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Abstract 

We present the Small RNA Expression Atlas (SEA), a web application that allows for the 

interactive querying, visualization, and analysis of known and novel small RNAs across 

ten organisms. It contains sRNA and pathogen expression information for over 4,200 

published samples with standardized search terms and ontologies. In addition, SEA 

allows for the interactive visualization and re-analysis of 879 differential expression and 

514 classification comparisons. SEA’s user model enables sRNA researchers to compare 

and re-analyze user-specific and published datasets, highlighting common and distinct 

sRNA expression patterns. 

We provide evidence for SEA’s fidelity by (i) generating a set of 591 tissue specific 

miRNAs across 30 tissues, (ii) finding known and novel bacterial and viral infections 

across diseases, and (iii) determining a Parkinson’s disease-specific blood biomarker 

signature using novel data. 

We believe that SEA’s simple semantic search interface, the flexible interactive reports, 

and the user model with rich analysis capabilities will enable researchers to better 

understand the potential function and diagnostic value of sRNAs or pathogens across 

tissues, diseases, and organisms. 

 

Keywords: small RNA, miRNA, differential expression, classification, prediction, 

biomarker, virus, bacteria, pathogens, disease, atlas, database, Parkinson’s disease 

Availability and Implementation: SEA is implemented in Java, J2EE, spring, Django, 

html5, css3, JavaScript, Bootstrap, Vue.js, D3, mongodb and neo4j. It is freely available 

at http://sea.ims.bio/.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/133199doi: bioRxiv preprint 

http://sea.ims.bio/
https://doi.org/10.1101/133199
http://creativecommons.org/licenses/by/4.0/


3 
 

1 Background 

Small RNAs (sRNAs) are a class of short, non-coding RNAs with important biological 

functions in nearly all aspects of organismal development in health and disease. 

Especially in diagnostic and therapeutic research, sRNAs such as miRNAs and piRNAs 

received recent attention (Witwer, 2015). The increasing number of deep sequencing 

sRNA studies (sRNA-seq) is reflecting the importance of sRNAs in biological processes 

as well as disease diagnosis and therapy. To harvest the true potential of existing data, it 

is important to allow for querying, visualization, and analysis of sRNA-seq data across 

organisms, tissues, cell types, and disease states. This would allow researchers, for 

example, to search for disease-specific sRNA biomarker signatures across all disease 

entities investigated. Data integration and interoperability require (i) a streamlined 

analysis workflow to reduce analysis bias between experiments (ii) also necessitates 

standardized annotation using ontologies to search and retrieve relevant samples and (iii) 

flexible and interactive visualization of the data. 

To date, several web-based sRNA-seq expression profile databases are available that 

differ in their level of information, portfolio, performance, and user-friendliness. Recent 

additions to sRNA web based databases include miRmine (Panwar et al., 2017), provides 

expression of a single or multiple miRNAs for a specific tissue, cell-line or disease. 

Results are displayed in multiple interactive, graphical and downloadable formats; 

DASHR2 (Kuksa et al., 2019) supports sRNA expression profiles across different genome 

versions of the same species across tissues and cell types. Results are provided in an 

interactive manner, such as sncRNA locus sorting and filtering by biological features. All 

annotation and expression information are downloadable and accessible as UCSC 
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genome browser tracks; miratlas (Vitsios et al., 2017) allows for searching miRNA 

expression profiles as well as sRNA-seq experiments and provides information on the 

miRNA modification analysis; and YM500v3 (Chung et al., 2017) provides interactive web 

reports on sRNA expression profiles, sRNA differential expression and miRNA gene 

targets. 

Although many good web platforms for the sRNA-seq data exist, some important 

aspects for storing and searching have yet to be integrated. For example, no current web 

application allows for the ontology based search of sRNA-seq experiments. Current tools 

lack an important association of miRNAs with disease. miRNA disease associations are 

provided by HMDD (Li et al., 2014), but it does not provide miRNA expression information. 

Except YM500v3 (Chung et al., 2017), current tools do not provide miRNAs and gene 

targets, of note YM500v3 is only limited to cancer miRNome studies. Also, there is 

currently no web application that allows for the identification of biomarkers of disease via 

machine-learning. The above mentioned web platforms do not provide expression of 

novel miRNAs in known disease state or tissues, including the structure and probability 

of the novel miRNA prediction. To our knowledge no other tool provides pathogenic 

signatures from sRNA-seq data including their differential expression in healthy and 

diseased condition. Moreover, in current tools users can only search for the results that 

are stored, there is no option for the users to reanalyze data with the samples of their 

choice. Finally, current sRNA-seq web services do not allow for the user data upload, a 

feature that would greatly facilitate researchers to compare their in-house sRNA-seq 

experimental data with the publicly available data. In the end, these functionalities should 
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be paired with a flexible and interactive visualization of the sRNA-seq data supporting 

more species and cross study comparisons. 

