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2	

ABSTRACT 35	

If the brain abstractly represents probability distributions as knowledge, then 36	

the modality of a decision, e.g. movement vs perception, should not matter. If on the 37	

other hand, learned representations are policies, they may be specific to the task 38	

where learning takes place. Here, we test this by asking if a learned spatial prior 39	

generalizes from a sensorimotor estimation task to a two-alternative-forced choice (2-40	

Afc) perceptual comparison task. A model and simulation-based analysis revealed 41	

that while participants learn the experimentally-imposed prior distribution in the 42	

sensorimotor estimation task, measured priors are consistently broader than expected 43	

in the 2-Afc task. That the prior does not fully generalize suggests that sensorimotor 44	

priors strongly resemble policies. In disagreement with standard Bayesian thought, 45	

the modality of the decision has a strong influence on the implied prior distribution.  46	

 47	

NEW AND NOTEWORTHY 48	

We do not know if the brain represents abstract and generalizable knowledge 49	

or task-specific policies that map internal states to actions. We find that learning in a 50	

sensorimotor task does not generalize strongly to a perceptual task, suggesting that 51	

humans learned policies and did not truly acquire knowledge. Priors differ across 52	

tasks, thus casting doubt on the central tenet of may Bayesian models, that the brain’s 53	

representation of the world is built on generalizable knowledge. 54	

 55	

KEYWORDS 56	

Generalization, Bayesian, Sensorimotor, Knowledge, Policies. 57	

 58	

INTRODUCTION 59	

The acquisition of knowledge is thought to be at the core of the brain’s 60	

function (Tenenbaum et al. 2006, 2011; Battaglia et al. 2013). A behavioral signature 61	

of knowledge-use is strong generalization across situations. For instance, when a child 62	

learns a new word they can use it in many new situations, not just the sentence where 63	

the word was learned (Xu and Tenenbaum 2007; Perfors et al. 2011). However, the 64	

framing of learned representations as generalizable knowledge may not apply to all of 65	

the brain’s functions equally. For example, generalization from movements of one 66	

arm to those of the other is not always complete (Criscimagna-hemminger et al. 2003; 67	

Shadmehr 2004). Indeed, the reinforcement learning literature (Sutton and Barto 68	
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1998) defines an alternative way of learning. Within this framework, learning is 69	

framed as policy-acquisition, i.e. mappings from states to actions (Daw and Doya 70	

2006; Haith and Krakauer 2013). This definition implies that learning of policies is 71	

specific to the action for which it was learned and thus suggests limited generalization 72	

across tasks. We want to know if humans are policy animals, knowledge carriers, or 73	

something in between. 74	

In sensorimotor estimation tasks, humans weigh prior knowledge with sensory 75	

information in a near-optimal way (Körding and Wolpert 2004; Tassinari et al. 2006; 76	

Berniker et al. 2010; Vilares et al. 2012) and generalize learned prior statistics to new 77	

conditions (Fernandes et al. 2014). Thus, there is evidence for learning of 78	

sensorimotor priors. However, little is known about whether sensorimotor learning 79	

generalizes when the read-out modality of the decision changes. Therefore, we do not 80	

know if sensorimotor priors should be described as knowledge or policies. This is 81	

important because it has consequences for how neural representations should be 82	

conceptualized. 83	

Here, we investigate if priors are the same across modalities by examining 84	

whether priors generalize across two simple tasks.  The experiment was designed so 85	

that tasks were equivalent in terms of how probabilistic information should be 86	

combined to achieve optimal performance. Participants learned a spatial prior in a 87	

sensorimotor estimation task, and we asked if they transferred the learned prior to a 88	

two-alternative-forced-choice (2-Afc) task, where participants made a binary decision 89	

about object location. We inferred the standard deviation of the learned prior and 90	

found that the learned sensorimotor prior does not generalize fully to the 2-Afc task. 91	

The prior standard deviation measured from 2-Afc decisions was higher than the 92	

standard deviation measured from sensorimotor estimates. This shows that a learned 93	

prior does not generalize fully across sensorimotor and decisional modalities and 94	

suggests that sensorimotor priors are represented as policies.  95	

 96	

METHODS 97	

The results presented here use data from previous work (Acuna et al. 2015), 98	

augmented with newly collected data on the same paradigm. A complete description 99	

of the methods is given in previous work and will be described here. Participants were 100	

six males and two females (age: M = 29.87, SD = 7.27). Participants gave written 101	
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4	

informed consent before taking part. Ethical approval was provided by the NU IRB 102	

