








procedures (Figure 3B-C). Leveraging before read start median normalization, the 
basecRAWller pipeline comprises the first fully streaming nanopore basecalling application. 

 
Figure 3. Enabling full streaming pipeline by using median of nanopore signal from before the 
beginning of a read. A. The correlation between the median signal level before a read and 
within a nanopore read from human data. B. Examples of several reads with before read signal 
levels significantly higher than within read signal levels. For these reads the end of the open 
pore is identified incorrectly based on small pore blockages and thus the before read signal 
includes stretches of open pore signal. C. Examples of several reads with before read signal 
levels significantly lower than within read levels. These are likely spuriously identified reads 
associated with pore clearing voltage flicks and should be removed in future algorithm versions. 
 
 
Discussion 
 
The basecRAWller algorithm, along with the previously published nanoraw software package, 
provides an alternative approach to nanopore basecalling, which potentiates real-time nanopore 
sequencing and enables the community to train basecRAWller neural networks with a felicitous 
command line API. The neural networks fitted to date required ~250,000 compute hours on Intel 
Xeon processors at LBNL NERSC computing facility. We anticipate continued improvement of 
models with improved hyper-parameter optimization, as well as inclusion of community 
involvement in basecRAWller improvements. 
 
An important future direction for the basecRAWller pipeline will be adding the capacity to detect, 
in real time, covalently modified bases. Such capabilities have the potential to be transformative 
for cancer and toxicological research, and more broadly for foundational and environmental 
biology. Just as base start positions are an output of the raw net, modified bases can be 
identified without combinatorial expansion in the space of 4-mers. Additionally, basecalling 
directly from raw signal could be performed with a bi-directional neural network and may show 
significant increases in prediction accuracy over extant basecallers, though obviously removing 
the streaming capacity of basecRAWller. The basecRAWller software minimizes barriers to 
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entry for the community to begin, much more broadly, to develop diverse nanopore basecalling 
algorithms, and, ultimately, to explore the space of extant DNA modifications throughout the 
biosciences. 
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Supplemental Methods 
 
Raw Neural Network 
 
Once normalized DAC values have been computed, they are fed into a recurrent neural network 
(RNN), specifically a number of unidirectional (in the direction of sequencing time) long short 
term memory (LSTM) layers followed by one or more fully connected layer. The structure of this 
first neural network (termed the raw net) is depicted in Supp. Figure 3. This network takes as 
input a single scaled DAC value and returns the probability that each 4-mer is represented by 
the appropriately offset DAC value (represented by logit values), as well a “memory” that is 
passed on to the next observation along with the next scaled DAC value. In parallel to sequence 
output, the raw net produces the probability that the appropriately offset position is the 
beginning of a new base to be potentially used in the segmentation step. This network can be 
constructed with any number of LSTM layers each with any number of output units (entered as 
a parameter during training). The 4-mer to predict is also variable by specifying the number of 
bases before and after the current base to be included. For all analyses presented here we use 
a three-layer network with 75, 100 and 50 output nodes and output 4-mers. The third layer is 
added after training the two-layer network in order to more quickly identify appropriate 
parameters for the first two LSTM layers. The basecRAWller software provides this functionality. 
 
Constructing appropriate training data sets and setting training parameters is key to the success 
of basecalling algorithms. Starting with basecalled reads by the using the ONT software, we 
construct training data by applying the nanoraw software package(Marcus H Stoiber, 2016) 
genome_resquiggle algorithm. This algorithm resolves error prone base calls with a genomic 
alignment so that raw signal is assigned to potentially perfect basecalls from a known source 
(here E. coli or human chromosome 21). For the raw net this allows the assignment of each raw 
DAC value with the true 4-mer centered on that position and defined by a number of positions 
before and after the current position. 
 
