation in SC – a static “laminar” code, presumably related to the optimal or potent 244 

subspace, that may be a function of the distribution of preferred stimulation sites, and a dynamic 245 

“temporal” code, where stability of the population pattern controls movement initiation even under 246 

matched state space conditions. 247 

We also tested how the temporal stability hypothesis was related to modified threshold-based 248 

mechanisms that rely on pooling the activity of a correlated ensemble of neurons
20

. In this framework, 249 

correlations in the accumulation rates of neurons influence movement initiation (reaction times) under 250 

a given pooling scheme, with higher correlations leading to shorter reaction times. Spike count 251 

correlations between SC neurons in the visual and premotor epochs (for details, see Methods) were 252 

inconsistent with this notion – the correlations during the visual epoch were slightly, but significantly, 253 

higher compared to the premotor epoch (EDF 7A, mean difference between visual and premotor epoch 254 

correlations = 0.0167 > 0, p = 2.5E-6, one-tailed t-test). We also computed pulse count correlations for 255 

the stable and unstable stimulation patterns and found no difference (EDF 7B, median difference in 256 

correlations between conditions = 4.11E-4, not significantly different from 0, p = 0.279, Wilcoxon signed-257 

rank test), despite the significant difference in their effects on behavior. Thus, the temporal stability 258 

framework is, to a large extent, independent of extant models of movement initiation. 259 

 260 

Biophysical models for decoding population temporal structure 261 

Finally, we sought to identify a mechanism by which downstream neurons could discriminate between 262 

stable and unstable population codes. We modelled the decoder as a spiking neuron that receives 263 

population inputs through its network of dendrites (Figure 5A). The decoder can be thought to represent 264 

neurons in the pons that receive and integrate inputs from the superior colliculus and burst for 265 

saccades
14

. To mimic the potent inhibitory gating (and disinhibition during saccades) provided by the 266 

omnipause neurons (OPNs) on the burst neurons, we also included a spiking disinhibitor unit with 267 

reciprocal inhibitory connections with the decoder. The disinhibitor also received both excitatory and 268 

inhibitory inputs from the same population as the decoder
21

, creating a balance between excitation and 269 

inhibition that must be overcome in order to produce a saccade
22

. How might the population pattern be 270 

converted into a signal that initiates a movement only when the inputs are stable? Conceptually, the 271 

decoder should have a mechanism to keep track of the short-term history of population activity, use this 272 

history to evaluate temporal structure, and respond selectively when the activity pattern is deemed 273 

stable over the time scale of integration. We incorporated these heuristic requirements by using state-274 

dependent modulation of input-evoked excitatory post-synaptic potentials in the decoder, i.e., inputs 275 

arriving when the local post-synaptic potential was depolarized caused a higher subsequent change in 276 

the potential
23,24

 (Figure 5B). 277 

We simulated the model with the stable and unstable patterns from the microstimulation experiments 278 

as inputs, since they readily offered mean-matched input sequences differing only in temporal structure. 279 

We characterized the efficacy of integration by the decoder as the time of first spike in the burst, a 280 

proxy for movement initiation latency. Although there were several pairs of trials for which both the 281 

stable and unstable inputs caused the decoder to spike or neither did (Figure 5C), there were a number 282 

of pairs for which only the stable input pattern was decoded (arrow in Figure 5C). To facilitate 283 

visualization and comparison with experimental data (Figure 3D), latency values greater than the 284 
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stimulation duration were randomly assigned when the decoder wasn’t recruited. Figure 5D shows the 285 

membrane potential output of the disinhibitor (cyan and magenta traces) and decoder (blue and red 286 

traces) units for a pair of stable (top row) and unstable (bottom row) input patterns from this subset of 287 

trial pairs (see EDF 8 for examples from the other subsets). For these pairs, the disinhibitor maintained a 288 

tonic firing rate throughout the trial when the inputs were unstable, and sharply reduced its activity at 289 

some point during stable stimulation (Figure 5E - magenta and cyan traces, respectively). This latter 290 

disinhibition on stable trials was in anti-phase relationship with the bursting exhibited by the decoder, 291 

which was absent on unstable trials (Figure 5E - blue and red traces, respectively). The firing rate profiles 292 

of the decoder and disinhibitor units share a striking resemblance to medium-lead burst neurons and 293 

OPNs, respectively, in the pons
25

. Thus, a relatively simple, yet biophysically realistic, module seems 294 

capable of discriminating between population inputs based solely on their temporal characteristics, 295 

offering a putative mechanism by which downstream networks could use temporal information to make 296 

decisions about movement generation. We also found that a firing rate-based accumulator model with 297 

short-term synaptic plasticity produces comparable results (EDF 9), demonstrating the flexibility of 298 

various biophysical mechanisms in their ability to decode temporal structure and hence, the model-299 

independence of this result. 300 

 301 

Perspectives on the role of temporal structure 302 

Neurons in premotor structures are constantly bombarded with information from thousands of 303 

presynaptic neurons that are active during sensorimotor processing. It is unclear how activity relevant 304 

for movement initiation is discriminated from activity related to other processing. Extant models of 305 

movement generation that rely on firing rate, including rise-to-threshold
5
, inhibitory gating

25
, and 306 

dynamical switches at the population level
16,17

, leave certain explanatory gaps unfilled. A canonical 307 

model of movement initiation, especially in the oculomotor system, is threshold-based gating
5
 (Figure 308 

6A-B). Current knowledge points to a role by the OPNs in defining the threshold and controlling saccade 309 

initiation
5,26

. However, thresholds vary across behavioural paradigms
6,27

, raising the question of how the 310 

threshold is set in a particular condition. Furthermore, evidence that the threshold changes during the 311 

course of a trial purely based on OPN activity is limited
26

. Critically, the existence of trials in which the 312 

population activity during the visual response exceeds premotor activity strongly reduces the likelihood 313 

of thresholding operating as a singular mechanism. An extension of simple thresholding is a mechanism 314 

based on the pooled activity of neurons with varying degrees of correlation in the population
20

. 315 

However, we show that population correlation statistics are not necessarily related to temporal 316 

structure or saccade initiation (EDF 7). A related explanation is that a movement is initiated only when 317 

movement-related neurons are active, but most neurons in sensorimotor structures likely span a 318 

continuum between having visuomovement activity to pure movement activity
1,28

. 319 

Other models, primarily in the skeletomotor system, posit that muscles are recruited and a movement is 320 

initiated when neural activity traverses certain optimal regions of the population state space
16

 and is 321 

inhibited otherwise, e.g., during movement preparation
17,18

 (Figure 6C). While the optimal subspace and 322 

nullspace hypotheses certainly seem to be consistent with recorded neural activity in SC (Figure 4A,B), 323 

they cannot readily account for the observation that neck
29

 and upper limb
30

 muscles are recruited time-324 

locked to the visual target, as proxied through electromyography. We instead show that temporal 325 

stability plays an independent role in determining movement initiation, even when the putative potent 326 
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subspace is matched (Figure 4E, green symbols). We reason that for a decoder downstream, it is 327 

important to ensure the stability - or consistency over time - of the input code while processing it in 328 

order to influence the motor output. Population activity that creates a high firing rate drive but is 329 

inconsistent should be prevented from triggering a movement. This requirement is critical especially in 330 

the case of ballistic movements such as saccades, where the ability to reverse the decision once the 331 

movement has been initiated is limited. Thus, we present a novel mechanism, wherein both high firing 332 

rate and consistent temporal structure are necessary conditions for movement initiation, allowing for 333 

population trajectories that traverse away (increasing overall rate) but within hypersectors that fan out 334 

(stable temporal pattern) from the state space origin (Figure 6D). Note that this model does not 335 

preclude population activity from traversing a localized “optimal” region of state space, possibly due to 336 

hardwired network constraints. Moreover, the proposed mechanism is also consistent with classical 337 

population vector decoding schemes, since any weighted population vector readout during the sensory 338 

and movement epochs will produce decoded movement vectors that are largely similar. This allows for 339 

the same physical movement to be planned and executed by a given population of neurons in the 340 

labelled line sense, a possibility that is precluded by weighted neural readout mechanisms of movement 341 

preparation and generation, such as the potent/nullspace models. 342 

Our findings are closely related to the premotor theory of attention
31

 and offer a way to reconcile the 343 

attention- intention debate. They could also account for the mirror-like activity recorded during both 344 

action observation and execution in neurons known to project directly to motoneurons in the spinal 345 

cord
32

. In both cases, it is unclear how the same neuronal population represents two distinct signals that 346 

serve different functional roles. The results presented here suggest that this multiplexing ability may be 347 

provided by the distinct temporal structures of population activity patterns. Indeed, intracellular 348 

recordings have demonstrated that visual stimulation drives cortical networks into an asynchronous 349 

state
33

, which may be a critical requirement for sensory processing. In addition, the differential effects 350 

of stable and unstable population stimulation patterns are reminiscent of the desynchronizing effects of 351 

patterned deep brain stimulation recently developed for the treatment of Parkinson’s disease
34