#20142500001072 (Northwestern University, USA). 103	

We required tasks that were equivalent in how probabilistic information 104	

should be combined across sources and that allowed us to infer priors used by 105	

participants. We used a “coin-catching” task (Berniker et al. 2010; Vilares et al. 2012; 106	

Acuna et al. 2015), where on each trial, participants guessed the location of a hidden 107	

stimulus (“coin”) on the screen based on an uncertain visual cue (“splash”) and a prior 108	

learned through feedback on stimulus location. Varying the prior and likelihood width 109	

allowed us to assess whether participants weighed prior and likelihood information 110	

according to their relative uncertainties during sensorimotor estimation and decision 111	

making.  112	

Before starting the experiment, participants were presented with the 113	

instructions that on each trial, someone was throwing two coins, one after another, 114	

into a pond represented by the screen; and that their aim was to guess where the coin 115	

stimuli landed. They were told that there was no relationship between where the two 116	

coins landed (Fig. 1). On each trial, they were presented with “splash” stimuli and 117	

were told that it was caused by a hidden coin stimulus. On estimation trials, 118	

participants provided an estimate of the second stimulus’s location on the horizontal 119	

axis by placing a vertical bar where they thought that the stimulus landed. On 2-Afc 120	

trials, participants compared the locations of the inferred stimulus locations and 121	

indicated which stimulus was further to the right. Participants were paid based on 122	

their performance on the estimation task, as quantified using the distance between 123	

their estimates and the true stimulus location. 124	

 125	
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Figure 1. Experimental protocol. Participants were shown two splashes (likelihoods) in 127	
succession, created by hidden coins (stimuli) falling into a pond (screen), which were 128	
interleaved with white noise masks. Participants were then presented with one of two possible 129	
tasks. In the estimation task, participants were prompted to place a net where the second 130	
hidden stimulus fell. In the 2-Afc task, participants reported which hidden stimulus landed 131	
farther to the right.  132	
 133	

Eight participants performed the experiment, including the seven participants 134	

from an existing data set (Acuna et al. 2015) and one additional participant to increase 135	

the power of group statistics (statistical results were the same with and without this 136	

participant). The experiment lasted 10,000 trials over 5 days. On each day, they were 137	

seated in front of a computer monitor (52 cm wide, 32.5 cm high) in a quiet room. 138	

Stimuli were generated by sampling visual stimuli from a Gaussian prior distribution 139	

defined over spatial location, with a mean at the center of the screen and standard 140	

deviation of .04 or .2 in units of screen width. The stimulus was hidden from view. 141	

Instead, they were presented with a visual cue with experimentally-controlled 142	

uncertainty (splash stimulus). The splash consisted of four dots sampled from a 143	

Gaussian likelihood distribution centered on the stimulus location. The likelihood 144	

distribution could have a standard deviation of .025 or .1 in units of the screen. In all 145	

trials, two consecutive splashes were displayed for .025 s, each followed by a visual 146	

mask for .5 s. The standard deviation of the likelihood was either the same across 147	

presentations within a trial (both at .025 or both at .1) or varied within trial (.025 and 148	

.1) and presented in randomized order. We refer to the broader likelihood as the 149	

reference and the narrower likelihood as the probe. 150	

On each trial, participants performed one of two tasks, as defined by the 151	

question displayed at the end of the trial. On estimation trials, participants were asked 152	

“Where was the coin located?” and they indicated where they thought the second coin 153	

stimulus was using a vertical bar (“net”), which was 2% screen width and extended 154	

from the top to the bottom of the screen. On 2-Afc trials, participants were asked 155	