To construct training and testing data sets, nanopore reads are provided (7,500 are provided for 
both presented trained models). For each read, a random starting position between the start 
and middle of a read is selected. This is to avoid any over-fitting to the start of reads that would 
all be presented at once to be trained in the initial iterations of each epoch. Only reads longer 
than the 50th percentile of read lengths are included in the training data (3,740 reads included 
for fitted models; this value showed good robustness with held out test data with reasonable 
computational efficiency). This is so that a training epoch (all provided data) is long enough to 
allow inclusion of sufficient variety and quantity of data to remediate over-fitting early in the 
training process. These reads each starting at their randomly selected position are combined 
into a matrix with the length of the 50th percentile read length (i.e. the shortest read included in 
the training data set). Additionally, another vector is provided with the true start positions for 
each base in each read to train the base start raw net output. This procedure is encoded in the 
prep_raw_net command in the basecRAWller software package. 
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To more accurately predict sequence from raw signal, the raw net is trained to predict the 
sequence at a delay. For both networks presented here this delay is set to 33 observations (less 
than 1/100th of a second in sequencing time), which was chosen after testing many values in 
this range (Supp. Figure 1). This allows the network to take in the signal well past a given 
observation, which modulates the predicted sequence, before producing a final sequence 
prediction. This parameter shows similar performance (data not shows) within the human 
training data, despite the different translocation speeds. 
 
In addition to these high-impact parameters there are several parameters specific to the raw net 
training (all parameters are included in Supp. Table 1). The following parameters were tested for 
effect on model accuracy as well as computational training time. The number of observations 
included in each training iteration (number of unrolled observations) has a reasonable effect on 
the final output with values greater than 300 showing reasonable results. The value used for 
both trained models was 500 as greater values were again prohibitively computationally 
expensive. The neural network learning rate was set to 1.0 for presented trained models, with 
values between 0.5 and 1.5 showing reasonable results. In order to stabilize the model, as it 
gets closer to a global minimum loss, the learning rate is halved every 500 observations. This 
value showed reasonable results in the range of 200-10000 observations. The momentum 
parameter is used by the gradient ascent algorithm to maintain the direction of fitting from 
iteration to iteration and was set to 0.9 for both models presented here. Values between 0.85 
and 0.99 show reasonable results. Given the outputs of sequence probabilities and base start 
positions, a parameter is provided to control the proportion of the loss attributed to the base 
starts cross-entropy loss and the proportion attributed to the k-mer sequence cross-entropy 
loss. This parameter is set to 1.1 (10% more weight attributed to start position loss) for both 
fitted models. Values between 0.8 and 1.5 show reasonable results. In order to allow the base 
start probability predictions to “ramp up” before and “ramp down” after a true base start, 
positions within a range around true base starts are masked (their loss values are set to 0). For 
both fitted models two observations around the true starts were masked, with reasonable values 
being between 0 and 3. During training the probability that any connection between two nodes is 
included is available as a parameter to basecRAWller, but this parameter showed little 
improvement in the fitted model, so all connections are included during training (parameter 
value 1.0). 
 
The raw neural network is also designed to output events back into the raw files thus allowing 
iterative training of basecRAWller models (i.e. preparing training data for a basecRAWller model 
from a basecRAWller trained basecaller). We have found limited success with this procedure 
thus far, but make this capacity available to the community and plan to include this as an output 
from the fine-tune net soon. 
 
In addition, the capacity to restore the training of the raw net with a new LSTM layer (or with a 
new fully connected layer or hyper-parameters) is provided by the basecRAWller software. This 
restoration process restores the trained parameter values to the LSTM layers, adds a new 
LSTM layer with a specified node size and fully connected layers that are not restored due to 
the new fully connected layer that connects to the new LSTM layer. This procedure was 
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employed during the optimization of the number of LSTM layers for the raw trained nets in this 
manuscript. 
 
Segmentation 
 
The raw net produces, for each raw observation, the probability that the appropriately offset 
observation is derived from each distinct 4-mer, which then needs to be segmented into 
predicted bases. The raw net also produces the probability that each position is the start of a 
new base. For the basecRAWller models here we have used these raw net base start 
predictions for segmentation, but we propose two other measures (running Hellinger distance 
and entropy difference) that may perform better in particular settings. 
 
For any of these measures, peaks are identified. Peaks are required to be 4 observations apart 
from another peak, but this value is a tunable parameter. To save computational time during 
training, only the first 100,000 observations (25 seconds) are used for segmentation metric 
computations. From these valid peak locations we define a global cutoff value and take all 
peaks with value above this threshold as the defining points for segmentation into events. 
 