. In this 352 

so-called “coordinated reset” approach, sequential, non-overlapping spatiotemporal sequences are 353 

more effective at resetting the affected neuronal population from the pathological synchronized state to 354 

an asynchronous state, enabling better movement control
35

. 355 

Previous studies have looked at the role of precise coordination in the timing of incoming spikes in the 356 

transmission of information and the efficacy of driving the recipient neuron
9,10

. However, input firing 357 

rates may vary greatly across the population, limiting the ability to compare to spike times. Our study 358 

proposes a mean-field equivalent to the spike-based temporal or correlation code
11,36

 by looking at the 359 

temporal structure of population firing rates, thus tying together the notion of rate, temporal, and 360 

population codes. We suggest that temporal structure of population activity is critical to understanding 361 

movement generation as well as, more broadly, neuronal communication and its relationship to 362 

behaviour. 363 

  364 
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 365 

 366 

Figure 1. Temporal structure of population activity during sensorimotor multiplexing. A. Left - Sequence of 367 

events in the delayed saccade task. The top row shows a typical display sequence and the bottom rows show the 368 

timeline. The fixation target is shown as a plus symbol for illustration purposes. Dotted lines depict line of sight of 369 

the animal. Right – Linear electrode arrays with 16-24 contacts were used to penetrate the SC normal to the 370 

surface. Thus, the recordings were along a dorso-ventral “column” of the SC. B. Example recording session showing 371 

activity from 16 channels aligned on target (left column) and saccade (right column) onsets for 3 different trials 372 

(traces with different colour saturations). C. Population activity averaged across the 16 channels for the 3 trials 373 

shown in B. Note the considerable variation in the amplitude of the visual burst. D. Schematic depicting 374 

computation of temporal stability. The population vector (left column) was used to construct a single-trial neural 375 
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trajectory, which was then normalized at each instance to represent a unit length population vector traversing 376 

along a hypersphere (right column). The top panel in the right column highlights an unstable part of a schematic 377 

trajectory and the bottom panel emphasizes a stable part. Note that in both cases, the two population vectors 378 

(thin arrows in green and purple) are separated by a similar length of time. In the unstable case, the normalized 379 

vectors (thick arrows) move around on the surface of the hypersphere (green and purple vectors are spatially 380 

separate), whereas in the stable case, they stay pointed roughly in the same direction (the two vectors overlap in 381 

space). E. Temporal stability is computed as a dot product between two normalized population vectors separated 382 

by 2� � 20 �� aligned on target (left) and saccade (right) onsets. The stability of population activity drastically 383 

decreases during the visual burst (red traces, mean +/- s.e.m.; p < 0.01 for Wilcoxon signed-rank test with respect 384 

to baseline) and increases before and during movement onset (blue traces; p < 0.01 for Wilcoxon signed-rank test 385 

with respect to baseline). The gray trace is the stability computed only for those trials where the peak visual burst 386 

matched or exceeded activity during the premotor burst at saccade initiation (after accounting for an efferent 387 

delay of 15 ms). The black trace shows population stability on trials in which the target and saccade were directed 388 

away from the response field (RF) of the neurons. F. Temporal stability aligned to peak visual burst. The peak time 389 

was computed on the average population response of each trial, and the peak-aligned trace was averaged across 390 

trials and sessions. Note the sharper dip in the stability of the visual response when aligned to the peak. Like in E, 391 

the gray trace shows peak-aligned stability for trials in which the peak visual activity matched or exceeded 392 

premotor activity at saccade initiation. 393 
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 395 

 396 

Figure 2. Temporal stability in sub-populations of SC and FEF. A. Normalized mean population activity of 397 

visuomovement neurons recorded in SC (solid) and FEF (dashed) during the delayed saccade task. The left and 398 

right panels show data aligned on target and saccade onsets, respectively. B. Inferring population dynamics from 399 

single-unit recordings. We combined recordings made in different active populations on the SC map (left) into one 400 

pseudo-population (middle) that is active for any saccade, enabling the construction of an expected population 401 

trajectory (right) in neural state space (see Estimating Population Dynamics in Methods and EDF2 for more details). 402 

C. Temporal stability for the SC (thin traces) and FEF (thick traces) pseudo-populations. Population stability shows a 403 

drastic reduction at the time of the visual burst but is stable before and during the onset of the movement, 404 

consistent with the simultaneously recorded population in the previous figure. D. Top row - Schematic of the SC 405 

depicting active population regions in the rostral SC (dotted boundary) and caudal SC (plain). Bottom row – Mean 406 

normalized activity in rostral (dotted) and caudal (solid) SC neurons during the delayed saccade task. E. Temporal 407 

stability of the rostral SC population (dotted) with the caudal population shown for comparison. F. Population 408 

activity of rostral SC neurons is stable during microsaccades. Top – Normalized population activity of 409 

microsaccade-related neurons in rostral SC (black). Note the strong burst compared to the suppression in fixation-410 

related neurons in the same region for large saccades (gray). Bottom – Temporal stability of the rostral SC 411 

population for microsaccades shown in comparison to large saccades. Neurons which burst for microsaccades 412 

remain stable during these fixational eye movements, consistent with the hypothesis that both an increase in firing 413 

rate and high stability is required for movement generation. 414 

 415 
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 416 

 417 

Figure 3. Patterned microstimulation supports temporal stability as a model of movement initiation. A. Example 418 

pair of stable-unstable stimulation patterns. Top row – Pulse trains for 14 of 16 channels that were stimulation-419 

viable with suprathreshold parameters for this session. Red and blue trains indicate an example pair of unstable 420 

and stable patterns, respectively. Bottom row – Pulse rates for the 14 channels in the stable-unstable pulse 421 

patterns, with the population rates averaged across channels overlaid as thick traces. Note that the rates in the 422 

unstable pattern are highly fluctuating despite the matched population average. B. Average pulse rates for each 423 

channel across all trials for the stable (blue) and unstable (red) patterns used in this session. The clustering of trial-424 

averaged rates in a narrow band is the result of randomization of pulse rate assignment to individual channels on 425 

different trials. C. Temporal stability of the stable and unstable patterns (blue and pink, respectively) for all trials in 426 

the example session. D. Scatter plot of saccade latencies (relative to stimulation onset) for the example session. 427 

Each point reflects the outcome of stimulation with stable and unstable pulse patterns constituting each pair. The 428 

points in shaded regions are stimulation-evoked for at least one condition. Ns+us-, points in the light blue shaded 429 

box, reflects the number of trials in which a stable stimulation pattern evoked a saccade but its unstable pair did 430 

not. Nus+s-, points in the light red shaded box, denotes the number of trials in which an unstable stimulation pattern 431 

evoked a saccade but its stable pair did not. Points in the purple box show subset of trials in which both stable and 432 

unstable pairs evoked a saccade. Points in the unshaded (white) region refer to trials in which neither stable or 433 
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unstable pair evoked a saccade. For these pairs, the trial was assigned the latency of the saccade (relative to 434 

stimulation onset) directed to a target presented after the gap period. The inset shows the calculation of relative 435 

likelihood of the stable pattern evoking a stimulation-evoked movement for a given session. E. Relative 436 

proportions of the stable pattern evoking a movement for each session (blue points, error bars represent 95% CI of 437 

the bootstrapped distribution). The sessions are sorted in descending order of proportion for viewing clarity. Note 438 

that this sorting order is used in all subsequent figures depicting individual sessions (in Figure 4). Gray points and 439 

error bars are computed from a surrogate dataset in which stable/unstable trial identities are completely shuffled 440 

