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Abstract 
 
Motivation: The biological importance of changes in gene and transcript expression is well 
recognised and is reflected by the wide variety of tools available to characterise these 
changes. Regulation via Differential Transcript Usage (DTU) is emerging as an important 
phenomenon. Several tools exist for the detection of DTU from read alignment or assembly 
data, but options for detection of DTU from alignment-free quantifications are limited. 
Results: We present an R package named RATs – (Relative Abundance of Transcripts) – that 
identifies DTU transcriptome-wide directly from transcript abundance estimations. RATs is 
agnostic to quantification methods and exploits bootstrapped quantifications, if available, to 
inform the significance of detected DTU events. RATs contextualises the DTU results and 
shows good False Discovery performance (median FDR ≤0.05) at all replication levels. We 
applied RATs to a human RNA-seq dataset associated with idiopathic pulmonary fibrosis 
with three DTU events validated by qRT-PCR. RATs found all three genes exhibited 
statistically significant changes in isoform proportions based on Ensembl v60 annotations, 
but the DTU for two were not reliably reproduced across bootstrapped quantifications. RATs 
also identified 500 novel DTU events that are enriched for eleven GO terms related to 
regulation of the response to stimulus, regulation of immune system processes, and 
symbiosis/parasitism. Repeating this analysis with the Ensembl v87 annotation showed the 
isoform abundance profiles of two of the three validated DTU genes changed radically. RATs 
identified 414 novel DTU events that are enriched for five GO terms, none of which are in 
common with those previously identified. Only 141 of the DTU evens are common between 
the two analyses, and only 8 are among the 248 reported by the original study. Furthermore, 
the original qRT-PCR probes no longer match uniquely to their original transcripts, calling 
into question the interpretation of these data. We suggest parallel full-length isoform 
sequencing, annotation pre-filtering and sequencing of the transcripts captured by qRT-PCR 
primers as possible ways to improve the validation of RNA-seq results in future experiments. 
Availability: The package is available through Github at https://github.com/bartongroup/Rats 
. 
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Introduction 
 
High-throughput transcriptomics experiments have until recently focused on quantifying gene 
expression and calculating Differential Gene Expression (DGE) between samples in different 
groups, conditions, treatments, or time-points. In higher eukaryotes, alternative splicing of 
multi-exon genes and alternative transcript start and end sites can lead to multiple transcript 
isoforms originating from each gene. Since isoforms can have different and distinct functions 
[1–3], analysis of Differential Transcript Expression (DTE) is preferable to DGE. 
Unfortunately, isoform-level transcriptome analysis is more complex and expensive since, in 
order to achieve similar statistical power in a DTE study, higher sequencing depth is required 
to compensate for the expression of each gene being split among its component isoforms. In 
addition, isoforms of a gene typically have a high degree of sequence similarity and this 
complicates the attribution of reads among them. Despite these challenges, several studies 
have shown that shifts in individual isoform expression represent a real level of gene 
regulation with phenotypic consequences [4–7], suggesting there is little justification for 
choosing DGE over DTE in the study of complex transcriptomes. 
 
It is possible to find significant DTE among the isoforms of a gene, even when the gene 
shows no significant DGE. This introduces the concept of Differential Transcript Usage 
(DTU), where the individual isoform abundances of a gene can change relative to one 
another, with the most pronounced examples resulting in a change of the dominant isoform 
(isoform switching). The definitions of DGE, DTE and DTU are illustrated in Figure 1.  
 
To quantify the isoforms and assess changes in their abundance, most existing tools for DTU 
analysis (e.g. Cufflinks [8], DEXSeq [9], LeafCuttter [10]) rely on reads that either span 
splice-junctions or align to unique exons. However, with the newest generation of transcript 
quantification tools (Kallisto [11], Sailfish [12], Salmon [13]), reads are not aligned to the 
transcriptome or the genome. Instead, these tools combine a pseudo-mapping of the k-mers 
present within each read to the k-mer distributions from the transcript annotation with an 
expectation maximization algorithm, to infer the expression of each transcript model directly. 
Alignment-free methods are much faster than traditional alignment-based methods (RSEM 
[14], TopHat2 [15], STAR [16]) or assembly-based methods (Cufflinks [8], Trinity [17]), but 
the lack of alignments prevents these new methods from being compatible with differential 
expression methods such as Cufflinks, DEXSeq and Leafcutter. Instead, Sleuth [18] is a tool 
that handles DTE analysis from alignment-free transcript quantifications,  but DTU analysis 
is currently less straight-forward. SwitchSeq [19] and iso-kTSP [6] focus on a particular 
subset of DTU analysis from alignment-free data, namely isoform switching. SUPPA [20,21], 
on the other hand, identifies differential splicing events. 
 