A command in the basecRAWller software “analyze_splitting” is provided in order to identify an 
optimal cutoff for any trained networks. This optimal value is determined by analyzing some 
number of reads and choosing the global cutoff value that minimizes the difference between the 
true number of bases for each read and the number of identified segments given a global cutoff 
value. This function can also test all three measures and select the measure and cutoff value 
based on relative performance (default). This value and the selected measure is stored within 
the graph file for fine-tune net training and final basecalling applications. 
 
Alternative measures, Hellinger distance and entropy difference, are computed from the matrix 
of 4-mer logits at some fixed offset before and after each observation. Hellinger distance is a 
natural measure of the distance between two multinomial distributions, which is the exact realm 
we find when looking for segmentation locations. It is natural for the probability distribution to 
shift considerably centered at a transition between true bases. Similarly, entropy is a measure of 
a statistical distribution and shifts in entropy through time again indicate a shift from one base to 
another. Upon selection of an alternative measure, the fine-tune net needs to be re-trained. 
 
After segmentation positions are identified, a matrix is prepared in order to train the fine-tune net 
or dynamically for basecalling. For each read the raw net 4-mer probability distribution is 
averaged within each segment to be passed to the fine-tune net. 
 
Fine Tuning Neural Network 
 
After raw net processing, segmentation and distribution averaging a second neural network is 
applied to fine-tune the predicted bases from the raw net. The structure of the fine-tune net is 
identical to the raw net with some number of LSTM layers followed by one or more fully 
connected layer that outputs sequence probability values. The difference here is that each 
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observation taken in by the fine-tune net is a vector of logits for each possible k-mer, instead of 
a single normalized DAC value and the output is zero, one, or more bases represented by this 
segment. For analysis presented here we use two LSTM layers with 200 and 75 nodes. The 
output of the fine-tune net is the logit values for between 0 and some length of k-mer that 
represent the bases to assign to the current segment. The 0-length state indicates that the 
current segment should be deleted and should have been joined with the previous segment. 
The 1-mer states indicate that this segment was correctly assigned a single base and specifies 
the specific base for that segment. 2-mer and greater states indicate that the current segment 
represents more than one base (was under segmented). The maximal number of inserted bases 
for all analyses presented here is set to two, but this is again a parameter for tuning future 
basecRAWller models available in the basecRAWller software. 
 
As with the raw net, the fine-tune net is trained to predict bases at a delay in order to take in 
values past the current base allowing for modulation of the sequence predictions given values 
slightly ahead of the current position. For both models presented here this offset was set to 2 
segments, representing approximately 18 observations or again less than 1/100th of a second. 
This parameter has a smaller, but discernible effect than the raw offset parameter. 
 
The construction of the training data for the fine-tune net is key as there is now a discordance 
between the identified segmentation positions from the raw net (raw segments) and the ideally 
true segments identified by the nanoraw genome_resquiggle assignments (true segments). Raw 
segment are assigned a true base as long as the true segmentation position is not more than 3 
positions past the raw segment position. Any true base included within the raw segment but 
more than 3 positions into the current raw segment will be included in the next raw segment 
(inserted bases). If more than 2 extra true bases are assigned to a raw segment, the assigned 
true bases are trimmed to include only the 3 most recent bases. If no true segment exists 
between the last raw segment position and the current one, then the raw segment is assigned 
no bases (deleted event). Given this training setup the output of the fine-tune net will represent 
the final sequence for a read provided in a completely streaming fashion. 
 
Given this output scheme for the fine-tune net, the deletion categories are prone to over-
prediction. Any deleted base is represented by a single deletion category, while a single 
inserted base is represented by 16 output categories (for all combinations of the assigned base 
and the inserted base). Thus a parameter is provided to maintain equal (or tune-able) insertion 
to deletion rates. In order to achieve approximately equal insertion and deletion rate this 
parameter is set to 2.0. During training, deleted event loss values are deflated by a factor of 2-

1=0.5, single base insertion categories loss values are inflated by a factor of 21=2 and two base 
insertion category loss values are inflated by a factor of 22=4. Tuning this parameter allows 
basecRAWller models with different insertion to deletion ratios, which may be of value in 
particular situations. 
 