(mean +/- 95% CI). Asterisks above a particular session denote a significant effect (p < 0.01 on the permutation 441 

test). 442 
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 444 

 445 

Figure 4. Linear discriminability of population activity and microstimulation patterns. A. Three-dimensional 446 

factor analysis (FA) projection of population activity states during the visual and premotor bursts (red and blue 447 

points, respectively; visual burst: 0 to 400 ms after target onset, premotor burst: -200 to 200 ms around saccade 448 

onset). The dimensions were chosen arbitrarily to illustrate the separation of the two states. The solid lines and 449 

ellipses show the axes of maximum variance and covariance ellipses for each cluster, respectively. B. Performance 450 

of a linear discriminant analysis (LDA) classifier on discriminating between visual and premotor states estimated 451 

using the Matthews correlation coefficient (MCC, chance is 0). The purple points show the mean +/- 95% CI 452 

computed from k-fold cross-validation on the actual data. The black points show the same but for a shuffled 453 

dataset in which the visual and premotor labels were randomly permuted, indicating chance performance 454 

distribution for each dataset. For all sessions, classification performance was significantly above chance (p < 0.01, 455 

one-tailed t-test). These sessions were ordered arbitrarily do not correspond to those associated with patterned 456 

microstimulation experiments. C. Three-dimensional FA projection of population pulse states for stable and 457 

unstable microstimulation patterns (blue and red points, respectively). The projection dimensions were chosen 458 

arbitrarily, but no view showed any reasonable separation between the two clusters. The eigenspectrum in the 459 

inset illustrates the difficulty of choosing a good projection, since all native dimensions contributed equally to the 460 

variance in the data, due to the randomized assignment of pulse rates to channels across trials. D. LDA 461 

classification performance on discriminating stable and unstable stimulation patterns based on population pulse 462 

states alone. For all sessions, classification performance was not significantly different from chance (p > 0.05, two-463 

tailed t-test). E. Schematic of the approach to partition each dataset for classification of stimulation-evoked 464 

movement occurrence. Left column - Trial pairs in which both or neither the stable and unstable pattern evoked a 465 

movement were grouped into the neutral subset, and pairs in which only one of the stable or unstable pattern 466 

evoked a movement were grouped into the stability subset. Right column - For both subsets, the classifier was first 467 

trained on pulse counts alone (part of the matrix highlighted by the orange and brown boundaries – match colours 468 

in next panel). Separately, for the stability subset, the classifier was also trained on an additional dimension of 469 

temporal stability values (full matrix highlighted by the green boundary). F. LDA classification performance on 470 

discriminating trials in which stimulation evoked a movement from those in which it did not. The orange points 471 

correspond to the neutral subset, and the green and brown points correspond to the stability subset. The brown 472 

points are with the classifier trained solely on the population pulse states. The green points are with the addition 473 

of temporal stability in the input to the classifier. For most sessions, addition of temporal information increased 474 
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classification performance (p < 0.01, one-tailed t-test of a difference between the cross-validated performance 475 

distributions with and without addition of temporal stability). In all relevant panels, sessions are sorted by the 476 

order determined in Figure 3E based on relative likelihood of evoking a movement. 477 

 478 

 479 

 480 

 481 

 482 
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 484 

 485 

Figure 5. Spiking neuron model with dendritic processes can discriminate population temporal structure. A. 486 

Schematic of the model architecture. The decoder (green neuron), representing high frequency burst neurons in 487 

the brainstem, receives population inputs (output of purple neurons, or, in this case, microstimulation pulses) 488 

through its dendritic network (excitatory inputs, represented by the arrowhead terminals). The disinhibitor (orange 489 

neuron), representing pontine omnipause neurons, also receives inputs from the same population (both excitatory 490 

and inhibitory
21

, represented by the triangular terminals), in addition to a constant current that produces tonic 491 

firing activity (not shown). The decoder and disinhibitor are both modelled as leaky integrate-and-fire spiking 492 

neurons and mutually inhibit each other (flat terminals). B. Schematic of the model heuristic. Each input neuron’s 493 

activation level is represented by its size and thickness. The effect of an input spike at the local dendritic site (i.e., 494 

excitatory post-synaptic conductance changes) is represented by the thickness of the arrow. Two time points are 495 

shown for illustration (left column – arbitrary initial point, right column – subsequent time point). In the top row, 496 
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unstable inputs lead to a scenario where the post-synaptic conductances are no longer aligned to the strong inputs 497 

that initially created them, whereas in the bottom, stable inputs lead to matched strong input and post-synaptic 498 

conductances, resulting in stronger accumulation and firing. C. Scatter plot of first spike latencies in the decoder 499 

(putatively representing saccade initiation) for stable versus unstable inputs from matched pairs. The input 500 

duration was 150 ms and thus only latency values <150 ms correspond to actual first spikes produced by the 501 

decoder. To facilitate visualization, latency values were assigned randomly for trials in which the decoder did not 502 

generate any spikes, sampled from a distribution with an arbitrarily selected mean of 350 ms. Note the occurrence 503 

of a number of trial pairs for which only the stable input causes the decoder emit spikes (blue arrow). D. Simulated 504 

membrane potential of the decoder (blue and red traces) and disinhibitor (cyan and magenta traces) for an 505 

example matched trial pair with stable (top row) and unstable (bottom row) input patterns. E. Average activity of 506 

the disinhibitor (cyan and magenta traces, stable and unstable inputs, respectively) and decoder (blue and red 507 

traces, stable and unstable inputs, respectively) for all trial pairs in which only the stable input produced a 508 

spike/movement (i.e., trial pairs indicated by the arrow in panel D). 509 
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 511 

 512 

Figure 6. Summary of models of movement preparation in a state space framework. A and B. Multi-dimensional 513 

representations of the threshold hypotheses. Panel A depicts single neuron thresholds, i.e., the activity of each 514 

neuron must rise to a fixed threshold at the same time in order to initiate a movement. Fixed thresholds for each 515 

neuron are equivalent to a point (or a small region, represented by the gray sphere) in neural state space. Activity 516 

profiles that meet this criterion (e.g., blue trajectory) and beyond (blue region) lead to movement generation while 517 

those that don’t meet this criterion (red traces) do not result in a movement. Alternatively, activity may need to 518 

cross a fixed threshold at the population level (sum of neurons’ activities = constant, i.e., an n-1 dimensional 519 

hyperplane, dark gray plane), depicted in panel B. C. The optimal subspace hypothesis offers more leeway by 520 

allowing neuronal activity to reach a relatively larger region of population state space (blue trajectory and gray 521 

ellipsoid) over a period of time in order to signal the initiation of a movement. Activity trajectories that evolve 522 

outside this “optimal subspace” (red traces) do not lead to a movement. D. The temporal stability hypothesis 523 

suggests that a burst of neural activity that is consistent over time in state space, i.e., an activity trajectory that 524 

points in the same direction (blue trajectories and vectors) is likely to be interpreted as a movement command by 525 

a decoder, while high-frequency activity that is inconsistent (fluctuating directions, red trajectories and arrows) is 526 

not. It does not matter where in state space the activity happens to evolve – a different subpopulation of neurons 527 

could be active, but as long as they are pointing in the same direction (i.e., evolving within one of the blue sectors), 528 

it will lead to a movement. The gray sphere around the origin represents a unit hypersphere for visualization of 529 

back-projected unit vectors. 530 

 531 

 532 
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Online Methods 533 

General and surgical procedures 534 

All experimental and surgical procedures were approved by the Institutional Animal Care and Use 535 

Committee at the University of Pittsburgh and were in compliance with the US Public Health Service 536 

policy on the humane care and use of laboratory animals. We used three adult rhesus monkeys (Macaca 537 

mulatta, 2 male, ages 8 and 6, and 1 female, age 10) for our experiments. Both SC and FEF were 538 

recorded in monkeys BB and BL whereas only SC was recorded in monkey WM. Under isoflourane 539 

anaesthesia, recording chambers were secured to the skull over craniotomies that allowed access to the 540 

SC and FEF. In addition, posts for head restraint and scleral search coils to track gaze shifts were 541 

implanted. Post-recovery, the animal was trained to perform standard eye movement tasks for a liquid 542 

reward. 543 

 544 

Visual stimuli and behaviour 545 

Visual stimuli were displayed either by back-projection onto a hemispherical dome or on a LED-backlit 546 

flat screen monitor. Stimuli were white squares on a dark grey background, 4x4 pixels in size and 547 

subtended approximately 0.5° of visual angle. Eye position was recorded using the scleral search coil 548 

technique or using an EyeLink 1000 eye tracker, both sampled at 1 kHz. Stimulus presentation and the 549 

animal’s behaviour were under real-time control with a Labview-based controller interface
37