In order to address the above mentioned limitations, we hereby present the small-RNA 

Expression Atlas (SEA), a web application that allows for querying, visualization, and 

analysis of over 4200 published sRNA-seq expression samples. SEA automatically 

downloads and re-analyzes published data using Oasis 2 (Rahman et al., 2018), 

semantically annotates relevant meta-information using standardized terms (the 

annotations are later checked and corrected manually), synchronizes sRNA information 

with other databases, allows for the querying of terms across ontological graphs, and 

presents quality curated sRNA expression information as interactive web reports. In 

addition, SEA stores sRNA differential expression, sRNA based classification, pathogenic 

sRNA signatures from bacteria and viruses and pathogen differential expression. Gene 

targets and disease associations for miRNAs are also incorporated into SEA. 

One of the most useful features of SEA is to enable users to upload their analysis 

results of differential expression and classification from Oasis 2. This allow users to 

compare their data to over 4,200 experimental samples across different conditions. Using 

SEA’s interactive visualizations, users can upload their data into their own workspace, 

select the published datasets to compare to, and define if differential expression or 

classification results should be compared. SEA also provides users with an option to 

perform on the fly analysis such as overlapping differentially expressed sRNAs or 

pathogens across different studies or the most important features (sRNAs) identified with 

classification. Lastly, SEA enables end users to re-submit samples from interactive plots 

for differential expression or classification, this helps users to choose samples of their 
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choice from an experiment. It currently supports 10 organisms (Table 1) and is 

continuously updated with novel published sRNA-seq datasets and relevant sRNA 

information from various online resources. A detailed comparison of SEA to other existing 

sRNA expression databases (Table 2) highlights that SEA is superior in terms of 

supported organism, annotations, diseases, tissues, sRNA based classification, 

pathogen k-mer DE, known miRNA disease associations, user specific experimental data 

upload, cross study comparisons and re-analysis with selected samples. SEA contains 

over 4200 samples in its database, which is considerably less than YM500v3 (Chung et 

al., 2017), which hosts over 8000 cancer samples. It is to be noted, however, that the 

YM500v3 database only supports cancer datasets and no other disease types (Table 2). 

Additionally, SEA also stores in-house data (for a month) from the end users to enable 

comparison with the data in SEA. 

2 System Design 

SEA stores sRNA expression information, sRNA differential expression, sRNA based 

classification, pathogenic sRNA signatures from bacteria and viruses, pathogen 

differential expression, miRNA gene targets and disease association as well as deep and 

standardized metadata on the samples, analysis workflows, and databases used. Meta-

data information is normalized using ontologies to allow for standardized search and 

retrieval across ontological hierarchies (section ‘Semantic data layer’ & supplementary 

material). The following sections will detail the system design of SEA (Fig. 1). 

2.1 Acquisition and analysis of sRNA datasets 

SEA acquires raw published sRNA-seq datasets and their primary annotation from Gene 

Expression Omnibus (GEO) (Barrett et al., 2013) and NCBI's Sequence Reads Archive 
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(SRA) repository (Leinonen et al., 2011) (supplementary material). Novel datasets are 

downloaded and stored in SEA’s raw data repository while corresponding annotations are 

stored in SEA’s annotation database and are manually curated. Raw data is subsequently 

processed automatically by SEA’s sRNA analysis workflow using Oasis 2.0 (Rahman et 

al., 2018) (http://oasis.ims.bio/) (supplementary material). Subsequently, sRNA counts of 

high-quality samples are stored in the sRNA expression database. For all the experiments 

with samples from different conditions such as disease, tissue, cell line or cell type; sRNA 

differential expression and classification was performed within the experiment using 

Oasis 2. All possible comparisons for an experiment were taken into account such as 

healthy vs disease stage 1,  healthy vs disease stage 2, disease stage 1 vs disease stage 

2 as explained in supplementary section 3.4. Additionally, differential expression analysis 

of detected pathogens was performed using DESeq2 package (Love et al., 2014).  In 

order to reduce bias that could be introduced into the data by using different analysis 

routines, every sample in SEA has been analyzed by identical analysis workflows using 

identical databases and genome versions. SEA additionally stores versioning information 

about the software and databases used for analysis. In case of changes in databases or 

analysis routines, we completely re-analyze all SEA’ data for consistency. 