As with the raw net there are several general neural network training parameters which need to 
be set. The number of observations included in fine-tune net training is set to 90 for models 
presented here, with values around 100 showing reasonable results. The learning rate halving 
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parameter is set to 3,000 for the fine-tune net. Additional, parameters are set very similarly to 
the raw net: learning rate is set to 0.9 and momentum is set to 0.9. 
 
 
Supplemental Table 
 
Parameter	 Training	

Step	
Impact	 Selected	

Value	
Recommended	
Range	

Related	
Parameters	

Notes	

Before	Bases	 Raw	Net	 +	 1	 1-4	 After	Bases	 Increasing	the	k-mer	size	will	add	many	
categorical	outputs	and	may	have	
deleterious	effects	above	4-mers	

After	Bases	 Raw	Net	 +	 2	 1-6	 Before	Bases	 	
Observations	
Offset	

Raw	Net	 ++++	 33	 10-50	 Unrolled	
Observations	

Probably	the	most	important	
parameter	in	the	whole	pipeline	

Number	of	
Reads	

Raw	Net	 ++	 10000	 >5000	 Trim	Percent	 Important	for	a	robust	model;	compare	
train	and	test	accuracy	for	low	values	

Trim	Percent	 Raw	Net	 -	 50	 >10	 Number	of	
Reads	

This	parameter	ensures	epoch	lengths	
that	are	long	enough;	enough	distinct	
training	batches	to	avoid	over	fitting	

LSTM	Sizes	 Raw	Net	 +++	 75,	100,	
50	

>25	 Fully	
Connected	
Sizes	

More	layers	and	larger	sizes	are	better,	
but	hurt	final	computational	efficiency;	
Large	and	many	layers	may	have	
trouble	fitting	well	

Fully	
Connected	
Sizes	

Raw	Net	 +	 NA	 >25	 LSTM	Sizes,	
K-mer	Bases	

Not	thoroughly	tested;	may	increase	
computational	speed,	while	
maintaining	accuracy	

Unrolled	
Observations	

Raw	Net	 +++	 500	 >150	 K-mer	Bases,	
Fully	
Connected	
Sizes,	LSTM	
Sizes	

LSTM	layers	can	only	"communicate"	
effectively	over	this	range;	May	be	
strongly	effected	by	chemistry	version	

Learning	
Rate	

Raw	Net	 ++	 1	 0.5-1.5	 	 Very	high	values	compared	to	many	
other	NN	learning	problems	

Learning	
Rate	Half	Life	

Raw	Net	 +	 500	 200-2000	 	 Adjust	to	fine	tune	the	network	once	
global	minimums	are	approached	

Momentum	 Raw	Net	 -	 0.9	 0.8-0.96	 	 	
Total	
Iterations	

Raw	Net	 +	 5000	 >2000	 	 Very	important	parameter	for	model	
robustness	

Start	
Proportion	

Raw	Net	 ++	 1.1	 0.7-1.5	 K-mer	Bases,	
Learning	
Rate	

Low	start	accuracy	produced	by	lower	
values	may	not	produce	worse	results	
in	splitting	algorithm,	so	don't	
completely	depend	on	the	start	
accuracy	for	performance	of	this	
parameter	

Start	Mask	
Size	

Raw	Net	 +	 2	 0-3	 	 Allows	for	start	probability	to	"ramp	
up"	and	"ramp	down"	around	the	true	
start	position	

Keep	
Probability	

Raw	Net	 -	 1	 0.9-1.0	 	 Does	not	seem	to	help	robustness;	set	
to	1	

Measure	Lag	 Splitting	 -	 NA	 1-3	 	 Only	applies	to	Hellinger	and	Entropy	
Distances;	LSTM	usually	performs	best	
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Minimum	
Observations	
per	Base	