. All 550 

monkeys were trained to perform standard oculomotor tasks. In the delayed saccade task (Figure 1A), 551 

the monkey was required to initiate the trial by acquiring fixation on a central fixation target. Next, a 552 

target appeared in the periphery but the fixation point remained illuminated for a variable 500-1200 ms, 553 

and the animal was required to delay saccade onset until the fixation point was extinguished (GO cue). 554 

The gap task (EDF 4A) was used for the patterned microstimulation experiments. In this task, initial 555 

fixation on a central target was followed by a gap period (200-300 ms) during which the fixation point 556 

disappeared, while the animal was required to maintain fixation at the now vacant location. On 557 

stimulation trials, microstimulation pulses were delivered 100 ms into the gap period and window 558 

constraints were relaxed to allow for the stimulation-evoked movements. This was followed by the 559 

appearance of a saccade target in the periphery which was also the GO cue for the animal to make a 560 

target-directed saccade. All animals performed these tasks with >95% accuracy. Incorrectly performed 561 

trials were removed from further analyses.  The tasks were occasionally interleaved with visual search 562 

paradigms used for a different study. 563 

 564 

Experimental sessions 565 

We used data from several different types of sessions in this study. Each session was either a laminar 566 

recording session (n = 16 sessions), a single-unit recording session (n = 108 sessions), or a patterned 567 

microstimulation session (n = 13 sessions). The laminar and single-unit recording sessions employed 568 

mostly the delayed saccade task with a few microstimulation trials to verify electrode presence in SC (or 569 

FEF) and estimate the location on the topographic map. The patterned microstimulation sessions were 570 

restricted to the gap task, with stimulation trials and non-stimulation trials interleaved. 571 
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 572 

Laminar recordings and single-unit electrophysiology 573 

During each laminar recording session, a linear microelectrode array (LMA, AlphaOmega, Inc.) or a 574 

Plexon V-probe (Plexon, Inc.) was inserted into the SC chamber using a hydraulic microdrive. Neural 575 

activity was amplified, digitized and recorded using the Grapevine Neural Interface Processor (Ripple, 576 

Inc.) and visualized using the associated Trellis interface. Neural activity was band-pass filtered between 577 

500 Hz and 5 kHz to record spiking activity and between 0.1-250 Hz to record local field potentials for 578 

another study. Approach towards the SC surface was identified by luminance-based visual modulation of 579 

activity in the lowermost channels, after which the electrode was driven down a further 2-3 mm until 580 

known hallmarks of SC activity were observed in a majority of the channels. The presence of several 581 

contacts in the intermediate layers was further confirmed by the ability to evoke movements with 582 

single-channel microstimulation at these contacts. For single units, a tungsten microelectrode was 583 

lowered into the FEF or SC. Neural activity was amplified and band-pass filtered between 200 Hz and 5 584 

kHz and fed to a digital oscilloscope for visualization and spike discrimination. A window discriminator 585 

was used to threshold and trigger spikes online, and the corresponding spike times were recorded. Both 586 

SC and FEF were confirmed by the presence of visual and movement-related activity as well as the 587 

ability to evoke fixed vector saccadic eye movements at low stimulation currents (20-40 μA, 400 Hz, 100 588 

ms). Before beginning data collection for a given neuron or laminar recording site, their response field 589 

was roughly estimated. In most data collection sessions with either electrode, the saccade target was 590 

placed either in the neurons’ response field or at the diametrically opposite location in a randomly 591 

interleaved manner. In addition, stimulation-evoked saccades were recorded to identify the response 592 

field centers (or “hotspots”) for the cells recorded during that session. For recordings in rostral SC, 593 

stimuli were presented at one of four locations at an eccentricity sufficient to induce a reduction in 594 

activity during the large amplitude saccade. 595 

 596 

Data analysis and pre-processing 597 

Data were analyzed using a combination of in-house software and Matlab. Eye position signals were 598 

smoothed with a phase-neutral filter and differentiated to obtain velocity traces. Saccades were 599 

detected using standard velocity criteria. The animal was considered to be maintaining fixation if the 600 

gaze remained within a 2-3° window around the fixation target. We also detected any microsaccades 601 

that occurred during the delay period in each trial by using a velocity criterion based on the noise in the 602 

velocity signal for that trial. Only one of the two monkeys (WM) in whom we recorded neural activity in 603 

the rostral SC made sufficient number of microsaccades to permit further analysis. 604 

Raw spike density waveforms were computed for each neuron (or multi-unit activity cluster) and each 605 

trial by convolving the spike trains with a Gaussian kernel (width = 4ms; in some instances, we used 10 606 

ms for display purposes only). For the laminar recordings, we analyzed channel activity on single trials 607 

independently. Because direct kernel-based estimation of firing rates from binary spike trains on single 608 

trials can be noisy, we first computed the inverse of the inter-spike intervals as a measure of the firing 609 

rate prior to convolution with the smoothing kernel. All thresholded units were considered for further 610 

analyses, regardless of their characteristics (so number of neurons matched number of channels for 611 

these datasets). For single-electrode recordings, the spike densities were averaged across condition-612 
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matched trials (same target location) following alignment with target or saccade onset. Neurons were 613 

classified as visuomovement neurons if the spike density was significantly elevated above baseline 614 

during the visual epoch (50-200 ms following target onset) and during the premotor epoch (50 ms 615 

before and after saccade onset). This resulted in 57 caudal SC neurons and 22 FEF neurons. In addition, 616 

rostral SC neurons were defined as fixation-related if the activity during the premotor epoch of large 617 

saccades was significantly reduced below baseline (29 neurons).  A subset of these neurons also 618 

elevated their discharge around the onset of microsaccades (7 neurons). To minimize the effect of noise 619 

in the spike density waveforms due to insufficient number of trials in our analysis, we used only neurons 620 

which had at least 10 trials for a given condition. This was not a factor in most cases (we typically had 621 

50-100 trials). 622 

 623 

Estimating population dynamics from laminar and single-unit recordings 624 

We define ��t� as a population activity vector: 625 

��t� �  �R��t�R��t�…R��t�
 

where ��t� represents the instantaneous activity at time t as a point in an �-dimensional space, � is the 626 

number of neurons, and R��t� is the spike density function of the ���  neuron. The curve connecting 627 

successive points over time is the neural trajectory that describes the evolution of population activity. 628 

For laminar recording data, a neural trajectory was determined for each trial.  Analysis of single 629 

electrode data relied on pseudo-population analysis, for which each neuron’s firing rate waveform R��t� 630 

is the average across many matched trials (identical stimulus/response conditions). Thus, the neural 631 

trajectory is the expected trajectory of population activity. Since these neurons have a fairly broad RF, 632 

many neurons contribute to the active population for any given visual stimulus or saccade
38

. Our 633 

neurons were sampled roughly (but not exactly) around the hotspot of the active population for a given 634 

session. Therefore, the pooled data from individual sessions can be thought of as an approximation of 635 

the population mound active for an arbitrary location/RF in the visual field on any given trial. Many 636 

recent studies have reconstructed such “pseudo-populations” from sequentially recorded neurons and 637 

found comparable properties from simultaneous and serial recordings
17,39,40

. Indeed, this is also 638 

expected of our pseudo-population under the assumption of isotropy – that each neuron’s contribution 639 

to its respective local active population is similar regardless of the locus of the population, and 640 

consistency between the results we observed in the laminar dataset and pseudo-population confirms 641 

this. To better demonstrate this, we estimated the location of a given neuron in the active pseudo-642 

population as follows (we use SC for illustrative purposes because of its convenient topography). We 643 

used the point image of the target location on the SC map as a representation of the center of the active 644 

population for that session, and used the stimulation-evoked saccade vector to identify the location of 645 

that neuron on the SC. We referenced the point image of each target location to a single location to 646 

create an active pseudo-population and translated the neuron locations relative to this population 647 

center (EDF 2). All mathematical equations for transforming between visual and SC tissue coordinates 648 

have been defined previously
41

. Inclusion of stimuli/saccades in the anti-preferred RF of the neurons 649 

allowed us to also estimate a pseudo-population of neurons in the ipsilateral SC. To complete the 650 
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representation of activity across the SC topography, we also recorded from and included in our analyses 651 

neurons in the rostral portion of SC, which are active during fixation
13

, burst during microsaccades
15

, and 652 

are suppressed during large saccades
13

. 653 

 654 

Temporal stability analysis 655 

To assess temporal stability, we first normalized the population trajectory ��t� by its Euclidean norm 656 