Additionally, sample annotations are processed automatically with SEA’s annotation 

workflow. Processed files and annotations are subsequently semi-automatically curated 

(section 2.3 and supplementary section 3). 

2.2 Data storage 

Once the raw sequencing data is analyzed, the next step is to store the analysis results 

to the database for downstream analysis and querying. Most metadata is quite different 
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between experiments. Some experiments may have information such as disease, tissue, 

cell line, gender, age of patient while others may completely lack this. Due to this sparse 

nature of the biological experimental data, we opted to use NoSQL database 

management systems such as MongoDB and Neo4J for hierarchical (connected) 

normalized data. A multi-database management system architecture was used to store 

different types of data: 

In brief, Expression-DB is created to save sRNA expression profiles, sRNA differential 

expression, sRNA based classification as well as pathogen detection and pathogen 

differential expression. This database stores the identification and description of the 

experiment (dataset), information about dataset processing (pipeline information and 

parameters), information about samples. Association-DB is used to store genomic 

coordinates for sRNAs, miRNA gene targets and miRNA diseases association. It contains 

information about sRNA’s and gene’s chromosomal locations, miRNA target genes and 

miRNA disease associations. Chromosomal coordinates were obtained from miRBase 

version 21 (Kozomara et al., 2014), ensemble version 84 (Zerbino et al., 2018) and piRNA 

bank (Sai Lakshmi et al., 2008), miRNA gene targets were obtained from mirTarBase 

version 7.0 (Chou et al., 2018) as well as from BELIEF text mining pipeline (Madan et al., 

2016) (material and methods),  miRNA disease associations were obtained from HMDD 

database version 2.0 (Li et al., 2014). In order to enable search by ontological terms, 

Annotation-DB is created using the Neo4J database management system. Neo4J is a 

graph database, representing elements as graph nodes or vertices. Annotation-DB 

(supplementary Fig. S1) stores the following three node types: (i) Experiments (datasets), 

this type of node stores information about the experiment such as description of the 
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experiment, reference to database, experimental design, and any global level information, 

which is common amongst all the samples. (ii) Sample node type is used to store 

information about individual sample, such as description of a sample, reference to 

database, sample-specific processing parameters. (iii) Annotation term node type stores 

annotation term information of samples such as organism, disease, tissue, cell type, cell 

line, age, gender, condition (treated\untreated) and extracted molecule for sequencing 

etc. If the annotation term is normalized, it stores ontology reference (term identifier and 

preferred level). The nodes are connected if they have a relation (dataset/sample, 

sample/term and term/term) (supplementary Fig. S1). To allow for fast ontological search, 

all parents of a term in the ontology are also stored in the database and connected with 

their corresponding annotation terms (section ‘Semantic data layer’ & supplementary 

material). User-DB stores in-house sRNA-seq data (differential expression and 

classification from Oasis) uploaded by the users. This database allows users to compare 

their own data to the huge and diverse sRNA-seq published data. 

In addition, SEA contains information about the GEO series accession (GSE) and 

sample accession (GSM) identifiers along with the sample identifier from the Sequence 

Read Archive (SRA) database (SRR). We optimize search and retrieval times by indexing 

for the most common queries and most relevant terms. 

2.3 Semantic data layer  

Given the diversity of the biological data, users of the SEA system are given a possibility 

to interpret data independently using common terminologies. In order to enable users to 

browse data autonomously using common well-structured terminology, a standardized 

semantic layer for data retrieval is developed (Fig. 1). It includes semantic annotations of 
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data and semantic search, linking data with semantic lookup platform (OLS), as well as 

storing primary and derived data together with provenance information and references to 

secondary data. 

One of the most important aspects of semantic layer are ontology-based data 

annotations. They enable interoperability of the data, as well as using of standard 

terminologies for data retrieval. It is important to standardize annotations using ontologies 

and semantic mappings (Schuurman et al., 2008). Ontologies define not only standard 

classes, but also the relations between terms, which enables semantic search by term 

hierarchies, for example, by parent terms. In SEA, we connect (normalize) annotations 

with ontologies in a semi-automatic way, i.e. first automatically extract possible annotation 

terms from GEO descriptions and normalize them, and later curate annotations manually 

(supplementary section 3). The Ontologies and the number of normalized terms in SEA 

are listed in Table 3. To enable the search across ontological hierarchies we integrated 

data with the relevant ontologies into the graph database Neo4J (supplementary Fig. S1).  

