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Abstract 23 

Public health agencies are increasingly relying on genomics during Legionnaires’ disease investigations. 24 

However, the causative bacterium (Legionella pneumophila) has an unusual population structure with 25 

extreme temporal and spatial genome sequence conservation. Furthermore, Legionnaires’ disease 26 

outbreaks can be caused by multiple L. pneumophila genotypes in a single source. These factors can 27 

confound cluster identification using standard phylogenomic methods. Here, we show that a statistical 28 

learning approach based on  29 

L. pneumophila core genome single nucleotide polymorphism (SNP) comparisons eliminates ambiguity for 30 

defining outbreak clusters and accurately predicts exposure sources for clinical cases.  We illustrate the 31 

performance of our method by genome comparisons of 234 L. pneumophila isolates obtained from patients 32 

and cooling towers in Melbourne, Australia between 1994 and 2014. This collection included one of the 33 

largest reported Legionnaires’ disease outbreaks, involving 125 cases at an aquarium. Using only sequence 34 

data from L. pneumophila cooling tower isolates and including all core genome variation, we built a 35 

multivariate model using discriminant analysis of principal components (DAPC) to find cooling tower-36 

specific genomic signatures, and then used it to predict the origin of clinical isolates. Model assignments 37 

were 93% congruent with epidemiological data, including the aquarium Legionnaires’ outbreak and three 38 

other unrelated outbreak investigations.  We applied the same approach to a recently described 39 

investigation of Legionnaires’ disease within a UK hospital and observed model predictive ability of 86%. 40 

We have developed a promising means to breach L. pneumophila genetic diversity extremes and provide 41 

objective source attribution data for outbreak investigations.  42 

 43 

Importance 44 

Microbial outbreak investigations are moving to a paradigm where whole genome sequencing and 45 

phylogenetic trees are used to support epidemiological investigations. It’s critical that outbreak source 46 

predictions are accurate, particularly for pathogens like Legionella pneumophila, which can spread widely 47 

and rapidly via cooling system aerosols causing Legionnaires’ disease. Here, by studying hundreds of 48 

Legionella pneumophila genomes collected over 21 years around a major Australian city, we uncovered 49 

limitations with the phylogenetic approach that could lead to misidentification of outbreak sources. We 50 

implement instead a statistical learning technique that eliminates the ambiguity of inferring disease 51 

transmission from phylogenies. Our approach takes geolocation information and core genome variation 52 

from environmental L. pneumophila isolates to build statistical models that predict with high confidence 53 

the environmental source of clinical L. pneumophila during disease outbreaks. We show the versatility of 54 

the technique by applying it to unrelated Legionnaires’ disease outbreaks in Australia and the UK.  55 
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 56 

Introduction 57 

Legionellae are Gram-negative bacteria that replicate within free-living aquatic amoebae and are present in 58 

aquatic environments worldwide. These bacteria can proliferate in man-made water systems and cause 59 

large outbreaks of pneumonia known as Legionnaires’ disease when contaminated water is aerosolized and 60 

inhaled (1). The majority of human infections are caused by Legionella pneumophila serogroup 1 (2). Public 61 

health investigations of Legionnaires’ disease outbreaks are typically supported by molecular typing 62 

methods to establish the likely source of the bacteria and the extent of the outbreak. Investigations usually 63 

proceed with the assumption that a single Legionella genotype is responsible for an environmental point 64 

source reservoir (3). Traditional molecular typing methods described for fingerprinting Legionellae include 65 

pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) (4). Increasingly, whole genome 66 

sequencing (WGS) is being employed to investigate individual Legionella outbreaks and the insights 67 

obtained from these high-resolution comparisons are challenging our expectations regarding common-68 

source outbreaks, which usually are characterized by a single strain or genotype (5-9). It is becoming 69 

evident that outbreaks can be caused by multiple co-circulating L. pneumophila genotypes (5, 10) and that 70 

L. pneumophila core genomes can be surprisingly conserved across space and time (8, 11-13). 71 

 72 

Melbourne is in the state of Victoria and it is the second largest city in Australia with a population 73 

approaching five million inhabitants, and considered the ninth largest city in the Southern Hemisphere. 74 

Legionellosis has been a notifiable disease in Victoria since 1979 and there are 50-100 cases reported each 75 

year, most occurring in the greater metropolitan region of Melbourne (14). The Microbiological Diagnostic 76 