“Which coin was further to the right?” and using a key-press they indicated if they 156	

thought the first or second coin stimulus was further to the right. Trials in both tasks 157	

were identical until the end of the trial, until the question was displayed on screen. At 158	

the end of estimation trials only, feedback was provided on the exact location of the 159	

stimulus, but not on 2-Afc trials, allowing us to ask if the prior learned in the 160	

estimation task generalizes to the 2-Afc task.  161	

Experimental Design 162	
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6	

There were four conditions in the estimation task: Narrow Prior, Narrow 163	

Likelihood; Narrow Prior, Wide Likelihood; Wide Prior, Narrow Likelihood; Wide 164	

Prior, Wide Likelihood. In the 2-Afc trials, conditions were defined by the width of 165	

the prior (Narrow Prior and Wide Prior) and whether likelihoods were equal within 166	

trial, Equal Likelihoods (both narrow or both wide) or Unequal Likelihoods (one 167	

narrow and one wide). We only used Unequal Likelihood trials in the present study. 168	

Therefore in our analysis, there were two conditions for the 2-Afc trials: Narrow Prior 169	

and Wide Prior. 170	

On each day of the experiment participants performed two 1,000-trial blocks. 171	

The prior over stimulus location switched from block to block (e.g., from wide to 172	

narrow on one day, from narrow to wide on the subsequent day, and so on). Each 173	

block contained 500 estimation trials and 500 2-Afc trials in a random order all 174	

generated from the same prior. In order to aid with learning the prior, estimation trials 175	

made up the first half of each block (375 estimation trials and 125 2-Afc trials), and 2-176	

Afc trials made up the second half of each block (125 estimation trials and 375 2-Afc 177	

trials).   178	

Data Analysis and simulations 179	

We asked whether the use of prior information differed between 180	

psychophysical tasks. To answer this question, we examined whether the prior 181	

parameters fit to one of the two tasks could predict behavior well in the other task. As 182	

a baseline comparison, we examined whether the prior standard deviation fit to one 183	

half of the data predicted behavior on the other half of the data, within task. To 184	

examine how each participant’s prior related to the veridical prior used in the 185	

experiment, we estimated the prior parameters from each task. To ensure that the data 186	

analysis produced unbiased results, we performed the same analysis on data simulated 187	

from an ideal Bayesian model. 188	

Quantifying the Estimation slope and PSE slope from behavioral data 189	

In order to examine the use of probabilistic information during the estimation 190	

task, we examined how much participants relied on likelihood or prior information. In 191	

the estimation task, participants gave a continuous estimate of stimulus location. We 192	

wanted to quantify how much participants relied on the learned stimulus location 193	

(prior) or visual information (likelihood). To do so, we computed the relationship 194	

between the likelihood’s center and participants’ estimates, which we termed the 195	

Estimation slope. If someone were to rely only on likelihood information to judge 196	
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7	

stimulus location, on average, estimates should correspond to the center of the 197	

likelihood (Estimation slope =1). If someone were to ignore the likelihood entirely 198	

and rely only on their prior to judge stimulus location, there should be no relationship 199	

between the likelihood’s center and estimates (Estimation slope = 0). The Bayesian 200	

optimal strategy is to weigh the prior and likelihood according to their relative 201	

precision, as in Equation 1.  202	

Estimation slope = 𝜎"#/(𝜎"# + 𝜎'#/𝑛)    (1) 203	

In the 2-Afc task, participants were given probabilistic information on 204	

stimulus location exactly as in the estimation task. On each trial, they compared the 205	

locations of two stimuli with different uncertainties, a probe stimulus with Narrow 206	

Likelihood and a reference stimulus with Wide Likelihood. Uncertainty should 207	

influence the judgment of stimulus location in the same way as in the estimation task. 208	

A Bayesian observer judges the more uncertain stimulus to be shifted further to the 209	

prior mean than the more certain stimulus. This, in turn, influences decisions about 210	

relative stimulus location. Therefore, use of the prior can be inferred from 211	

participants’ 2-Afc data. 212	

Consider the psychometric function that describes the comparison of stimuli 213	

with unequal widths. The psychometric function is the probability that the probe 214	

stimulus is reported to the right, P(Decision=1), as a function of difference between 215	

the likelihood stimuli (Discrepancy), and the Reference location. The participant’s 216	

prior influences the Discrepancy at which the stimuli are perceived as equal (point of 217	

subjective equality, PSE). For a Bayesian observer, the PSE arises when the reference 218	

is more distant from the prior’s center than the probe. The PSE further deviates from 219	