Ontology Lookup Service (OLS) is a service which allows to extract relevant terms from 

ontologies together with term information. SEA uses OLS for annotation normalization 

and accesses ontologies via the OLS REST interface, which supports complex and 

compound queries and query auto-completion (Côté et al., 2010). Details about 

annotation criteria, processing and group annotation are described in supplementary 

Section 3.2. 

Another aspect of the semantic layer is storing of the primary and the derived data 

together with provenance information. For SEA, primary data are FASTQ files, retrieved 

from the NCBI SRR database. This data is not stored after Oasis analysis, only 
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provenance data about source and analysis details is saved. So for SEA, primary data 

are sRNA counts. Based on those counts, DE and classification results are obtained and 

are also saved to allow data interpretation. From derived data, the provenance 

information allows to retrieve raw counts and check how those results are obtained. 

2.4 Querying and visualization 

Application programming interfaces (APIs) are developed to access data in SEA 

databases (supplementary section 3.5). The APIs help to use the multi-database system 

components independently as well as in combination. In brief, we extend the SEA 

backend application with RESTful web services, such as Annotation-API, Association-

API, Expression-API, User-Expression-API, Predicted miRNA-API to access Annotation-

DB, Association-DB, Expression-DB, User-Expression-DB and Oasis-DB respectively. 

Additionally the SEA business logic API is created in order to combine all those APIs and 

make necessary data transformations between frontend and other APIs. As a result, the 

user can make queries to answer biological questions like; what is the expression of hsa-

miR-488-5p across all human tissues? Is hsa-miR-488-5p expressed higher in 

adenocarcinomas as compared to other cancer types? Is a particular sRNA/pathogen 

differentially expressed in Alzheimer’s disease? What are common differentially 

expressed sRNAs/pathogens or potential sRNA based biomarkers in a particular disease 

or tissue? What is the expression of a novel miRNA for known disease states? All API 

calls are described in supplementary Section 3.5. 

In brief, the SEA system is developed using the modular system design approach (Fig. 

1). We build micro services to achieve strong encapsulation and well-defined interfaces 

via REST APIs. An object oriented programming approach is used to build the SEA 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/133199doi: bioRxiv preprint 

https://doi.org/10.1101/133199
http://creativecommons.org/licenses/by/4.0/


12 
 

application using the spring framework and Java 8. The SEA user interface (UI) is 

developed in Django framework version 2.0, HTML version 5, D3 and CSS 3. SEA 

visualizes the results depending on the user query, such as a violin plot for the expression 

of sRNAs or pathogens. Upset plots are shown for the overlap of sRNAs or pathogens 

(based on DE or classification) across experiments. SEA enables the download of search 

results in the form of CSV files. The functionality is tested on all major browsers (Table 

4). 

3 Applications of SEA 

In this section, we describe a few examples that illustrate how SEA can be employed to 

answer biological questions and to uncover unappreciated properties of sRNA data 

integration with interactive result visualization. First, we took advantage of the diverse 

and massive sRNA-seq data in SEA to present the most comprehensive set of tissue 

specific miRNAs till date. Second, we utilized the pathogenic reads in sRNA-seq to find 

their association to diseases. Finally, we show a use case of SEA by comparing an in-

house Parkinson’s disease (PD) sRNA-ome to other neurodegenerative diseases sRNA 

expression profiles available in SEA.  

1. miRNA tissue specificity 

Several studies have shown tissue specificity for miRNAs. Recently, (Ludwig et al., 2016), 

analyzed several human tissue biopsies of different organs from two individuals to define 

the distribution of miRNAs using tissue specificity index (TSI) and found several groups 

of miRNAs with tissue-specific expression. Similarly, (Lee et al., 2008) provides the 

expression of 201 miRNAs across 9 human tissues to find tissue specificity of miRNAs. 

miRNAs whose expression is 20-fold or higher in a certain tissue compared with the mean 
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of all the other tissues were characterized as tissue specific. According to (Lee et al., 

2008), skeletal muscle, brain, heart, and pancreas are the tissues expressing the most 

specific miRNAs. Moreover, (Guo et al., 2014) manually extracted 116 tissue specific 

miRNAs across 12 human tissues. We used Shannon entropy to calculate TSI for each 

miRNA across tissues in SEA (material and methods). We used very stringent criteria: 

miRNAs with Shannon entropy score more than 0.8 were considered as tissue specific 

and less than equal to 0.2 were considered as ubiquitous miRNAs (Fig. 2, Supplementary 

Table 1). We were able to provide by far the most comprehensive set of 591 distinct tissue 

specific miRNAs across 30 tissues; skin, liver, testes, blood, semen, prefrontal cortex, 

peripheral blood, brain, renal cortex, bladder, embryo, colon, placenta, tongue, breast, 

tonsils, bone marrow, blood plasma, lymph node, heart, lung, neocortex, blood serum, 

serum, cornea, cerebellum, skeletal muscle, kidney, muscle and thyroid gland (Fig. 2, 

Supplementary Table 1). In order to compare the TSI for miRNAs in SEA with the existing 

findings, we merged the list of miRNAs from the above studies and retained all the 12 

tissues. Out of 12 tissues, we did not have sequencing data for four of them: thymus, 

pancreas, spleen and bone.  