In this paper, we present RATs, a tool for identifying DTU directly from isoform 
quantifications. It is designed primarily for use with alignment-free abundance data and can 
take advantage of bootstrapped quantifications, but remains agnostic to the quantification 
method and can also be used in alignment-based workflows. We compare the results from 
RATs to published and validated instances of DTU and demonstrate that the results of both 
RNA-seq based and qRT-PCR based analyses are sensitive to the annotation used for 
transcript quantification and primer design, respectively. 
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Figure 1. Illustrative definitions of the three types of differential expression analysis (DGE, DTE and 
DTU) for two genes (Gene A and Gene B), with 3 and 2 isoforms respectively, whose expression is 
compared across two conditions (Condition 1 and Condition 2). The horizontal width of each 
coloured box represents the abundance of the relevant gene or transcript. A negative differential 
expression result (red cross-mark) for a given entity in any one of the three analysis types does not 
exclude that same entity from having a positive result (green tick-mark) in one of the other two 
analysis types. [iii] The relative isoform abundances are scaled to the absolute isoform abundances 
[ii], which in turn are scaled to the gene expressions in [i]. Gene A is differentially expressed, but 
only two of its three isoforms are differentially expressed (A.2 and A.3). Proportionally, Gene A’s 
primary isoform (A.3) remains the same, but the ratios of the two less abundant isoforms change. 
Gene B is not differentially expressed, but both its isoforms are differentially expressed, and 
demonstrate an example of isoform switching. 
 

Implementation 
 
RATs applies filters to the data prior to any statistical testing in order to reduce both the 
number of low quality calls and the number of tests carried out. These filters are (i) isoform 
ratio changes can only be defined for genes that are expressed in both conditions and (ii), 
transcript abundances need to exceed a minimum count threshold. The workflow of RATs is 
illustrated in Figure 2.  
 
Significant relative transcript abundance changes are detected using two separate approaches: 
one detects DTU at the gene level and the other detects DTU at the transcript level. The G-
test of independence [22], without continuity corrections, is implemented in RATs and used 
by both approaches. At the gene level, RATs compares the set of each gene’s isoform 
abundances between two conditions to identify if the abundance ratios have changed. At the 
transcript level, RATs compares the abundance of each individual transcript against the 
pooled abundance of its sibling isoforms to identify changes in the proportion of the gene’s 
expression attributable to that specific transcript. Both methods include the Benjamini-
Hochberg false discovery rate correction for multiple testing [23], and achieve median false 
positive rates ≤0.05 (FPR = false positives / input negatives) even with only three replicates 
per condition, with notable improvements at higher replication levels, as shown in Figure 3 
(panel A). 
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Figure 2. RATs workflow. Individual transcripts whose estimated abundance falls below a specified 
threshold in both conditions are excluded. Genes that are completely switched off in one or both 
conditions are also excluded, as isoform proportions cannot be defined for them. The remaining 
transcripts are tested for significant changes in their individual proportions. Genes with at least two 
isoforms above the expression threshold are tested for significant change in their expressed isoform 
ratios. Statistically significant results are then required to exceed a minimum change in isoform 
proportion and to be reproducible in random bootstrapping of the quantification data. All criteria 
marked with a star in their upper right corner represent user-defined runtime parameters.  
 