zero as the distance between the prior and the reference increases. Importantly, the 220	

slope of this linear relationship, the PSE slope, is related to the width of the 221	

participant’s prior – a PSE slope of 0 shows that participants relied only on visual 222	

information from the likelihood; and the more negative the PSE slope, the narrower 223	

the participant’s prior. The optimal PSE slope is given by Equation 2. 224	

PSE slope = (𝜎'*# /𝑛 − 𝜎'	## /𝑛)/(𝜎'	## /𝑛 + 𝜎"#	)    (2) 225	

We fit psychometric functions (the cumulative Gaussian function) to each 226	

participant’s decision data. The PSE slope (𝑚./0 ) estimated from this function 227	

provides an indicator of the variance of the participant’s prior. We model the 228	

probability of a decision as:  229	
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P Decision = 1 = *
#
	 1 + erf =>"?@×BCDE

#	F
    (3) 230	

where 𝛿 is the discrepancy between stimuli, 𝑠'# is the location of the reference 231	

stimulus with broader likelihood, σ describes the deviation of the function (Acuna et 232	

al. 2015). We find the values of 𝑚./0 and	σ using a maximum-likelihood estimation 233	

algorithm. 234	

Analysis of priors during Estimation and 2-Afc decision making 235	

If priors are the same, then priors used in one task should predict behavior in 236	

the other task well. A cross-validation error computed across tasks should not exceed 237	

the error computed within tasks. To test this, we performed 2-fold cross-validation by 238	

estimating priors from one task and computing the Mean Squared Error (MSE) on the 239	

held-out task (Across-task MSE). We compared the Across-task MSE with the 240	

within-task MSE, computed by performing 2-fold cross-validation using the data of 241	

one task, then summing the MSE across tasks. If priors are the same, we expect that 242	

the Across-task MSE should not exceed the Within-task MSE. This analysis allowed 243	

us to examine if priors were the same or different across tasks. 244	

To quantify the prior width in the estimation task and the 2-Afc task, we used 245	

the Estimation slope and the PSE slope respectively.  Using a maximum-likelihood 246	

estimation algorithm, we estimated prior standard deviation parameters from the 247	

slopes of one task by minimizing the MSE between the slope values and the slopes 248	

given by Equations 1 and 2. To compute the Across-task MSE, we predicted the 249	

slopes of the held-out task from the fitted parameters and compared the predicted 250	

slope with that computed from the data using the MSE. To compute the Within-task 251	

MSE, we estimated the prior standard deviation parameters from 50% data of one 252	

task, then predicted the slope for the same task, and compared the predicted slope to 253	

the slope computed from the held-out data.  254	

To ensure that our analysis led to unbiased results, we simulated 1000 255	

Bayesian observers who combined prior and likelihood information optimally and 256	

used the veridical prior parameters in both tasks. Simulated observers should not 257	

show systematic differences between the Across-task and Within-task MSE. 258	

In order to examine how the priors used by participants differed from the 259	

veridical priors, we estimated the prior standard deviation using Equations 1 and 2 260	

and a maximum likelihood estimation algorithm. We ensured that this procedure did 261	

not lead to biased results using simulations. We simulated Bayesian observers who 262	
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combined prior and likelihood information optimally. Simulated participants used the 263	

veridical prior standard deviation in the estimation task and used a prior standard 264	

deviation in the 2-Afc task which related to the veridical value by a factor of .5, 1, or 265	

2. We performed 1000 simulations per condition. Inferring the prior width from the 266	

behavioral data allowed us to examine generalization of the prior. 267	

 268	

RESULTS 269	

We asked if a learned prior distribution generalizes across tasks and thus 270	

consists of knowledge. To do so, we first had participants learn a prior in a 271	

sensorimotor estimation task where participants gave a continuous estimate of 272	

stimulus location under uncertainty. We then quantified use of the prior in a 2-Afc 273	

task where instead participants compared the locations of two hidden stimuli (Fig. 1). 274	