(��t�), equivalently its magnitude, at each time point to yield ���t�: 657 

���t� �  ��t���t� 

The normalized trajectory can be visualized as a unity length population vector that points in an n-658 

dimensional direction at each instant in time. That is, while ��t� is free to traverse the �-dimensional 659 

activity space, ���t� is constrained to the surface of an �-dimensional hypersphere (Figure 1D). Temporal 660 

stability or consistency of the evolving population was then quantified by the dot product of two time-661 

shifted unity length vectors: 662 

 663 S�t� �  ���t � τ� · ���t � τ� 

The stability metric (S�t�) tracks the running similarity of the normalized trajectory separated in time by 664 2� ms.  Crucially, the normalization constrains S�t�  between 0 and 1.  Thus, if S�t� � 1, the population 665 

activity is considered stable since the relative contribution of each neuron is consistent.  If S�t� � 1, the 666 

population activity is deemed unstable because the relative contribution is variable.  If the neural 667 

trajectory is not normalized, the dot product quantifies similarity across the vectors’ magnitude and 668 

direction.  It roughly mimics the quadratic of the firing rate (exactly so for � � 0).  When the vector 669 

direction remains constant, the dot product yields no additional information than that already present in 670 

the firing rate.  In contrast, the normalization scales the neural trajectory so it always has unity 671 

magnitude.  It neither alters the relative contributions of the neurons nor compromises the vector 672 

direction.  The dot product therefore performs an unbiased evaluation of stability based only on vector 673 

direction and is an estimate of the fidelity of the population code modulo a multiplicative gain factor. 674 

Intuitively, the stability measure is analogous to the correlation between the neurons’ activities at two 675 

different time points. We chose the dot product, however, because of its interpretability as a measure 676 

of pattern similarity in �-dimensional activity space. 677 

We assessed the significance of the stability profiles in two ways. First, we compared the average 678 

stability profiles across sessions during the visual response to the premotor epoch (indicated by the 679 

s.e.m. bounds in Figure 1E). Next, for each trial, we randomly shuffled the activities of various neurons 680 

(channels for laminar recordings) at each time point. This shuffle retains the average firing rate at each 681 

instant but removes any temporal correlation in the firing rate across neurons. We performed multiple 682 

such shuffles and re-computed temporal stability for each instance, followed by across-trial averaging, 683 

baseline correction, and across-session averaging to obtain the distribution of stability profiles expected 684 

to occur by chance if the neurons’ activities were uncoordinated (gray trace, EDF 1C). 685 

To mitigate the effect of potentially variable visual response onset latencies (on different trials) on the 686 

trial- and session-averaged mean temporal stability profiles in the visual epoch, we also performed the 687 
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averaging after realigning the data to the peak visual response on individual trials (Figure 1F). In order to 688 

do this, the time of peak visual burst was identified from the population mean (average across channels) 689 

firing rate on individual trials and was used to align the traces across trials before computing the trial 690 

average. 691 

For the mean-matched control in Figure 1E&F, we performed the temporal stability analysis only on the 692 

subset of trials in which the peak of the population visual response was greater than or equal to the 693 

population activity at the time of saccade initiation, after accounting for an efferent delay. We chose 15 694 

ms before saccade onset as the latest time at which SC activity could influence saccade initiation, 695 

because it is consistent with a range of putative efferent delays reported using various approaches
4,5,42

. 696 

 697 

Patterned microstimulation 698 

The patterned microstimulation experiments allowed us to causally evaluate and compare the temporal 699 

stability model to other models of movement initiation. Given the ability to control the delivery of 700 

individual stimulation pulses to each contact on the laminar electrode, we used stimulation patterns 701 

with specific spatiotemporal features to evaluate their relative efficacy in evoking movements. We 702 

designed these patterns as follows. All individual stimulation pulses were biphasic with a leading 703 

cathodic phase, pulse widths of 250 μs, and an interphase interval of 100 μs. Our first step was to 704 

determine the appropriate range of current intensities and frequencies for each experiment. During 705 

each session (i.e., for each electrode penetration into SC), we first stimulated from individual contacts 706 

with standard suprathreshold parameters (40 μA, 400 Hz) to identify the set of contacts that elicited a 707 

movement. We restricted the experiment to these contacts for the rest of that session. We then 708 

stimulated simultaneously across all these contacts at the same current and frequency, starting from 4 709 

μA, 100 Hz, stepping up 1 μA and 50 Hz, to determine the threshold for evoking a movement with multi-710 

channel stimulation. The threshold, defined as the current/frequency combination for which stimulation 711 

generated movements on approximately half the trials, ranged from 5-9 μA and 150-200 Hz across 712 

sessions. For each session, we used the metrics of the saccades evoked at these threshold parameters 713 

from constant frequency stimulation in lieu of “fixed vector saccades” as a control against which to 714 

compare the patterned microstimulation results (EDF 5).  715 

Once we identified the threshold parameters, we designed stimulation patterns at that current intensity 716 

but with time-varying frequencies intended to simulate a burst of activity. Each stable pattern was 717 

created with a linearly decreasing inter-pulse interval (IPI) sequence for one contact (to simulate a burst) 718 

and scaling the IPIs for other contacts by a uniformly spaced factor. The 150 ms duration burst was 719 

composed of a flat baseline (40 ms), a rising phase (80 ms), and a falling phase (30 ms). The peak 720 

frequency for individual channels ranged uniformly between 20 Hz and 400 Hz with the mean peak 721 

frequency across contacts pegged to the threshold frequency determined from the constant frequency 722 

multi-channel stimulation in an earlier step. At these parameters, stimulation at no individual channel 723 

evoked movements. Each stable stimulation pattern (e.g., blue pulse pattern in Figure 4A) can be 724 

envisioned as a � � � matrix, when � is the contact number and � is stimulation duration. The matrix 725 

contains ones and zeros, identifying the time of pulse delivered to each contact. To create additional 726 

realizations of the stable stimulation patterns (e.g., blue pulse patterns in EDF 4B & C), the assignment 727 

of specific peak frequencies to individual channels was randomly shuffled across trials. 728 
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For each stable stimulation pattern, we created a corresponding unstable pattern/pair by jittering 729 

stimulation pulses within a 20 ms window for each channel and randomly shuffling pulses across 730 

channels (e.g., red pulse patterns in Figure 1A and EDF 4B & C). This step created instability in the 731 

population pulse pattern by destroying the relative scaling of pulse rates across neurons while also 732 

ensuring that both total pulse counts per channel and the mean instantaneous pulse rates across 733 

channels were preserved between the stable and unstable patterns. Thus, all subsequent analyses were 734 

performed on pairs of trials with stable and unstable stimulation patterns matched in these aspects. We 735 

also ensured that the inter-pulse interval was never less than 2 ms (i.e., the peak frequency never 736 

exceeded 500 ms) for any stimulation train. The stimulation patterns were generated offline and the 737 

pattern trains corresponding to each trial were introduced 100 ms into the gap period in a gap task. 738 

Stable-unstable pairs were randomly interleaved within a block in which roughly 80% of all trials were 739 

stimulation trials. 740 

We used the latency of the first saccade after stimulation onset but before stimulation offset as an 741 

indicator of the occurrence of a stimulation-evoked saccade (Figure 3D); such saccades exhibited 742 

latencies <150 ms.  If the microstimulation was ineffective at evoking a saccade, the first movement was 743 

typically directed to the target presented after the gap period ended; in such cases, the saccade was 744 

produced >400 ms after stimulation onset. We estimated the relative likelihood of evoking a movement 745 

by examining trials in which only one of the stable or unstable pulse patterns in a pair yielded a 746 

stimulation-evoked saccade (also see Figure 4E and next section). This was quantified based on the 747 

number of trials pairs in which only the stable pattern evoked a movement during the window of 748 

stimulation (� N��	�
, number of points in the blue shaded region in Figure 3D) and the number of trial 749 

pairs in which only the unstable pattern evoked a movement (� N	���
, number of points in the red 750 

shaded region in Figure 3D). The relative likelihood of evoking a movement with the stable pattern was 751 

defined as  752 

RL� � ������
�������������

 . 753 

RL� ranges from 0 to 1 and is symmetric with a neutral value of 0.5. To estimate the significance of this 754 

estimate, we performed permutation tests with respect to a surrogate dataset in which trials were 755 

randomly assigned stable/unstable labels. This lowered the expected estimate of relative likelihood to 756 

purely chance levels (Figure 3E). 757 

 758 

Discriminability of population patterns – neural activity and microstimulation 759 