Unit Public Health Laboratory (MDU PHL) is Victoria’s State Reference Laboratory for the characterization 77 

and typing of Legionella spp. The laboratory’s collection includes isolates from a particularly noteworthy 78 

outbreak at the Melbourne Aquarium in April 2000. This was the largest single episode of Legionellosis 79 

reported in Australia (15), approximately three months after the aquarium was opened to visitors, with 80 

construction of the site completed in December 1999. It resulted in 125 confirmed cases, with positive 81 

cultures obtained from 11 patients. Our isolate collection also spanned 28 other potential legionellosis 82 

outbreaks or infection clusters, for which at least one culture isolate had been obtained. 83 

 84 

In this study, we used comparative genomics to explore the population structure of 234 Legionella 85 

pneumophila isolates recovered from human and environmental sources submitted to the MDU PHL in 86 

Melbourne over a 21-year period. This collection included 11 clinical and 14 environmental isolates from 87 

the Aquarium outbreak and 42 clinical and 50 environmental isolates from 28 other likely point source case 88 
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clusters. We also assessed genomic data from a recently described investigation of Legionnaires’ cases at a 89 

UK hospital (8). The aim of this project was to develop a robust genomic approach that would surmount the 90 

unusual population structure of  91 

L. pneumophila and assist identification of case clusters and source tracking efforts during Legionnaires’ 92 

disease outbreak investigations.  93 

 94 

Results 95 

Isolates and epidemiology. There were 234 Legionella pneumophila serogroup 1 (Lpn-SG 1) isolates 96 

obtained across a 21-year period between 1994 and 2014. Initial MLST analysis indicated that 180 isolates 97 

(77%) belonged to ST30. The collection comprised 180 clinical isolates of respiratory origin (sputum or 98 

bronchoscopy specimens) and 64 environmental isolates recovered from cooling tower water samples. All 99 

isolates were collected in the state of Victoria with the exception of six isolates from patients who were 100 

exposed elsewhere. Further information for each isolate is available in Table S1, including NCBI SRA 101 

accession numbers. One hundred and ten of the 234 isolates were epidemiologically associated with 29 102 

formally investigated case clusters or outbreaks, designated as outbreaks A-AC (Table S1). The majority of 103 

these cases occurred within a 42 km radius of Melbourne city center and over a 16-year period. Outbreak 104 

A, the Melbourne Aquarium outbreak, was the largest (15).  105 

 106 

Complete genome sequence of Legionella pneumophila serogroup 1 isolate Lpm7613. Before this study, 107 

there were no closed, fully assembled ST30 L. pneumophila genomes. Thus, to ensure identification of 108 

maximum genetic variation among this dominant ST in our collection, we first established a ST30 reference 109 

genome sequence, selecting a clinical isolate from the Melbourne Aquarium outbreak (Lpm7613). The 110 

finished genome consisted of a single circular 3,261,562 bp chromosome (38.3% GC) and a 129,875 bp 111 

circular plasmid (pLpm7613) (Fig. S1). Although the chromosome indicated this genome belonged to the 112 

same lineage as L. pneumophila Philadelphia (Fig. 1A), the plasmid shared 100% nucleotide identity with 113 

pLPP reported in L. pneumophila Paris, but 2kb shorter in length (16). A total of 2,891 chromosomal 114 

protein-coding sequences (CDS), 43 tRNA genes and nine rRNA loci were predicted using Prokka (17). 115 

CRISPR-Cas regions were not detected (18).  116 

 117 

Assessment of L. pneumophila population structure. Sequence reads from the other 233 genomes and the 118 

ten selected publicly available completed genomes were mapped to the chromosome of reference strain 119 

Lpm7613. Approximately 90% of the Lpm7613 genome was present in all genomes (i.e., core), with 188,049 120 
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variable core nucleotide positions identified. Population structure analyses using an unsupervised Bayesian 121 

clustering approach revealed six distinct groups (BAPS groups) (Fig. 1A). Comparison of intra- and inter-122 

BAPS group pairwise SNP distances confirmed the validity of these clusters and highlighted the extensive 123 

genetic variation among this Lpn-SG1 population (Fig. 1C). The exceptions were BAPS groups 3 and 4, which 124 

classified isolates across two clades, and is likely explained by recombination. Most striking, however, was 125 

the lack of diversity within the 186 genomes comprising BAPS group 5 (hereafter referred to as BAPS-5), 126 

with a median core SNP distance of only 5 SNPs (IQR 3 – 7). Isolates dispersed across time and space 127 

(including isolates from England, New South Wales, South Australia and Tasmania) were scattered 128 

throughout the entire phylogeny. All 180 ST30 isolates were encompassed by BAPS-5, as was ST37 L. 129 

pneumophila Philadelphia (Philadelphia, USA), ST211 L. pneumophila ATCC 43290 (Denver, USA) and ST733 130 