We used data from previous work (Acuna et al. 2015). We examined whether the data 275	

was consistent with use of the same or different priors across tasks and estimated the 276	

prior standard deviation parameters from the data of each task. 277	

In our tasks, participants judged the location of visual stimuli on screen. 278	

Stimuli were samples from a Gaussian prior distribution, 𝛮(𝜇, 𝜎"#) , which were 279	

hidden from view. Instead, participants were shown an uncertain visual cue in the 280	

form of n samples (n=4) from a Gaussian likelihood distribution, distributed around 281	

stimulus location, 𝛮(𝑠, 𝜎'#). When judging stimulus location, the Bayesian optimal 282	

strategy is to combine the likelihood and the learned prior according to their relative 283	

precision. Therefore, to examine participants’ use of probabilistic information, we 284	

manipulated the standard deviations of the prior and likelihood, 𝜎"#  and 𝜎'#  and 285	

quantified how much participants rely on the likelihood or prior to reach a decision 286	

(see Methods, Fig. 2). Our paradigm allowed us to examine integration of 287	

probabilistic information and to infer participants’ learned priors in the estimation and 288	

2-Afc tasks. 289	

 290	
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291	
Figure 2. Estimation and 2-Afc data. (A) Estimation data overlaid with linear fit for a representative 292	
participant. The net position as a function of the centroid of the likelihood is shown for each trial (black 293	
points). Each panel displays estimation data for one condition, with overlaid fitted (blue line) and 294	
optimal (red line) functions. An Estimation slope of 1 indicates complete reliance on the likelihood and 295	
an Estimation slope of 0 indicates complete reliance on the prior. (B) 2-Afc data for the representative 296	
participant in (A) with one panel per condition. Raw binary decision data (dark gray points, 297	
Decision=0, probe stimulus to the left; light gray points, Decision=1, probe stimulus to the right). The 298	
best fitting PSE (blue line) and optimal PSE (red line) are shown. The more negative the PSE slope, the 299	
narrower the prior. 300	

 301	

To examine use of probabilistic information in producing estimates, we first 302	

examined influence of the prior width and likelihood width on participants’ reliance 303	

on the likelihood or prior (Estimation slope, see Fig. 2 and Methods for details). We 304	

found that both prior width and likelihood width influence the Estimation slope 305	

(Repeated-measures ANOVA: main effect of prior width: p<.0001, F(1, 7) = 320.74; 306	

main effect of likelihood width, p<.0001, F(1, 7) = 140.67). Therefore, participants 307	

use the prior and likelihood widths to judge stimulus location. Therefore, it makes 308	

sense to describe participants’ sensorimotor estimates as Bayesian and to quantify the 309	

prior used during the task. 310	

We then examined use of probabilistic information in the 2-Afc task, with a 311	

measure of reliance on prior or likelihood in decision data, which we termed the PSE 312	

slope (see Fig. 2 and Methods for details). It was important to establish that 313	

participants could incorporate a prior into 2-Afc decisions, as shown by a negative 314	

PSE slope. We thus compared PSE slopes with 0 (Narrow prior: p < .05, one-sample, 315	

2-sided t-test, t(7) = 3.60, Wide prior: p < .05, one-sample, 2-sided t-test, t(7) = 3.28, 316	

Bonferroni-corrected p-values). As is shown by the significantly negative PSE slope 317	
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in both conditions, participants incorporate priors into 2-Afc decisions. There was a 318	

significant effect of prior width on PSE slope (p < .0001, paired, 2-sided t-test, t(14) = 319	

7.59). Thus, participants are influenced by the prior in their decisions and have a 320	

greater reliance on the prior in the Narrow-Prior condition. This is consistent with 321	

Bayesian computation, making it appropriate to quantify the prior used during the 322	

task.  323	

 324	
Figure 3. Estimation slope and PSE slope. (A) The median Estimation slope is shown as a 325	
function of Prior width and Likelihood width. Error bars display bootstrapped 95% 326	
confidence intervals (CI). The optimal slope values for each condition are shown by red 327	
diamonds. (B) The median PSE slope is shown as a function of Prior width. Error bars display 328	
95% CI. The optimal slope values for each condition are shown by red diamonds. 329	

 330	

Behavior in the two tasks is in accordance with the use of probabilistic 331	

information. This was shown by an influence of the uncertainty of the prior and 332	

likelihood on judgments in both tasks. However, it is possible that the priors used in 333	

the estimation and 2-Afc tasks are different. Such a difference would be in violation 334	

of standard Bayesian thought where the prior representation is considered as 335	

knowledge and hence, domain general and fully available for use across tasks. 336	