Splitting	 -	 4	 2-6	 Measure	Lag	 	

Number	of	
Split	Reads	

Splitting	 -	 5000	 >1500	 	 More	is	better;	more	compute	time	for	
more	reads	though	

Max	
Observations	
per	read	

Splitting	 -	 100000	 >20000	 	 Helps	keep	compute	time	reasonable	
for	very	long	reads	

Maximum	
Inserted	
Bases	

Fine-
Tune	Net	

+	 2	 1-4	 K-mer	Bases,	
Events	Offset	

As	with	k-mer	bases	large	sizes	will	
cause	many	categorical	outputs	and	
may	deleteriously	effect	performance	

True	Split	
Offset	

Fine-
Tune	Net	

+	 3	 1-6	 Maximum	
Inserted	
Bases	

This	is	the	wiggle	room	to	let	a	true	
offset	be	assigned	to	a	discovered	
segment	when	they	are	very	close;	it	
should	probably	not	be	set	larger	than	
Minimum	Observations	per	base,	but	
this	has	not	been	tested	

Events	Offset	 Fine-
Tune	Net	

++	 2	 0-5	 Learning	
Rate	

Similar	to	Observation	offset	
parameter,	but	seems	to	have	a	
smaller	effect	

Insertion	
Penalty	

Fine-
Tune	Net	

+++	 2	 1.0-3.5	 	 Training	statistics	are	not	comparable	
across	values;	Assess	by	final	mapping	
percent	identity	

LSTM	Sizes	 Fine-
Tune	Net	

+++	 200,	75	 >50	 Fully	
Connected	
Sizes,	K-mer	
Bases	

More	layers	and	larger	sizes	are	better,	
but	hurt	final	computational	efficiency;	
Large	and	many	layers	may	have	
trouble	fitting	well	

Fully	
Connected	
Sizes	

Fine-
Tune	Net	

+	 NA	 >25	 LSTM	Sizes,	
Maximum	
Inserted	
Bases	

Not	thoroughly	tested;	may	increase	
computational	speed,	while	
maintaining	accuracy	

Number	of	
Unrolled	
Events	

Fine-
Tune	Net	

++	 90	 >75	 Events	Offset	 LSTM	layers	can	only	"communicate"	
effectively	over	this	range;	May	be	
strongly	effected	by	chemistry	version	

Learning	
Rate	

Fine-
Tune	Net	

++	 0.9	 0.5-1.2	 	 Very	high	values	compared	to	many	
other	NN	learning	problems	

Learning	
Rate	Half	Life	

Fine-
Tune	Net	

+	 3000	 >1000	 	 Adjust	to	fine	tune	the	network	once	
global	minimums	are	approached	

Momentum	 Fine-
Tune	Net	

-	 0.9	 0.8-0.96	 	 	

Total	
Iterations	

Fine-
Tune	Net	

+	 10000	 >5000	 	 Very	important	parameter	for	model	
robustness	

Keep	
Probability	

Fine-
Tune	Net	

-	 1	 0.9-1.0	 	 Does	not	seem	to	help	robustness;	set	
to	1	

 
Supplementary Table 1. Description of all parameters used in training raw and fine-tune nets 
along with intuition for impact on resulting performance, selected value, recommended ranges 
and general notes. 
 
 
Supplemental Figures 
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Supplemental Figure 1. Raw net fitting performance over iterations for a range of the offset 
parameters. The final chosen value for trained nets was 33. Additional parameters were tuned 
to improve start location predictions, which show poor performance here. 
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Supplemental Figure 2. Comparison of mapping statistics for over 5 models trained with the 
same parameters except for the insertion penalty training parameter. Models show similar 
percent identity and percent mismatch while showing a range of insertion and deletion rates. 
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Supplemental Figure 3. Raw and fine-tune neural network structures. The raw net is 
composed of three LSTM layers and one fully connected (FC) layers and the fine-tune net is 
composed of two LSTM layers and one FC layer. As noted probabilities are made at a delay in 
both nets and the raw net simultaneously predicts the probability of a base starting at that 
observation. The input to the fine-tune net is the segmented, mean output logits from the raw 
net and the output of the fine-tune net are the final sequences represented by each event. 
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