These two approaches to identifying DTU have different strengths and weaknesses when 
applied to an RNA-seq dataset. Simultaneously utilizing the expression information across all 
the isoforms in a gene makes the gene-level test sensitive to smaller changes in relative 
expression, compared to testing transcripts individually, but also more prone to false 
positives. Figure 3, shows that the gene-level test has a higher mean and median FPR than the 
transcript-level test irrespective of replication or effect size, although the two methods 
converge for highly replicated experiments and/or large effect sizes. Furthermore, it is only 
applicable to genes with at least two isoforms that both pass the pre-filtering criteria imposed 
by RATs, potentially limiting its utility for genes with low read coverage. Finally, the gene-
level test only identifies the presence of a shift in the ratios of the isoforms belonging to the 
gene, without identifying which specific isoforms are affected. The transcript-level test, by 
contrast, directly identifies the specific isoforms whose proportions are changing and has a 
lower False Positive Rate than the gene-level test. However, considering each isoform 
independently requires a larger number of tests to be performed, thus resulting in a greater 
multiple testing penalty and a lower statistical power. RATs currently does not combine the 
results of the two methods into a single verdict, but rather presents both as complementary 
views of the data.  
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Figure 3. False positive rate (FPR = False Positives / Input Negatives) of RATs as a function of 
replication level. FPR measured over 100 bootstrap iterations of randomly selected (without 
replacement) replicates from a pool of 16 high-quality wild-type Colombia-0 Arabidopsis thaliana 
replicates from Froussios et al. [24]. [A] FPR of each bootstrap iteration, for default values of all 
RATs parameters (v0.4.4), across a range of replication levels. [B] Mean FPR by replication level, as 
a function of effect size threshold (effect size = difference between an isoform’s proportions). For 
genes, the effect size is defined as the largest proportion difference observed among each gene’s 
isoforms. In every iteration, the FPR was calculated against the number of genes or transcripts that 
were eligible for testing each time, but that number remained very stable across bootstraps and 
replication levels (Supplementary file 1). In this case the FPR calculated equates to the False 
Discovery Rate, because the p-values are appropriately corrected for multiple testing. 
 
Alignment-free transcript quantification is hundreds of times faster than traditional read 
alignment methods [11,13], making it feasible to repeat the process many times on iterative 
subsets of the read data. This bootstrapping approach quantifies the technical variance in the 
transcript abundance estimates. RATs provides the option to use these bootstrapped 
abundance estimates to apply a reproducibility constraint on the DTU calls, by replacing the 
mean abundances with the values from random individual iterations and measuring the 
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fraction of these iterations that result in a positive DTU classification. This bootstrapping 
process reveals the extent to which the variability in the quantification of the expression of 
each transcript affects the DTU identification of the gene and a threshold can be set on the 
reproducibility of this classifications. Similarly, RATs also optionally measures the 
reproducibility of the DTU results relative to the inter-replicate variation by sub-setting the 
samples. Finally, two further user-defined thresholds are applied: one filters out low-
expression transcripts, while the other excludes transcripts according to the change in their 
DTU proportion (effect size). 
 
RATs is implemented in R [25]. It is distributed through Github as an R source package 
(https://github.com/bartongroup/RATS) and has been freely available since August 2016. A 
detailed manual is included in the package. 
 

Input and output 
 
RATs accepts as input either a Sleuth object [18] or, alternatively, a set of tables of fragment 
count estimates (with or without bootstrap information). An annotation mapping the 
correspondence between transcript and gene identifiers is also required. This can be given 
directly as a table or inferred from a GTF file. 
 
RATs results are returned in the form of R data.table objects [26]. Along with the DTU calls, 
the results record the full provenance of the calculations, allowing the user to trace back the 
decision steps behind each call and gain better understanding of their data. Additionally, 
RATs employs the ggplot2 package [27] to provide visualisations of the results. In addition to 
a “volcano plot” view of the DTU effect size against the significance, RATs also visualises 
the DTU classifications for a given gene in the context of the respective isoform abundances 
and their consistency across the replicates. An example, drawn from the case study in the 
following section, is shown in Figure 4. Panel A shows the absolute (upper panels) and 
relative (lower panels) abundances for each isoform within each condition. Panel B shows the 
same information, now reorganised to facilitate the comparison of transcript abundance 
between conditions. From these plots it is straightforward to identify the dominant isoform in 
each condition and the cases of isoform up- or down-regulation. In this example 
ENST00000457634 is the dominant transcript from this gene in the control condition but is 
down-regulated in the IPF condition, while ENST00000490573 is strongly up-regulated in 
the IPF condition becoming the dominant isoform. The lines connecting transcript abundance 
points in panel A show the transcript expression profile for this gene for each of the three 
replicates, making it easy to identify outlier behaviour that may warrant further investigation. 
In this example, the transcript expression profile from replicate 1 does not agree well with the 
other two replicates in the control condition. Finally, the DTU classification of the isoforms 
is encoded as colour or shape, highlighting the changes that are considered significant for the 
defined criteria. Once created, all plots produced by RATs remain customisable via standard 
ggplot2 operations. 
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Figure 4. Isoform abundance plots from RATs for an example gene with five isoforms (Ensembl v60). 
RNA-seq data was taken from Deng et al. [28] as part of the case study presented in this article. The 
isoform expression was quantified with Salmon [13] and analysed with RATs. Two conditions are 
being compared, labelled “Controls” and “IPF” (more details on them in the main text). The upper 
panels display the absolute abundances (counts) and the lower panels the relative abundances 
(proportions). The boxplots represent the replicate abundance measurements of each isoform in each 
condition. In [A], the abundances are organised by condition and colour-filled according to their 
transcript-level DTU result (blue – non DTU, red – DTU, yellow – not eligible). Coloured lines 
connect the measurements from each replicate and illustrate the level of consistency among the 
replicates. In this example, Replicate 1 in the control clearly deviates from the other two. In [B], the 
abundances are organised and coloured by isoform (red through yellow). The fill-colour of the 
boxplots indicates the condition (grey – “Controls”, white – “IPF”) while the shape of the points 
indicates the transcript-level DTU result for the isoform (square – non DTU, cross – not eligible, 
solid circle - DTU). Style [A] is useful for assessing consistency between replicates and visualising 
abundance ratio profiles, whereas style [B] facilitates viewing the abundance change of individual 
isoforms. 
 