To determine whether the visual and premotor bursts are discriminable using static, non-temporal 760 

features of population activity, we performed factor analysis (FA) on 400 ms snippets of activity from 761 

these two epochs (visual epoch: 0-400 ms from target onset, motor epoch: -200:200 ms relative to 762 

saccade onset). We used DataHigh
19

, a dimensionality reduction and visualization toolbox written in 763 

Matlab, to perform FA on the 16- or 24-dimensional laminar recordings and visualize the projections 764 

onto the top latent dimensions. The top 3 dimensions accounted for >95% of the variance in neural 765 

states for all our datasets (eigenspectrum not shown), and a 3-dimensional projection is shown for an 766 

example dataset in Figure 4A, with the visual and premotor snippets coded in different colours. We also 767 

performed FA on the microstimulation patterns (the “states” were computed across the entire 150-ms 768 
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stimulation duration). Almost all dimensions were needed to account for >95% of the variance in the 769 

stimulation patterns (eigenspectrum inset in Figure 4C), owing to the randomized assignment of 770 

frequencies across contacts on different trials. Thus, we chose an arbitrary 3-dimensional projection for 771 

visualization in Figure 4C; however, note that the qualitative result did not depend on the projection. 772 

Since we used this step purely for visualization, we did not perform any subsequent analysis on the 773 

estimated FA dimensions. 774 

Next, we used a linear discriminant analysis (Fisher’s LDA)
43

 to assess a decoder’s ability to discern 775 

whether its inputs signify a movement command at the population level, based on static population 776 

features alone, and how this discriminability relates to temporal stability. We first trained a binary LDA 777 

classifier on the visual and premotor snippets described above in the native neural space. LDA finds a 778 

projection defined by a hyperplane that maximizes the separation between the two classes: 779 �  Σ
��"� � "� , 780 

where the vector � is normal to the hyperplane defining the class boundary, Σ � ���������
�����

 , the pooled 781 

covariance matrix derived from the within-class covariance matrices Σ� and Σ�, n� and n� are class 782 

occupancies, and " and "� are the class means. We subjected the linear scores 783 

#� � �. �% � ��
�

�  784 

obtained from the LDA projections to a softmax transformation to compute class probabilities: 785 

&�% ' �� �  (��∑ (���
 

In all cases, we used *-fold crossvalidation to test LDA performance (on the classification of visual and 786 

premotor population states, and on stimulation patterns described below), with the choice of * dictated 787 

by the total number of trials in the dataset such that each fold (test set) had at least 10 trials. We 788 

quantified classifier performance using the Matthews Correlation Coefficient (MCC)
44

, since accuracy 789 

can be significantly biased and have high variance for classification problems with unequal number of 790 

training or test points
45

, which was the case with the stimulation patterns below. Instead, MCC takes the 791 

complete confusion matrix into account to quantify binary classifier performance as: 792 

MCC � ������
������
�������������������������������������

 , 793 

where N�� represents the number of instances where a trial in class i is classified to be in class j in the 794 

classification confusion matrix. Similar to a standard correlation coefficient, MCC values range from -1 to 795 

1 (-1, 0, and 1 respectively indicate poor, average, and perfect classification). 796 

To evaluate the discriminability of microstimulation patterns, we split each dataset in 3 different ways. 797 

The first split was based on the predefined stable-unstable pattern pairs and was used to classify pulse 798 

patterns as stable or unstable based on their population states alone (Figure 4D). The next two splits 799 

were used to classify stimulation patterns as movement-evoking or non-evoking, in order to identify 800 

other features of the stimulation patterns that potentially could have impacted movement occurrence. 801 

We split the stable-unstable trial pairs into two subsets – the neutral subset (NS), which was made up of 802 

trial pairs where either both or neither pattern in the stable-unstable pair evoked a movement, and the 803 
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stability subset (SS), made up of trial pairs where only one of the stable-unstable pair evoked a 804 

movement (Figure 4E). The rationale was that a classifier trained on NS must identify features other than 805 

temporal stability in order to classify a trial as (stimulation-evoked) movement or non-movement 806 

because of the matched numbers of stable-unstable trials regardless of movement evoked. On the other 807 

hand, a classifier trained on SS may potentially be able to identify temporal stability as a predictor 808 

because of the differential relationship between stability and movement occurrence. We further 809 

evaluated whether a dynamic feature of population activity such as temporal stability can be utilized for 810 

classification based on population states alone, by re-training the classifier with explicit addition of 811 

temporal stability as an input dimension and comparing it with the performance of one without this 812 

addition. 813 

 814 

Correlation analysis 815 

In order to compare against pooled accumulator mechanisms
20

, we estimated the correlation structure 816 

in our population of neurons and microstimulation patterns. We first computed the spike count 817 

correlation across trials for every pair of neurons (or multi-unit clusters, n = 1963 pairs) during the visual 818 

and motor epochs as defined above. For the microstimulation patterns, we computed the pulse count 819 

correlations for every pair of stimulation channels (n = 899 pairs) during the stimulation window for the 820 

stable and unstable patterns separately. Note that in this case, pulse count correlation is equivalent to 821 

computing the correlation between accumulation rates (and therefore directly comparable to the 822 

accumulator mechanism mentioned above), since the duration of stimulation was fixed and the baseline 823 

and peak rates were matched between the stable and unstable conditions. 824 

 825 

Spiking neuron model 826 

We developed a biophysically realistic computational model with spiking neurons to discriminate and 827 

read out temporal structure in population activity. The core component of the model was a recurrently 828 

connected module comprising a decoder element and a disinhibitor element, putatively representing 829 

pontine high-frequency burst neurons and OPNs, respectively
25

. The decoder and disinhibitor were both 830 

modelled as leaky integrate-and-fire (LIF) spiking neurons: 831 

�� -.���-/ �  ��.����/� � .����� �  0�1����/� 

where .����/� is the membrane potential of the neuron, .����  is the resting potential, �� is the 832 

membrane time constant, 0� is the membrane resistance, 1����/� is the net time-varying input to the 833 

neuron, and neu represents the decoder (dec) or disinhibitor (dis). The spiking followed standard 834 

threshold crossing rules, i.e., if .���2/ � / 3 4 .��  , where .��  represents the action potential 835 

threshold, the membrane potential was reset to .���2/ � / 3 5 .�����  , and the neuron’s spike times 836 6/�7 were updated with the *�� spike time / . 837 

The current input to both the decoder and disinhibitor was composed of excitatory and inhibitory 838 

components: 839 1����/� � 8����!"�/�29�!" � .����/�3 � 8������ �/�29��� � .����/�3 � 1����  
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where 8����!"�/� and 8�������/� are the respective net excitatory and inhibitory post-synaptic conductances, 840 

and 9�!"  and 9���  are the excitatory and inhibitory reversal potentials representing the contribution of 841 