L. pneumophila Thunder Bay (Ontario, Canada) (Fig. 1A,B). The median inter-BAPS group distances ranged 131 

between 27,506 to 63,136 SNPs (Fig. 1C), highlighting that there is also substantial genetic diversity among 132 

Lpn-SG1 isolates circulating in Melbourne.  133 

 134 

A rooted maximum likelihood phylogeny of the population was then inferred using the 181,633 non-135 

recombining core SNP loci. The phylogenomic tree reflected the BAPS clusters with BAPS-5 forming a 136 

distinct, well-supported lineage (Fig. 1A). The separation of the three North American reference isolates 137 

from the Melbourne ST30 isolates is suggestive of contemporaneous global dispersal of this BAPS-5 lineage 138 

(Fig. 1A,B). All BAPS groups displayed monophyletic origins with the exception of BAPS-3 and BAPS-4. BAPS-139 

3 had a single isolate of paraphyletic origin that shared a most recent common ancestor (MRCA) with BAPS-140 

2 while BAPS-4 contained two paraphyletic sub-clades, one of which shared a MRCA with the majority of 141 

BAPS-3 isolates.  142 

 143 

Impact of recombination. Recombination is a driving force in the evolution of the Legionellae (5, 7, 19-22). 144 

Therefore, to further understand the structure and evolution of this Lpn-SG1 population we assessed the 145 

impact of DNA exchange. There was evidence of extensive recombination among isolates across BAPS 146 

groups 1-4, and 6 with approximately 3% of variable nucleotide sites impacted relative to the Lpm7613 147 

reference chromosome. The detection of two paraphyletic groups (BAPS-3 and BAPS-4) is likely explained 148 

by ancestral recombination among the component sub-clades. In comparison, there was little 149 

recombination evident among BAPS-5 isolates (Fig. S2), in accord with the core SNP phylogeny described 150 

above, and suggesting the relatively recent emergence of this L. pneumophila lineage. After removal of 151 

putative sequences affected by recombination, tree branch lengths showed no correlation with isolation 152 

dates (r2=0.116). This observation indicates that nucleotide substitutions in the population have not been 153 
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evolving under a molecular clock model, thus limiting estimates for dates of emergence for particular 154 

lineages. 155 

 156 

Genomic molecular epidemiology of local outbreaks. We next compared only the 180 ST30 genomes to 157 

our Lpm7613 reference genome, and again confirmed the very restricted genomic diversity within this 158 

lineage (median core SNP distance was 6 SNPs (IQR 4 – 9), with five outlier genomes, impacted by 159 

recombination. (Fig. 1B,C Fig. S2). Within this reconstructed core-genome ST30-specific phylogeny, many 160 

but not all epidemiologically-related isolates formed distinct, well-supported, monophyletic clades. In some 161 

instances, epidemiologically-associated isolates spanned multiple clades (outbreaks A, B, C, D and K) (Fig. 162 

1B). In addition, Outbreak A (the Melbourne aquarium outbreak), which was previously considered to 163 

represent infections caused by a single clone (Table S1) (15), actually contained five distinct genotypes (A1- 164 

A5) (Fig 1B,C).  165 

 166 

The analysis of environmental surveillance isolates provided an ideal means to gain insights into the 167 

diversity within potential reservoirs of Lpn-SG1 - diversity that might enable prospective source tracking. A 168 

phylogeographic analysis was therefore undertaken to assess the relationship between 64 environmental 169 

Melbourne metropolitan isolates against their 11 cooling tower sampling locations. Based on variation in 170 

core SNPs, striking geographical structure was observed, with the majority of isolates from common cooling 171 

towers tightly clustering in the phylogeny (Fig. 2A). Comparisons of pairwise core SNPs depicted smaller 172 

within group diversity and larger between location group diversity, further indicating the existence of 173 

geographical population structure (Fig. 2B). This structure among the environmental Lpn-SG1 isolates 174 

suggested it might be possible to use the genome data to build models predictive of environmental source 175 

to assist epidemiological efforts during outbreak investigations. 176 

 177 

A multivariate statistical model for source attribution. To enhance resolution and try to detect outbreak-178 

specific genomic signals, a supervised statistical learning approach called Discriminant Analysis of Principal 179 

Components (DAPC) (23) was employed. DAPC is a linear discriminant analysis (LDA) that accommodates 180 

discrete genetic-based predictors by first transforming the genetic data into continuous Principal 181 