Identifying DTU in public human RNA-seq data 
 
To test the ability of RATs to identify correctly instances of DTU, we compared it against 
published and validated instances of DTU from publicly available RNA-seq data. We took 
RNA-seq data from Deng et al. [28], who identified non-DGE changes in the isoform levels 
of genes. The dataset contains 25 million 54-base long single-end Illumina reads per lung 
tissue sample from three IPF patients and three lung cancer patients as controls. After pre-
filtering, Deng et al. tested 3098 genes for DTU by quantifying their isoform proportions 
with RAEM [29] and using Pearsons Chi-squared test of independence with a FDR threshold 
of 5%. They identified 248 genes that were not differentially expressed but displayed 
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significant DTU. Subsequently, they validated three of them with qRT-PCR: TOM1L1 
(ENSG00000141198), CMTM4 (ENSG00000183723), and PEX11B (ENSG00000131779).  
 
As in the original study, Ensembl v60 [30] was used as the source of the reference human 
genome and its annotation, in which each of the three discussed genes features two isoforms. 
Unlike the original study, we used Salmon (v0.7.1, with sequence bias correction enabled, 
100 bootstrap iterations and default values for the remaining parameters, using k=21 for the 
index) to quantify the isoform abundances. DTU was identified by RATs v0.4.4 (with the 
default parameters p_thresh=0.05, abund_thresh=5, dprop_thresh=0.2, qrep_thresh=0.95, 
and 1000 bootstrap iterations).  
 
With these data and parameters, RATs predicted 609 DTU genes according to the gene-level 
test or 549 DTU genes according to the transcript-level test. 514 DTU genes are common to 
both methods. The results of RATs for the three genes of interest are summarised in Table 1. 
All three genes exhibited statistically significant changes in isoform proportions, as 
evidenced by the low p-values for the p, in agreement with the original findings of Deng et 
al. However, only CMTM4 is reported as DTU by RATs. This is due to the insufficient 
reproducibility of the DTU results for TOM1L1 and PEX11B during the DTU bootstrapping 
process. Of the remaining 245 DTU genes reported by Deng et al., 13 appear in RATs’ 
predictions. The majority of the rejected DTU instances show changes in proportion smaller 
than our threshold of 0.2, despite high statistical significances, and a also fail to meet our 
bootstrap reproducibility criterion. 
 
Table 1. Differential Transcript Usage (DTU) results by RATs v0.4.2 for the six transcripts belonging 
to the three genes identified as DTU by Deng et al. 2013 [28]. Ensembl v60 was used as the 
annotation and assembly reference. All transcripts met the effect size (difference in proportion, ≥0.2) 
and significance (p<0.05) requirements and, thus, could be considered DTU. However, only the 
isoforms of CMTM4 meet the reproducibility threshold (DTU frequency ≥95%) and are, therefore, the 
only ones confidently considered to be DTU by RATs (shaded cells). The corresponding isoform 
abundance plots by RATs can be found in Supplementary file 2. 
 