We then asked if the data supports task-dependent prior representations. If 337	

participants use the same prior to perform both tasks, prior width parameters 338	

estimated from one task’s data should predict the other task’s data well. The cross-339	

validated error between slopes across tasks (Across-task MSE, see Methods) should 340	

not exceed the cross-validated error within tasks (Within-task MSE). We found that 341	

the Across-task MSE exceeded the MSE computed within each task (p<.01, 342	

t(7)=3.35, Fig 4A). Simulations show that this analysis is unbiased and does not favor 343	
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this result (Fig 4A). This result suggests that participants use different priors in the 344	

different tasks. 345	

 346	
Figure 4. Comparison of priors in the Estimation and 2-Afc tasks (A) The MSE computed 347	
within tasks is shown as a function of the MSE computed across tasks. For each participant, 348	
the MSE across tasks exceeds the MSE within tasks. Therefore, the data is not consistent with 349	
use of the same prior. MSE for 1000 simulated participants (distribution in purple, color bar 350	
displays kernel density estimate) show that this analysis gives unbiased results. (B) For each 351	
participant, prior standard deviation inferred from the 2-Afc task data is shown as a function 352	
of the prior standard deviation inferred from the estimation task data. The median bootstrap is 353	
shown (error bar=95% CI). The dotted line shows the diagonal, for which prior width in the 354	
tasks are equal. (C) Prior parameters estimated from the data of 1000 simulated Bayesian 355	
observers in the Narrow-Prior condition (upper panel) and Wide-Prior condition (lower 356	
panel). Simulated participants use the theoretical prior in the estimation task and either the 357	
same prior standard deviation in the 2-Afc task (simulated prior ratio=1, the prior ratio being 358	
the ratio of the standard deviations in the 2-Afc and estimation tasks) or a different prior 359	
standard deviation in the 2-Afc task (simulated prior ratio= .5, or 2. The median inferred prior 360	
standard deviation is shown for the estimation task (orange) and the 2-Afc tasks (purple), 361	
shaded area= 2.5th-97.5th percentile.  Broken red lines show the veridical prior standard 362	
deviations. 363	
 364	

Having found that priors were different across tasks, we wanted to know how 365	

they were different. We, therefore, inferred the prior width (standard deviation) from 366	

the estimation and 2-Afc data from the Estimation slope and the PSE slope using 367	

bootstrapped parameter estimation. For each individual participant, the prior in the 2-368	

Afc task is wider than the prior in the estimation task in both the Narrow and Wide 369	

prior conditions (95% CI consistently above the diagonal in Fig. 4B). We show that 370	

our estimation of prior width is unbiased and that we can successfully infer prior 371	

width from simulated estimation and 2-Afc data (Fig. 4C). Regarding our hypothesis 372	

on the generalization of the learned prior from the estimation task to the 2-Afc task, 373	

this shows that the prior does not generalize fully. Therefore, our analysis supports 374	

policy representation rather than knowledge representation. 375	

 376	

DISCUSSION 377	
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We examined if a prior distribution learned during a sensorimotor estimation 378	

task generalized to a computationally-equivalent 2-Afc decision task. We showed that 379	

there was a difference in priors across tasks. The finding of a wider prior in the 2-Afc 380	

task shows that the prior did not generalize fully from the situation where participants 381	

provided a continuous estimate of location to different task where participants 382	

compared two object locations. This shows that sensorimotor priors are not 383	

knowledge, in the sense that they do not generalize fully across modalities. 384	

A caveat is that we assume that the brain uses maximum a-posteriori (MAP) to 385	

compute decisions. MAP is widely-used in the decision-making literature and is a 386	

plausible choice of mechanism since it maximizes reward in simple cases (Maloney 387	

2002; Mamassian et al. 2002). Other decision-making mechanisms include sampling 388	

from probability distributions and have been explored in previous work (Vul et al. 389	