Components (PC) and building predictive classification models. The PCs are used to build discriminant 182 

functions (DF) under the constraint that they must minimize within group variance, and maximize variance 183 

between groups. Infection clusters were defined a priori from the epidemiological findings, and training 184 

(environmental) isolates were used to establish the discriminant functions. The model was then be used to 185 

estimate the posterior probability of membership for an unknown (e.g. clinical) isolate for each pre-186 
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specified infection cluster given the training data. Here, we used 43 of the 64 environmental isolates in the 187 

training set (cooling tower isolates originating from epidemiologically defined infection clusters that 188 

possessed at least one environmental and clinical representative), under the assumption that each 189 

outbreak was caused by exposure to a point source of Lpn-SG1. We used core genome SNPs from only 190 

environmental Lpn-SG1 genomes to build the classifier (24).  191 

 192 

Outbreak-associated environmental Lpn-SG1 were grouped a priori into training set groups based on the 193 

origin of the cooling towers from which they were isolated (see model building details in methods). The DFs 194 

were then used to classify 15 clinical isolates that had been independently assigned based on 195 

epidemiological data to the training set groups, hereon referred to as the validation genomes (Table S1). 196 

The input matrix for DAPC was an alignment of 714 non-recombinogenic SNPs variable among the 43 197 

environmental genomes. Plots depicting the separation of isolates according to the first two discriminant 198 

functions and the amount of variation explained is shown (Fig. 3). A model was trained using the first four 199 

principal components (PC), as this was found to be optimal (see methods). We next classified our clinical 200 

validation genomes using the model and found a 93% match between our model’s assignment and that 201 

proposed by the epidemiological data (Fig. 4A,B). These data show that despite the high level of genome 202 

conservation and the presence of multiple genotypes within a single environmental source, it is possible to 203 

utilize signature differences in core genome SNPs to build predictive probabilistic classification models. The 204 

single discrepancy between model predictions and epidemiological groupings was an infection cluster C 205 

genome that was predicted as originating from the Melbourne Aquarium. Interestingly, cluster C was 206 

located closest to the Melbourne Aquarium at a distance of approximately 500 metres. Given the proximity 207 

of clusters A and C, these data may indicate cooling towers were seeded from a common L. pneumophila 208 

source. In order to appraise the utility of this method beyond a large urban setting and the ST30 genotype, 209 

we built a sister model using 31 ST1 environmental L. pneumophila genomes from a previously published 210 

hospital investigation in Essex, UK, and used it to predict the origins of seven nosocomial clinical isolates 211 

(Fig. 3A, Table S1) (8). Here, the model was trained using an alignment of 59 non-recombinogenic SNPs 212 

among the 31 environmental genomes and retaining the first 15 PCs, as this was found to be optimal. As 213 

with the Melbourne disease clusters, the model performed very well. For 86% of the clinical isolates there 214 

was a match between the model’s ward assignment and the origin suggested by epidemiology (Fig. 4A,B). 215 

Again, a single discrepancy occurred with a ward G genome predicted to originate from ward A. Wards A 216 

and G were co-located on the same corner and level of a common building, again suggesting a common L. 217 

pneumophila source (8). As before, isolates from a common source would be miss-assigned by the model, 218 

owing to the lack of location-specific genomic variants.  219 

 220 
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Core genome multilocus sequence typing (cgMLST) has reduced discrimination. In order to evaluate the 221 

utility of the recently described cgMLST scheme for source tracking (25, 26), we trained new DAPC models 222 

for both the Melbourne and Essex hospital datasets using a matrix of allelic integers derived from SNP 223 

profiles of the 1,529 cgMLST loci (Fig. 3B). When using the first one and seven PCs, we observed only 60% 224 

and 71% concordance between our model’s assignment and that predicted by the epidemiological data for 225 

the Melbourne and Essex hospital datasets, respectively (Fig. 4A,C).  226 

 227 

Discussion 228 

In this study, we have retrospectively examined a large collection of 234 clinical and environmental isolates 229 

Lpn-SG1 isolates spanning 29 defined outbreaks. Isolates were collected over wide temporal and spatial 230 

scales and detailed genomic comparisons revealed wide extremes Lpn-SG1 genetic diversity among distinct 231 

genomic populations; a phenomenon not fully appreciated from previous genomic investigations that have 232 

sampled less extensively and focused on single outbreaks (5, 6, 27). Most striking in our collection was the 233 

high sequence conservation and dominance of a single genotype (BAPS-5, ST30), shared by 77% of isolates 234 

with a median core SNP distance of only 5 SNPs across 21 years. In agreement with our findings, two recent 235 

population genomic investigations of Lpn-SG1 also describe the unusual restriction in core genome diversity 236 