Gene Transcript ID 
∆proportion 

FDR 
Bootstrap 

DTU freq. (x10
-2

) 

TOM1L1 
ENST00000348161 25.6 1.5 x 10

-18
 0.74 

ENST00000445275 -25.6 1.5 x 10
-18

 0.74 

CMTM4 
ENST00000330687 32.1 2.5 x 10

-130
 1.00 

ENST00000394106 -32.1 2.5 x 10
-130

 1.00 

PEX11B 
ENST00000369306 -21.0 3.4 x 10

-34
 0.66 

ENST00000428634 21.0 3.4 x 10
-34

 0.66 

 
Repeating the quantification and DTU detection using the current version of the human 
genome assembly and annotation, Ensembl v87, reveals a different picture of DTU in these 
data. Despite a 25% increase in the number of annotated transcripts in Ensembl v87 
compared to v60 (Table 2), fewer genes were identified as DTU by RATs. In total, 511 DTU 
genes were identified by the gene-level test and 464 by the transcript-level test, with 427 
DTU genes identified by both methods. Only 141 DTU genes are in common between our 
v60 and v87 results (predicted by both test methods), and only 11 of the 248 DTU genes 
reported by Deng et al. are also predicted by RATs, the others falling again below our effect 
size threshold. Additionally, 10,253 gene IDs disappear from v60 to v87 and 15,839 new 
ones are added. The considerable change of the annotation between the two Ensembl versions 
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affects the number of isoforms the quantification tool can choose from per gene, as well as 
the multiple testing correction penalty.  
 
Table 2. Expansion of the human annotation between Ensembl v60 and v87. In total, the annotation 
has 25% more transcript models. The three genes identified by Deng et al. [28] (TOM1L1, CMTM4 
and PEX11B) have all acquired additional isoform models. 
 

Human Annotation 
Number of isoforms 

Total TOM1L1 CMTM4 PEX11B 
Ensembl v60 transcripts 157,480 2 2 2 
Ensembl v87 transcripts 198,002 23 5 3 

 
In light of the expanded annotation, the DTU results of the three genes of interest based on 
the same RNA-seq data changed considerably (Table 3). TOM1L1 no longer demonstrates a 
switch in primary isoform from ENST00000445275 in the controls to ENST00000348161 in 

the IPF samples; in fact, none of its isoforms show any significant change in proportion. 
Furthermore, the isoform abundance estimates have also changed. With Ensembl v60, 
isoform ENST00000445275 was the dominant isoform in the control samples 
(Supplementary file 2), whereas with Ensembl v87 it has virtually no expression in either 
condition. In CMTM4, an abundance shift is still evident, but it occurs between isoforms 
ENST00000330687 and ENST00000581487 instead of between ENST00000330687 and 
ENST00000394106.  In fact, ENST00000394106 is scarcely detected with Ensembl v87 

(Supplementary file 2). Finally, PEX11B demonstrates the same significant change in 
isoform proportions as it did with Ensembl v60, although this time one of its isoforms 
(ENST00000369306) does meet the reproducibility criterion and is classified as DTU.  
 
The updates in the genome assembly and annotation are also likely to impact the result of the 
qRT-PCR validation of the DTU identified in these genes, since PCR primers are designed to 
target specific transcripts all in a defined annotation. To examine this, the reported primer 
sequences, designed according to Ensembl v60, were searched for in the respective Ensembl 
v87 transcript sequences (Figure 5). Two pairs of primers were originally used for each gene 
[28], each pair consisting of a forward and a reverse primer: One pair was common between 
the two annotated isoforms of each gene and one was unique to one of them. The unique pair 
used for TOM1L1 targeted isoform ENST00000445275 in the Ensembl v60 annotation. In 
the Ensembl v87 annotation, however, these primers match two other isoforms 
(ENST00000570371 and ENST00000575882). The originally targeted ENST00000445275 
has been re-annotated with a truncated 5’ end in Ensembl v87 and now matches only the 
reverse primer. Thus, it would not be expected to be detected by the given qRT-PCR design. 
The reverse primer matches an additional isoform in Ensembl v87 (ENST00000570965) that 
is also annotated with a short 5’ end. Given that isoforms are revised and their ends can 
change between annotation versions, it is uncertain how many more isoforms may match the 
primer pair in full or in part. Additionally, the common primers used by Deng et al. [28] to 
detect all the isoforms of the gene match fewer than half of the annotated isoforms in 
Ensembl v87, and the isoforms captured by the unique primers are not a subset of those 
captured by the common primers. Interpreting the given qRT-PCR results in the context of 
the most recent annotation is thus extremely difficult, if not impossible, and any conclusions 
reached would certainly differ substantially from those published in the original study. For 
CMTM4, only one pair of primers is listed by Deng et al. and it matches two isoforms in 
Ensembl v87, one of which is the originally targeted ENST00000330687. Finally, in 
PEX11B, the unique primer pair still uniquely matches isoform ENST00000369306 and the 
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common primer pair matches the new isoform as well as the old ones, lending confidence to 
the original interpretation of the qRT-PCR quantifications for this gene. 
 