AMPA and GABA channels, respectively. 1����  is a constant current term that was set to zero for the 842 

decoder and to a fixed value of 4 for the disinhibitor in order to simulate tonic firing without external 843 

input. 844 

The decoder received excitatory inputs from the SC in the form of stimulation pulse trains, and 845 

inhibitory input from the disinhibitor. The disinhibitor received both excitatory and inhibitory inputs 846 

from the SC and reciprocal inhibition from the decoder
21

. The net time-varying conductances were 847 

modelled as follows: 848 8#�"�!"�/� � ∑ :�
�!"
#�";��/��

�$�  , and ;��/� � ∑ <2/ � / 3��
 $� �1 � ;�2/ 3� , 849 

8#�"����/� � :#��
#�" ∑ <2/ � / 3�	��
 $�  , 850 

8#���!"�/� � ∑ :�
�!"
#��;��/��

�$�  , and ;��/� � ∑ <2/ � / 3��
 $� �1 � ;�2/ 3� , 851 

8#������/� � :#�"
#�� ∑ <2/ � / 3�	
�
 $� � ∑ :�

���
#��;��/��
�$�  , and ;��/� � ∑ <2/ � / 3��

 $� �1 � ;�2/ 3�. 852 

In each equation they appear, = is the number of input units (i.e., number of channels with pulse trains), 853 :�
�!"/���
���

 is the excitatory/inhibitory weight from the ���  input unit to the spiking neuron, ��  is the 854 

number of pulses in the ���  input unit, :#��
#�"  is the weight from the disinhibitor to the decoder, 855 :#�"
#��  is the weight from the decoder to the disinhibitor, and /  is the time of the *�� input pulse or 856 

output spike (depending on which summation term it appears in). The ;�  term, when it appears in the 857 

sum that produces ;�  (as in all but the second conductance equation), represents the state-dependent 858 

influence of each incoming pulse input. <�/� is the post-synaptic conductance kernel defined as: 859 

<2/ � / 3 �  >�(
 �
&� � (
 �

&�  �? / 4 / 0 �? / @ / ,B 
The conductance and input current terms that were dependent solely on the pulse input patterns were 860 

pre-computed and fed into a Eulerian solver (time step = 0.1 ms) for the differential equations governing 861 

the membrane potential of the spiking decoder and disinhibitor units. Extended Data Table 1 shows the 862 

values of the parameters and constants used for the model simulations. 863 

  864 
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Extended Data Figures  865 

 866 

 867 

Extended Data Figure 1. Temporal stability profiles within and across sessions collected with laminar probe. A. 868 

Temporal stability averaged across trials for individual sessions (thin traces) have different baselines, possibly due 869 

to varying noise levels, spike isolation differences, etc. The baselines were shifted to their mean level before 870 

averaging across sessions in Figure 1. B. In order to ensure that the choice of � did not have an undue effect on our 871 

results, we computed stability for several values of �. The panels show temporal stability profiles for (from top to 872 

bottom), � = 1, 2.5, 5, 10, and 20, respectively. The coloured traces for � =10 are the ones shown in the main Figure 873 

1. As evident, the absolute magnitude of stability was inversely related to �, a consequence of the smooth and 874 

continuous nature of the trajectory. In other words, since the state of the neural population evolves smoothly, it 875 

must traverse intermediate states in order to move from one state to another, resulting in greater similarity 876 

between state vectors close together in time than those further apart. However, the relative shape of stability 877 

profile was largely preserved across �. Thus, the relative instability during the visual epoch and stability during the 878 

premotor epoch persists across a broad range of time separations. C. Temporal stability averaged across sessions 879 

for shuffled data (gray traces, mean +/- s.e.m.). For each trial in each session’s dataset, the activities of neurons 880 

were shuffled at each time point so that the instantaneous population average was preserved. The coloured traces 881 

show the stability profiles for actual data from Figure 1E. 882 
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 883 

Extended Data Figure 2. Inferring population dynamics from single-unit recordings. A. Point images (red) of 884 

target locations on the SC map across all experimental sessions. The locations on the SC were computed using 885 

known transformations between visual space and SC tissue coordinates (see Methods). B. Same as in A, with the 886 

endpoint of the stimulation-evoked saccade vector at the recording site shown in blue. The stimulation vector 887 

provides a proxy for the RF center of the recorded neuron. Neuron-target pairs (blue-red) from individual sessions 888 

are connected using black lines (unconnected points did not have the corresponding stimulation/target data). C. 889 

The active pseudo-population on the SC map. The red locations from A and B were referenced to one arbitrarily 890 

selected location on the SC map (here, R=15, theta = 0) and the blue locations appropriately translated. Points 891 

from both colliculi are shown on a single SC for the sake of clarity. 892 

  893 
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 894 

Extended Data Figure 3. Temporal stability profiles based on pseudo-population analyses. A. Effect of � on 895 

temporal stability for the pseudo-population data (similar to EDF 1B). B. Temporal stability profiles in SC and FEF 896 

for individual subjects are qualitatively similar to the combined result in Figure 2C. C. Temporal stability profiles of 897 

various combinations of pseudo-populations. 898 
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 899 

Extended Data Figure 4. Task and pulse pattern configurations for microstimulation experiments. A. Schematic 900 

of the gap task used in the patterned microstimulation experiments. B and C. Two more examples of pulse rasters 901 

and pulse rates for individual channels for stable (blue) and unstable (red) pairs of stimulation patterns (see Figure 902 

3A). 903 

 904 
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 905 

Extended Data Figure 5. Features of saccade vectors evoked by stable and unstable pulse patterns. A. Mean 906 

stimulation-evoked saccade amplitude for stable (blue points) and unstable (red points) stimulation patterns 907 

plotted against the fixed vector saccade amplitude obtained from near-threshold constant frequency stimulation 908 

(see Methods). Each point represents one session for that condition. The diagonal represents the unity 909 

relationship. Filled circles denote a significant difference of the stable/unstable saccade amplitude from the fixed 910 

vector saccade (p < 0.01, Wilcoxon rank-sum test). Points circumscribed by black circles denote sessions where the 911 

saccade amplitudes on stable and unstable trials were significantly different from each other (p < 0.01, Wilcoxon 912 

signed-rank test). B. Similar to A (including criteria for statistical significance), but for stimulation-evoked saccade 913 

direction. 914 
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 916 

Extended Data Figure 6. Linear discriminability of population activity and microstimulation patterns. A-C. Similar 917 

to panels B, D, and F, respectively, from Figure 4, but for uncorrected classification percentage accuracy instead of 918 

Matthews correlation coefficient (MCC). 919 
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 921 

Extended Data Figure 7. Across-trial spike and pulse count correlations. A. Left: Histograms of spike count 922 

correlations for all pairs of channels (n = 1963) for the visual and premotor epochs (red and blue histograms, 923 

respectively). One of the histograms is shown inverted for the sake of clarity. Right: Distribution of differences 924 

between visual and premotor epoch correlations computed for each pair. The two vertical lines represent zero and 925 

the mean of the distribution (left and right lines, respectively). B. Same as A for pulse counts correlations for all 926 

pairs of stimulation channels (n = 899) for the stable (blue) and unstable (red) patterns, with the corresponding 927 

difference histogram shown on the right. 928 
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 930 

Extended Data Figure 8. Performance of spiking neuron model for various simulation outcomes with stable and 931 

unstable pulse patterns. A. Scatter plot of first spike latencies in the decoder (putatively representing saccade 932 

initiation) for stable versus unstable inputs from matched pairs (same as Figure 5C). The next two panels are based 933 

on the trial pairs highlighted by the arrow (in which both stable and unstable patterns produced a saccade). B. 934 

Simulated membrane potential of the decoder (blue and red traces) and disinhibitor (cyan and magenta traces) for 935 

an example matched trial pair from the subset in panel A, for stable (top row) and unstable (bottom row) input 936 

patterns. E. Average activity of the disinhibitor (cyan and magenta traces, stable and unstable inputs, respectively) 937 

and decoder (blue and red traces, stable and unstable inputs, respectively) for all trial pairs in which both stable 938 

and unstable input patterns produced a movement. D. Same as panel A, except for the focus on trial pairs (arrow). 939 

The next two panels are based on the trial pairs in which neither stable nor unstable patterns produced a saccade. 940 

E. Simulated membrane potential of the decoder and disinhibitor for an example matched trial pair from the 941 
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subset in panel D. Layout and colour scheme as in panel B. F. Average activity of the disinhibitor and decoder for all 942 

trial pairs in which neither stable nor unstable input patterns produced a movement. Colour scheme as in panel C. 943 

Note the small increase in disinhibitor activity around the time when a movement would have normally occurred, 944 

reminiscent of the slight increase in OPN activity during visual input
26

. 945 
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 947 

Extended Data Figure 9. Leaky accumulator with facilitation (LAF) model can discriminate population temporal 948 

structure. A. Inputs to the model from SC visuomovement neurons. Raw unstable (red) and stable (blue) input 949 

profiles (inset – population means). The two sets of inputs are 180 ms snippets taken from the visual and premotor 950 

bursts, respectively, in the spike density profiles shown in Figure 2A. B. Mean-matched input profiles and 951 

population means. C. Temporal stability of the two mean-matched populations. D. Output of the LAF accumulator 952 

in response to the stable and unstable model inputs. E. Evolution of synaptic weights for the two conditions. F. 953 