(8, 12).  237 

 238 

Based on our previous experience with other bacterial pathogens (28) and reports in the literature of 239 

Legionnaires’ disease outbreak investigations using genomics (27, 29) - we expected to be able to use Lpn-240 

SG1 genomic comparisons and develop genetic rule-in or rule-out criteria to guide outbreak assessment 241 

and source attribution. For example, we recently proposed a ‘traffic-light’ system for Listeria 242 

monocytogenes based on SNP difference cutoffs of ‘likely related’, ‘possibly-related’ and ‘not-related’ (28). 243 

This approach has also been proposed for L. pneumophila (25). A comparison of genotyping approaches 244 

using 335 Lpn isolates, including 106 from the European Society for Clinical Microbiology Study Group’s 245 

Legionella Typing Panel, proposed an escalating, hierarchical approach to genotyping, beginning with an 246 

extended 50-gene MLST scheme up to a 1529-gene cgMLST (25, 26).  247 

 248 

The analysis of the population structure of Lpn-SG1 presented here indicates that SNP-based typing with 249 

threshold cut-offs, whether they are based on seven genes, 50 genes, 1500 genes or whole genomes will 250 

not necessarily provide sufficient discriminative power. These genotyping approaches will be confounded 251 

by the presence of (i) indistinguishable Lpn-SG1 genotypes present in unrelated cases and (ii) polyclonal 252 
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outbreaks. Our retrospective analysis of the Melbourne Aquarium outbreak illustrates clearly both these 253 

issues, where five distinct subtypes were recovered from 25 clinical and environmental isolates (Fig. 1B). 254 

There is a growing awareness of single source, polyphyletic Lpn-SG1 outbreaks (8, 10, 13, 30, 31). These 255 

data all point to the need for a different approach in order to use molecular epidemiology and genomics in 256 

support of Legionella outbreak investigations. 257 

 258 

We address this issue by exploiting all core genome information to train probabilistic classification models. 259 

Our DAPC analysis demonstrates that it is possible to build predictive models based on Lpn-SG1 260 

environmentally derived genomes that help in identifying the source of clinical isolates during complex 261 

outbreak investigations in both the community and hospital environments (Fig. 4). By including all core SNP 262 

variation, DAPC was able to identify outbreak-specific genotypes, even when the source of the outbreak 263 

was polyclonal. This enabled us to build robust models that assigned validation set genomes, with known 264 

provenance, back to their original groupings with high concordance. The fact that this model was built 265 

purely from environmental surveillance isolates demonstrates that such approaches can be developed 266 

prospectively and be preexisting, ready to deploy at the onset of outbreaks. 267 

 268 

In contrast to the high performance of the DAPC model developed from core genome SNPs, the model built 269 

using variants identified by cgMLST scheme had a lower matching rate when assigning validation genomes 270 

back to their putative epidemiological groupings (Fig. 4C). Despite cgMLST being a useful tool for broad 271 

Lpn-SG1 population structure assessment, our analysis suggests it may have insufficient resolution and thus 272 

predictive capacity for outbreak investigations.  273 

 274 

The DAPC approach however, while promising, does not permit discrimination among isolates that do not 275 

belong to defined clusters. This is because the model assumes that the world is composed of only the k 276 

groups used to train it, and therefore assigns unknown isolates to one of these groups, even if the isolate is 277 

known not to be part of any of the groups. One way to address this issue would be to create a single group 278 

classifier, which is trained with environmental samples. Isolates with low probability of membership to this 279 

single large group would then be excluded before being analyzed with the multi-group model.  Future 280 

models could be further improved by adding epidemiological evidence (e.g. patient zip codes), and assess 281 

how that improves our assignment of a clinical isolate to a particular location. An advantage of a 282 

classification-based model is that its output could be distilled down to a zip code (or group of zip codes) and 283 

a probability that a clinical isolate is associated with the zip code (indicating uncertainty about the 284 

classification). This would obviate the need to interpret, and explain phylogenetic trees. Interpreting trees 285 
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is often not intuitive and trees may fail to communicate what action is required from a public health 286 

perspective. Crucial for such a classification approach to work however, is an extensive and temporally 287 

dynamic database of environmental Lpn-SG1 genotypes. That is, there would need to be ongoing 288 

surveillance and isolation of Lpn-SG1 from environmental sources. We are currently investigating how to 289 

implement such models. 290 

 291 

The modeling approach, is not intended to be used in isolation, but rather employed as an adjunct to 292 

traditional epidemiological investigations. In this way, insights gained through epidemiological 293 

investigations can be informed by microbiological evidence from our predictive models. A limitation of our 294 

current models are the relatively small sample sizes. Performance measures for validation sets this small 295 

are often sensitive to slight perturbations in the data and may be influenced by small features of the data. 296 