Table 3. Differential Transcript Usage (DTU) results by RATs v0.4.2 for the six transcripts belonging 
to the three genes identified as DTU by Deng et al. [28]. Ensembl v87 was used as the annotation and 
assembly reference. In bold font are marked the six transcript IDs that were also present in Ensembl 
v60. The criteria for DTU were a change in proportion ≥0.2, p<0.05 and reproducibility ≥95%. 
Transcripts IDs meeting these criteria are shaded light grey. Dark grey shaded cells signify that the 
isoform’s abundance was below the noise threshold and was not tested. The corresponding isoform 
abundance plots can be found in Supplementary file 2. 
 

Gene Transcript ID 
∆proportion 

FDR 
Bootstrap DTU 

freq. (x10
-2

) 

TOM1L1 

ENST00000348161 -0.8 0.79 0.03 
ENST00000445275 0.3   
ENST00000536554 -3.0 0.14 0.03 
ENST00000536554 0   
ENST00000570499 0.6   
ENST00000570623 1.3   
ENST00000570965 -1.3   
ENST00000570965 -2.6 1.5 x 10

-3 0 
ENST00000571319 5.6 3.8 x 10

-4 0.03 
ENST00000572158 -7.3 1.0 x 10

-8 0.03 
ENST00000572298 0.1   
ENST00000572360 -0.7   
ENST00000572405 -0.1   
ENST00000572576 0.1 0.96 0 
ENST00000572905 -0.7   
ENST00000573607 0   
ENST00000574318 3.1 0.01 0 
ENST00000574653 -3.9 0.02 0 
ENST00000574744 0   
ENST00000575333 5.6 1.3 x 10

-3 0 
ENST00000575882 2.4   
ENST00000575909 0   
ENST00000576932 1.3 0.21 0 

CMTM4 

ENST00000330687 28.4 2.0 x 10
-105 0.99 

ENST00000394106 -1.4 2.8 x 10
-3 0 

ENST00000561680 -1.8 2.0 x 10
-10 0 

ENST00000563952 -1.8 1.4 x 10
-4 0 

ENST00000581487 -23.4 6.1 x 10
-62 0.90 

PEX11B 
ENST00000369306 -25.6 2.2 x 10

-46 0.96 
ENST00000428634 21.1 2.3 x 10

-34 0.71 
ENST00000537888 4.4 1.3 x 10

-08 0 
 
To verify whether the DTU genes identified by RATs were compatible with the known 
pathology of IPF, we carried out a GO term [31] enrichment analysis for biological processes 
against the set of all human genes (GO database released 2017-04-24). We used p<0.05, with 
Bonferroni correction for multiple testing [32]. For the 514 Ensembl v60 DTU genes, we 
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obtained 11 enriched terms (Supplementary file 3) pertaining to regulation of response to 
stimulus (GO:0048583), regulation of immune system processes (GO:0002682), and 
symbiosis/parasitism (GO:0044403). Although the exact causes of IPF both in the samples 
and in general are unknown, viral infections, pollutants and inflammation have been linked to 
the disease [33]. Basing the GO term enrichment analysis on our 427 Ensembl v87 DTU 
genes, instead, finds just five enriched terms, pertaining to localisation (GO:0051234, 
GO:0051179) (Supplementary file 3). No terms were shared between the two enrichment 
sets, except for the biological process ontology root (GO:0008150). Finally, analysing GO 
term enrichment for the subset of 141 genes identified as DTU by both annotations resulted 
in no enriched terms at all. 
 