Correlation between instantaneous weights and input rates for the two conditions. G. Pattern sensitivity index of 954 

the model’s ability to discriminate between the two types of inputs. Values in the top half of the plot indicate 955 

higher sensitivity (faster accumulation) to stable population input. 956 
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Extended Data Table 1. Values of the constants and parameters used for the spiking neuron model. 958 

Biophysical constants Values 

�� 0� .��  .����  .�����  9�!"  9���  

10 ms 

10 Mohms 

-50 mV 

-65 mV 

-70 mV 

50 mV 

-80 mV 

Model parameters 

�� �� ��!"
#�"  :#��
#�"  ��!"
#��  ����
#��  :#�"
#��  

2 ms 

10 ms 5 x 10
'   E��?FG�60,27 
5 0.2 ��!"
#�"  0.8 ��!"
#�"  

0.1 

Numerical parameters 

-/ (time step) 0.05 
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S1. Inferring population dynamics from single-unit recordings 960 

The main text and methods describe how we reconstructed a pseudo-population from unit recordings. 961 

Using knowledge of the RF centre of a given session’s local population obtained from microstimulation, 962 

and known transformation from visual space to SC tissue coordinates, here we reconstruct the pseudo-963 

population on the SC map. 964 

We first transferred target locations �0( , I(�  inside the RF for each neuron onto the SC map using the 965 

following transformations
41

 – 966 

�( � )
�

 ln �*�+���,�

+�
 , K( � L- tan
� ,

*�+
  , where, 967 

N � 0( cos I(  , � 0( sin I(  , and S � 3 , L! � 1.4 , L- � 1.8. 968 

The transformed locations (�( , K() on the bilateral SC map are shown in EDF 2, top row. In order to 969 

move these target locations to one pseudo-population, we need to identify where these points reside in 970 

the RF of each neuron or local population. We used the endpoints of the site-specific microstimulation-971 

evoked saccades as a proxy for the respective RF centres. The transformed endpoints, with their 972 

locations relative to the corresponding target locations, are shown in EDF 2, middle row. We picked an 973 

arbitrary location in the visual field as the RF centre of the pseudo-population, �0" , I"� � �15,0�. We 974 

used the fact that the size of the active SC population is invariant regardless of the encoded saccade to 975 

preserve relative distances in tissue space between a site’s target location and RF centre, and translated 976 

the transformed microstimulation endpoints to the common pseudo-population centre, along with the 977 

respective target locations. To construct one active population from sites gleaned from both hemifields 978 

(and therefore both colliculi), we reflected the coordinates from one colliculus onto the other. The 979 

resulting pseudo-population (EDF 2, bottom row) shows a fairly representative sampling of neurons 980 

from the pseudo-population, with its extent consistent with a large (25% of SC tissue) active population, 981 

albeit one that is biased to one side of the population. 982 
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S2. Leaky accumulator with facilitation (LAF) model 984 

We developed an alternative computational model to demonstrate how the temporal structure of 985 

population activity could be used by neural circuits to gate decisions such as movement initiation. 986 

Similar to the spiking neuron model presented in the main text, a core principle behind this model is the 987 

hypothesis that signal integration is stronger when the temporal structure in input activity is stable, 988 

which allows the decoder neuron to reach threshold during the high frequency burst that triggers the 989 

movement. We constructed an accumulator as an abstraction of a neuron receiving population inputs 990 

through its network of dendrites. The total synaptic current 1�/� and the firing rate V�/� of the 991 

accumulator were defined as  992 

��1W �  �1 �  X :�E��

�
 

and 993 V � Y�1� 

where E�  and :�  are the instantaneous firing rate and synaptic gain of the i
th

 input neuron, and �� is the 994 

time constant of the synaptic current.  The output firing rate of the single decoder neuron V�/� can be 995 

described by a standard monotonic function (e.g., linear or sigmoid) applied to the net current
46

. The 996 

family of stochastic, leaky accumulator models that integrate the firing rate of neurons toward a 997 

threshold criterion has been commonly used to explain reaction times, decision making, and 998 

perception
20,47-49

. We used the following heuristic in order to extend this framework to incorporate 999 

temporal structure. In order to assess stability, the decoder neuron must keep track of the short term 1000 

history of the population activity, use this “memory” to evaluate stability, and respond selectively when 1001 

the activity pattern is deemed stable over some time scale.  We implemented these requirements by 1002 

introducing short-term plasticity in the form of facilitatory connections
50,51

 from the input population 1003 

onto the output unit (accumulator).  The change in connection strength or gain of each neuron on the 1004 

decoder neuron :�  can be defined by a differential equation that incorporates a Hebbian-like learning 1005 

rule and leak current: 1006 

�.:W � �  �:� � E�V:�?�  
The Hebbian-learning component, E�V describes the change in weight coupled to the firing rates of the 1007 

i
th

 pre-synaptic neuron and the post-synaptic accumulator neuron. �. is the time constant of the weight 1008 

parameter.  Since this version of the model contains only excitatory connections, the weight parameter 1009 

can exhibit unbounded accumulation, which can be controlled by incorporating normalization.  We 1010 

normalized the Hebbian-learning component E�V with the contribution of that neuron to the total 1011 

resource pool. The resource pool available for facilitation at any given time was defined as the sum of 1012 

the Hebbian-learning component across all input units ∑ E�V�
� . The contribution of a neuron to the 1013 

output rate V�/� then determines its contribution to the overall pool, giving rise to the weight 1014 

normalization factor: 1015 

:�?� � X E�:�E��

�
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/132514doi: bioRxiv preprint 

https://doi.org/10.1101/132514
http://creativecommons.org/licenses/by/4.0/


42 

 

For this model simulation, we used visuomovement neuron activity drawn from the SC pseudo-1016 

population as inputs (EDF 8A). We created two sets of input snippets from the visual and premotor 1017 

bursts, each 180 ms in length. For the visual burst, we used the activity upto the peak in the population 1018 

response. For the premotor burst, we used activity upto 35 ms before saccade onset (which was the 1019 

time when the response magnitude reached the same level as the peak of the visual burst). In order to 1020 

control for the effect of average firing rate on the accumulation, we mean-matched the input profiles as 1021 

follows. We divided the activations in the premotor input set at each instant by the mean activation of 1022 

the visual inputs at the corresponding instant. That is, 1023 

E�/���/��� �  E�/���/�1� ∑  E�0���/��
�

 

where  E�0���/� and E�/���/� are the activity of neuron i at time t in the visual and premotor input sets, 1024 

respectively, and E�/���/���  is the premotor input instantaneously rescaled to match the mean of the 1025 

visual input (EDF 8B). This ensured that we isolated the effect of temporal structure (EDF 8C), 1026 

independent of firing rate, on the model’s response. 1027 

The accumulator increased its activity at a faster rate in response to the stable pattern compared to the 1028 

unstable pattern (EDF 8D), suggesting that the network was able to discriminate between two types of 1029 

population patterns even though the net input drive was identical. How critical is facilitation to this 1030 

function? Like the inputs themselves, the weights also showed greater fluctuation during the visual burst 1031 

(EDF 8E). Consistent with our heuristic, the weights tracked the input rates when the input was stable, 1032 

but this correlation dropped away when the input was unstable (EDF 8F). Note that the shape of the 1033 

correlation profile is not unlike the stability profile in EDF 8C. Therefore, facilitation allows the weights 1034 

to retain the memory of a pattern over the time scale of tens of milliseconds, but the memory can be 1035 

scrambled by a fluctuating input pattern. 1036 

We also quantified the ability of the synaptic weights to track the inputs by computing the Pearson’s 1037 

correlation between the weight and input vectors at each time point (EDF 8G). To quantify the 1038 

accumulator’s ability to discriminate temporal pattern in population input, we computed a pattern 1039 

sensitivity index (psi) as 1040 

Z[��/� � V/���/� � V0���/�V/���/� � V0���/� 

where V�/� is the output of the accumulation for the corresponding inputs. 1041 

The results here suggest that the accumulator is driven more strongly by the stable premotor burst, 1042 

even when other features of population activity remain the same, providing yet another biophysical 1043 

mechanism by which temporal structure could be read out. 1044 
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