However, as a proof-of-concept implementation of our approach, we have built two models from 297 

independent datasets, and both demonstrate high predictive capacity. More robust appraisals of model 298 

performance will require validation with larger datasets, collected prospectively. 299 

 300 

From a biological perspective, the lack of genetic diversity in Lpn-SG1 over such coarse temporal and spatial 301 

scales is potentially explained by a reservoir of latent-state bacteria intermittently seeding warm water 302 

sources in the greater Melbourne region and is supported by the frequently-reported and widespread 303 

presence of Legionella species in drinking water supply systems (DWSS) (32-34). Independent studies 304 

propose similar hypotheses to explain the surprisingly high sequence conservation among some L. 305 

pneumophila genomes (8, 12).   306 

 307 

This study is, to our knowledge, the largest genomic investigation of environmental and clinical Legionella 308 

reported to date from a single jurisdiction and confirms that Lpn-SG1 is an unusual ‘edge case’ in the 309 

application of genomics in public health microbiology. In the absence of a deep understanding of local L. 310 

pneumophila population structure (both clinical and environmental) the combination of extreme genomic 311 

monomorphism combined with outbreaks caused by mixed pathogen populations could easily lead to 312 

erroneous conclusions regarding source attribution. Thus, we require new approaches that can better 313 

utilize the genomic information available, and harmoniously combine it with epidemiological evidence, in 314 

order to provide public health officials with useful and timely information. 315 

 316 

Materials and Methods 317 
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Bacterial strains, growth conditions, case definitions. Legionella pneumophila serogroup 1 isolates were 318 

resuscitated from -80°C storage and assessed. Duplicate isolates from the same patient were excluded 319 

from the study. Isolates were cultured for 48-72 h at 37°C on BCYE agar and re-confirmed serogroup 1 by 320 

latex agglutination (Oxoid). Metadata collected on all isolates included year of isolation and country or city 321 

of isolation. Cases resident in the state of Victoria, Australia, were assessed by the Victorian State 322 

Government public health unit in accordance with national guidelines and an outbreak investigation was 323 

initiated when common exposures were reported by different cases whose onset dates occurred within a 324 

two-week window. (http://www.health.gov.au/internet/main/publishing.nsf/content/cdna-song-325 

legionella.htm, accessed 31 August 2015). In this manner, we were able to determine the human cases 326 

epidemiologically linked to each other. Many of the outbreaks/infection clusters contained a greater 327 

number of cases than there were isolates as the diagnosis of Legionellosis was made by culture-328 

independent methods. Complete, closed genomes of L. pneumophila that were publicly available were 329 

obtained from GenBank for inclusion in the analysis (Table S1).  330 

 331 

Sequence based typing. This was performed as previously described according to the European 332 

Legionnaires’ Disease Surveillance Network (ELDSNet) method 333 

(http://bioinformatics.phe.org.uk/legionella/legionella_sbt/php/sbt_homepage.php, accessed 31 August 334 

2015) (35). 335 

 336 

DNA sequencing. DNA libraries were prepared using the NexteraXT DNA preparation kit (Illumina) and 337 

whole genome sequencing was performed on the NextSeq platform (Illumina) with 2x150 bp chemistry. For 338 

single molecule real-time (SMRT) sequencing (Pacific Biosciences), genomic DNA was extracted from 339 

agarose plugs using the CDC Pulsenet Protocol to allow for recovery of high molecular weight, intact DNA 340 

(http://www.cdc.gov/pulsenet/pathogens, accessed 31 August 2015). Size-selected 10kb DNA libraries 341 

were prepared according to manufacturers’ instructions and sequenced on the RS II platform (Pacific 342 

Biosciences) using P6-C4 chemistry. All sequence reads and the completed genome are available (GenBank 343 

BioProject ID: PRJEB13594)  344 

 345 

Legionella pneumophila serogroup 1 isolate Lpm7613 assembly and closure. A high quality finished ST 30 346 

reference genome was established for L. pneumophila serogroup 1 clinical isolate Lpm7613 using the 347 