2014; Acuna et al. 2015). While the choice of MAP may be reasonable in the case of 390	

unimodal Gaussian posterior distributions as in the current study, MAP is less adapted 391	

to cases of multimodal or broadly-distributed posteriors. Further work is needed to 392	

explore the decision rules that the brain uses. 393	

One implication of our finding is that priors cannot be assumed to generalize 394	

even when the difference between learning and testing conditions or tasks is subtle. 395	

For example, previous work investigating decision-making mechanisms quantifies the 396	

prior in an estimation task and measures the influence of the subjective prior in a 2-397	

Afc task (Acuna et al. 2015). The findings of this previous work therefore rest on the 398	

assumption that the prior is the same across tasks and the conclusions of this paper 399	

and others with the same assumption should be revisited. 400	

 Why are the priors different? The tasks may engage distinct neural systems, 401	

with the estimation task having a stronger sensorimotor component (‘Where is the 402	

object in relation to me?’), whereas the 2-Afc task is a perceptual task and concerns 403	

relationships between objects in the outside world (‘Where is one object in relation to 404	

another?’). Therefore, partly independent neural representations may lead to 405	

incomplete generalization across tasks (Aglioti et al. 1995; Knill 2005). In this view, 406	

partial generalization comes from partly distinct neural systems. 407	

Importantly, our finding is inconsistent with the view that the brain acquires 408	

fully generalizable knowledge, in the form of priors that can automatically be 409	

incorporated into behavior regardless of the task. While high-level conceptual 410	

representations may fit the definition of knowledge (Perfors et al. 2011; Tenenbaum 411	
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et al. 2011; Battaglia et al. 2013), our findings show that learning in a sensorimotor 412	

task has a strong policy component, with a prior being partly confined to the task 413	

where it was learned. In naturalistic situations, the use of policies may be functionally 414	

beneficial, allowing for learning to be optimized for the task at hand. 415	

Knowledge and policies are often evoked to explain behavior (Tenenbaum et 416	

al. 2011; Haith and Krakauer 2013). However, they are seldom pitted against each 417	

other as they originate from distinct theoretical frameworks. A more common 418	

dichotomy is that of procedural and declarative knowledge, which describes 419	

knowledge of how to perform some action and knowledge of concepts, respectively, 420	

or ‘knowing how and knowing that’ (Ryle 1945; Winograd 1975; Squire 421	

2004).  While these resemble the concepts of knowledge and policy, the declarative-422	

procedural dichotomy does not have the same implications for generalization. 423	

Declarative knowledge is by definition generalizable, while procedural knowledge 424	

can generalize strongly or not, that is, can be consistent with knowledge or policy. 425	

Therefore, these dichotomies do not completely overlap with one another. A second 426	

common dichotomy is that of model-based and model-free behavior (Sutton and Barto 427	

1998; Daw and Doya 2006; Doll et al. 2012). Model-based behavior leverages a 428	

model of a situation to attain a goal, while model-free behavior involves repetition of 429	

previously successful actions. When applied to our paradigm, one could conclude that 430	

the more optimal prior use in the estimation task is based on a better model of how 431	

stimuli were generated and that deviations from this in the 2-Afc task imply weaker 432	

use of a model. Our findings, however, do not support pure model-based or model-433	

free behavior in either task and our experiment and findings are more amenable to a 434	

probabilistic treatment and quantification of priors. Discussion of findings in light of 435	

different approaches and frameworks is helpful and will be necessary to build a more 436	

unified theory of the brain’s function. 437	

These results are compatible with a learning framework, rather than a high-438	

level Bayesian view of the brain’s computations, where one set of priors (knowledge) 439	

is used for different output behaviors. Multi-layer neural networks provide a flexible 440	

way of modeling diverse kinds of behavior based on function optimization (LeCun et 441	

al. 2015; Marblestone et al. 2016). Within a broader network, sub-networks that 442	

implement specialized learning could produce patterns of generalization or non-443	

generalization across conditions and tasks. Importantly, a system that learns by 444	

gradient descent will approximate Bayesian behavior without explicitly implementing 445	
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Bayesian computations (Weisswange et al. 2011; Mandt et al. 2017), simply because 446	

it is the optimal strategy for estimation under uncertainty. Our finding thus casts 447	

doubt on the view that Bayesian computation is at the core of the neural code (Zemel 448	

et al. 1998; Ma et al. 2008). 449	

 450	
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