 
 
Figure 5. Sequence matches in Ensembl v87 for the qRT-PCR primers used for DTU validation by 
Deng et al. [28]. The primers were designed based on Ensembl v60. Despite being well designed 
within the context of Ensembl v60, it is clear in the new annotation that the primers target more 
transcripts than originally expected. The red brackets indicate the pairs of forward and reverse 
primers. The dark blue vertical lines indicate portions of the sequence that have been hidden for 
convenient viewing of the relevant segments. The sequence in black background is the genomic 
sequence. The primer matches in the isoforms are highlighted in light blue. The alignments were 
visualized with Jalview [34]. 
 
An alternative resource with which to add context to our results is the Reactome pathway 
database (Release 59, browser version 3.2) [35–37]. An overrepresentation analysis for the 
141 genes identified as DTU by both annotations returned 426 pathway entities spread over 
multiple clusters. 26 of these entities received p-values <0.05, belonging to the pathway 
clusters of signal transduction, haemostasis and developmental biology. These entities 
revolved mainly around the ERBB2 and ERBB4 signalling pathways, while one entity also 
implicated NOTCH4 signalling. Entities referencing platelet and neutrophil degranulation re-
inforce the GO terms that implicated an immune response and may relate to foreign objects 
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like viruses or pollutants. The full list of pathways obtained is available in Supplementary file 
4. 
 

Discussion 
 
RATs fills a gap in the line-up of differential expression tools, enabling the identification of 
DTU from isoform expression quantification data. It is based on established statistical 
methods for ratio comparisons and provides results in formats suitable for both downstream 
computational analysis and visual inspection. The package includes plotting and 
summarization routines designed to encode several layers of information, allowing users to 
examine quickly and easily both the high level DTU picture of their data and to drill down 
into the individual details and provenance of each result. 
 
The capability of RATs to reliably identify DTU depends critically on the upstream isoform 
expression quantification tools and the quality of the input data they use. This limitation is 
common to all tools that use an annotation, and any downstream analysis can be affected by 
the choice of annotation [38]. We showed this by applying RATs to publicly available RNA-
seq data with validated instances of DTU, using two annotation versions separated by six 
years. All three validated genes in the study contained additional isoforms in the newer 
annotation and only one of them displayed similar isoform abundance shifts with both 
annotations. A second gene showed DTU attributable to different isoforms, depending on the 
annotation version, whereas the third gene showed no significant DTU with the newer 
annotation. We also demonstrated that qRT-PCR, often considered the gold standard for 
differential expression validation, is subject to the same limitation, as evidenced by the 
multiple hits of the previously assumed unique primer sequences in the newer annotation.  
qRT-PCR primers are designed to target unique sequences in the transcriptome. However, the 
transcriptome remains a work in progress even for the most intensively studied model 
organisms. The natural extensive sequence overlap between isoforms together with the 
ongoing discovery of additional isoforms may mean that, for many genes, qRT-PCR is not a 
suitable method for the validation of transcript abundance changes (DTE and DTU alike).  
 
For hybridisation-based methods like qRT-PCR to serve as a reliable validation method of 
RNA quantification, the suitability of the primers should first be validated by sequencing the 
captured transcripts. Additionally, it has been reported that pre-filtered annotations improve 
quantification performance [39], and are likely to be helpful in primer design as well. Such 
annotations could be obtained by including a parallel set of full-length isoform RNA-seq data 
in the experimental design, such as via PacBio sequencing (http://www.pacb.com) or Oxford 
Nanopore Direct RNA-seq (https://nanoporetech.com). An additional advantage of this 
approach is that it effectively defines the relevant transcriptome for the specific experiment 
[40–43]. This may be of importance for experiments focussing on specific tissues or 
developmental stages of an organism where the transcriptome of the sample is likely to be 
only a subset of the global reference transcriptome of the organism.  
 
Despite these concerns over the annotation, DTU results by RATs were shown to be enriched 
for GO terms that may be relevant to the symptoms and risk factors of IPF or lung cancer. As 
the controls in the study were not “healthy” individuals, it is likely that the DTU results from 
this comparison include genes related to the cancer pathology in addition to those associated 
with the IPF pathology. It is worth keeping in mind that DTU analysis only considers shifts in 
the ratios of isoforms and that there may be additional genes and transcripts differentially 
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regulated that are not reported here. In fact, no single analysis type among DGE, DTE and 
DTU can give a complete picture of differential expression; at least two of these analyses 
must be carried out. 
 
In conclusion, we offer a computational method for identification and visualisation of 
differential transcript usage and recommend that caution and scrutiny must be exercised in 
the interpretation of quantifications, whether they be from RNA-seq or qRT-PCR. 
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