SMRT® Analysis System v2.3.0.140936 (Pacific Biosciences). Raw sequence data were de novo assembled 348 

using the HGAP v3 protocol with a genome size of 4 Mb. Polished contigs were error corrected using Quiver 349 

v1. The resulting assembly was then checked using BridgeMapper v1 in the SMRT® Analysis System, and the 350 
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consensus sequence corrected with short-read Illumina data, using the program Snippy 351 

(https://github.com/tseemann/snippy). Whole genome annotation was performed using Prokka (17), 352 

preferentially using the L. pneumophila Paris strain annotation (16). BRIG was used to visualize BLASTn 353 

DNA:DNA comparisons of L. pneumophila Lpm7613 against other L. pneumophila genomes (36). 354 

Nomenclature of the genomic islands demonstrated in L. pneumophila Lpm7613 was based on previously 355 

described islands (37). CRISPR databases were used to search for CRISPR sequences 356 

(http://crispi.genouest.org and http://crispr.u-psud.fr/Server/, accessed 14 February 2016). 357 

 358 

Variant detection and phylogenetic analysis. The genomes of ten publicly available complete L. 359 

pneumophila genomes (Table S1) were shredded to generate short in silico sequence reads of 250bp and all 360 

244 L. pneumophila reads sets were mapped against the Lpm7613 reference genome using Snippy v3.2. An 361 

alignment file from pairwise comparisons of core genome SNPs (with inferred recombining sites removed) 362 

was used as input to FastTree v2.1.8 with double precision (38) to infer a maximum likelihood phylogenetic 363 

tree using the general time reversible model of nucleotide substitution. Branch support was estimated 364 

using 1,000 bootstrap replicates. Resulting trees were visualized in FigTree v1.4.2 365 

(http://tree.bio.ed.ac.uk/software/figtree/). Single nucleotide polymorphism (SNP) differences between 366 

isolates were tabulated and visualized using a custom R-script (https://github.com/MDU-367 

PHL/pairwise_snp_differences). The core genome SNPs were also used as the input into a Bayesian analysis 368 

of population structure (BAPS) using iterative clustering to a depth of 10 levels and a pre-specified 369 

maximum of 20 clusters (39).  370 

 371 

Recombination and molecular clock analysis. Recombination detection was performed using 372 

ClonalFrameML (40), taking as input a full genome alignment (included invariant sites) prepared using 373 

Snippy as above and the ML phylogeny as a guide tree with polytomies removed from the FastTree tree 374 

using a custom python script (https://github.com/kwongj/nw_multi2bifurcation). Results were visualized 375 

using a custom Python script to render separate and superposable images of extant and ancestral inferred 376 

recombination regions (https://github.com/kwongj/cfml-maskrc). Molecular clock-likeness of the ML tree 377 

with ClonalFrameML-adjusted branch lengths was assessed using TempEst v1.5 378 

(http://tree.bio.ed.ac.uk/software/tempest/). 379 

 380 

Phylogeographic analysis. Variant detection for the 64 environmental genomes was undertaken by running 381 

snippy-core. Core SNPs were used to reconstruct a phylogenomic tree with FastTree that was overlaid upon 382 

a base map in GenGIS (41). Victorian population mesh data was downloaded from the Australia Bureau of 383 
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Statistics webpage 384 

(http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.001July%202016?OpenDocument) 385 

and Local Government Area data was downloaded from the Victorian Government Data Directory webpage 386 

(https://www.data.vic.gov.au/data/dataset/lga-geographical-profiles-2014-beta/resource/f6c49074-0679-387 

4c79-a0db-04dac8eda364). 388 

 389 

DAPC model building using core SNPs. Discriminant analysis of principal components (DAPC) is a 390 

multivariate method that tries to reconstruct hypothesized subdivisions in a given population (typically 391 

formed from demographic or phenotypic information) using genomic data (42). DAPC was implemented in 392 

the R package adegenet v2.0.1 (42). For input, we used a matrix of single nucleotide polymorphisms (SNP) 393 

for all genomes originating from infection clusters that possessed at least one environmental and clinical 394 

representative (Table S1). SNP detection was undertaken by running Snippy and sites that were 395 

recombinogenic and or invariant among the environmental genomes were discarded. An input SNP matrix 396 

of exclusively environmental isolates (hereon referred to as the training set) was used to develop a DAPC 397 

model. The training set subdivisions were based on the geographic origin of the environmental isolates 398 

(Table S1) (23). The resultant model was then tested using clinical isolates (hereon referred to as the 399 

validation set). The ability of the model to predict the environmental source of the validation set genomes 400 

was simulated across the first to the 20th principal components, allowing an optimal number of principal 401 

components to be identified. The optimized model was then used to predict the environmental origin of 402 

the clinical isolate genomes. 403 

 404 

DAPC model building using cgMLST variation. In order to detect variants within the recently described 405 

cgMLST regions, reads were mapped to the Lp_Philadelphia chromosome (NC_002942.5) using snippy. SNP 406 

profiles from within the cgMLST regions were reduced to allelic integers, with all genes containing zero 407 

coverage or uncertain base-calls, excluded. Allelic integers were concatenated into a matrix and, using the 408 

same DAPC model-building method as mentioned above, models were established using the training set 409 

environmental genomes and used to predict the origin of the validation set clinical isolate genomes.  410 

 411 
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Figures 535 

 536 

Fig. 1: Global Legionella pneumophila population clustering, phylogenomics and genomic molecular 537 

epidemiology of local outbreaks.  (A) Core genome phylogeny estimated using maximum likelihood 538 

corresponds with six BAPS groups. Branches with less than 70% bootstrap support were collapsed and scale 539 

indicates the number of core SNPs. The locations of the ten international genomes are labeled. (B) ST30 540 
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core genome phylogeny. Tree tips are labeled with outbreak codes. Environmental and clinical isolates are 541 

colored according to the key. Polyclonal outbreaks/case clusters are highlighted with blue boxes. Branch 542 

lengths have been transformed and are proportional to the number of nodes under each parent node. (C) 543 

Core genome pairwise SNP comparisons of within and between BAPS groups. All groups had smaller within 544 

group diversity compared to comparisons between groups. 545 

  546 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/133033doi: bioRxiv preprint 

https://doi.org/10.1101/133033
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 20

 547 

Fig. 2: Phylogeography of 64 Lpn-SG1 environmental isolate genomes. (A) Map of the greater Melbourne 548 

area, showing the location of the 11 cooling towers assessed during Legionellosis outbreaks, designated by 549 

colored circles. ‘A’ (light blue) represents the location Melbourne aquarium outbreak and is close to the 550 

centre of Melbourne. Inset shows the location of Melbourne (red circle) within the State of Victoria in 551 

south east Australia. Overall the phylogeny aligns closely with the geography of originating cooling towers. 552 

For several outbreak codes polyclonality is apparent, as some common origins have connecting lines drawn 553 

from different sub-clades of the phylogeny. Red coloration on the base map represents population density 554 

within the greater Melbourne region. The branch lengths of the trees have been transformed and are 555 

proportional to the number of nodes under each parent node. (B)  Core genome pairwise SNP comparisons 556 
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of within, and between, cooling tower isolate groups. Comparisons of specific epidemiologically defined 557 

groups (infection clusters) are indicated with color codes as defined in the key. All groups had smaller 558 

within diversity than between group diversity. 559 

  560 
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 561 

 562 

 563 

Fig. 3. Scatterplots resulting from discriminant analysis of principal components (DAPC). (A): Core genome 564 

single nucleotide polymorphisms (SNP) based models of the Melbourne (top left) and Essex (top right) 565 

datasets and; (B): core genome MLST (cgMLST) based models of the Melbourne (bottom left) and Essex 566 

(bottom right) datasets. The membership of each point within an epidemiologically defined cluster (e.g. “A” 567 

is the Melbourne Aquarium outbreak) is indicated by the colored circles and the corresponding letters 568 

labeled within squares. The amount of variation explained by the first and second discriminant functions 569 

are specified on the axes of each plot. 570 

 571 

 572 

  573 
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 574 

 575 

Fig. 4: Discriminatory analysis of principal components (DAPC) modeling of Lpn-SG1 genomic data. (A) 576 

Model comparison plots depicting the percentage of matches between the predicted and epidemiologically 577 

determined groupings of the validation set genomes across a range of 1-20 principal components for single 578 

nucleotide polymorphisms (SNP) and core genome MLST (cgMLST) DAPC models for the Melbourne and 579 

Essex datasets. The retention of four and one principal components was found to be optimal for the SNP 580 

(93% match) and cgMLST (60% match) models in Melbourne, respectively, while 15 and seven principal 581 

components were found to be optimal for the SNP (86% match) and cgMLST (71% match) models in the 582 

Essex hospital, respectively. (B) Assignment plots depicting the ability of the SNP models to predict the 583 

source attribution of the validation set clinical isolate genomes for the Melbourne and Essex hospital 584 

datasets. (C) Assignment plots depicting the ability of the cgMLST models to predict the source attribution 585 

of the validation set clinical isolate genomes for the Melbourne and Essex hospital datasets. 586 
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