We were able to detect all the three heart specific miRNAs (miR-1, miR-133a, miR-

302d) from (Lee et al., 2008) study, and 7 out of 10 heart specific miRNAs (hsa-miR-1-

5p, hsa-miR-208a-3p, hsa-miR-208b-5p, hsa-miR-208b-3p, hsa-miR-302d-3p, hsa-miR-

133b, hsa-miR-302a-3p, hsa-miR-302a-5p, hsa-miR-133a-5p, hsa-miR-302b-3p) from 

the manually curated list of (Guo et al., 2014). miR-208 is obtained from an old annotation, 

because the latest release of miRBase has more specific annotation like miR-208a-3p, 

miR-208b-3/5p. Interestingly we were able to find the whole family of miR-208 as heart 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/133199doi: bioRxiv preprint 

https://doi.org/10.1101/133199
http://creativecommons.org/licenses/by/4.0/


14 
 

specific. We were not able to detect miR-126, miR-302c, miR-367 in heart. Of note, none 

of these three is heart specific in the (Lee et al., 2008) study. 

Muscle and brain were the only two tissues covered by all the three above mentioned 

studies. In muscle, we were able to detect all the three muscle specific miRNAs (miR-

133b, miR-133a-3p, miR-1-3p) from (Ludwig et al., 2016), 3 out of 4 (miR-95 was not 

found to be muscle specific) from (Lee et al., 2008), and 6 out of 10 for (Guo et al., 2014) 

compilation. We were not able to detect miR-134, miR-193a, miR-95 and miR-128a. Note 

that from the same study miR-134 is mentioned as muscle as well as testis specific and 

miR-128a as muscle as well as brain specific. Moreover miR-95 is the only miRNA that is 

muscle specific in all of the three studies.  

Another tissue covered by all of the three studies is the brain. In total 30 miRNAs were 

shown to be brain specific, only 1 out of 30 (miR-7) is common among all the three studies 

and only three in two studies (miR-124, miR-9, miR-218) one of which is in the curated 

list. In our study, we found 35 miRNAs brain specific but only two from the known ones 

(hsa-miR-125b-2-3p, hsa-miR-125b-2-3p).  

Tissue with the most number (n= 43) of known specific miRNA was placenta provided 

by (Guo et al., 2014). Interestingly, miRNAs associated with placenta were mostly 

evolutionary related. We were able to detect these evolutionary related miRNAs to be 

placenta specific as well. In short, we detected 517a/b/c, 518a/b/c/d/e/f, 519a/b/c/d/e, 

520a/d/e/f/g (not detecting 520b/c/h). Moreover we were also able to detect miR-371, 

miR-372, miR-512, miR-522, miR-523, miR-524, miR-525, miR-526b and miR-527. Out 

of 43, we detected 35 and did not detected miR-377, miR-526a, miR-184, miR-154, miR-

381, miR-503, miR-450, and miR-136. We detected only 3 (miR-513c-5p, miR-202-3p, 
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miR-34c-5p) out of 15 for testes. There were two tissues, lung and liver; mentioned only 

in one study (Guo et al., 2014), we could not detect the only miRNA miR-126 for lung. 

Interestingly this miRNA is also mentioned as heart specific in the same study. We also 

did not find the four liver specific miRNAs miR-122, miR-483, miR-92a, miR-192; two 

(miR-483, miR-92a) of which are shown as bone specific in the same study. In kidney 

we were able to detect only 1 miR-200a out of 8 kidney specific in (Guo et al., 2014). Of 

note (Lee et al., 2008), also found only one miRNA miR-204 to be kidney specific and 

does not have any evidence for the rest of the seven miRNAs. 

As (Ludwig et al., 2016) used only two individual's tissues, (Lee et al., 2008) also 

performed own experiments in a control (same laboratory, same protocols) environment 

and used different statistical methods compared to ours, we were still able to get a 

reasonable overlap with tissue specific miRNAs considering diverse (different 

laboratories, different protocols) and massive data. Therefore, we think that this work 

provides the most comprehensive set of tissue specific miRNAs till date (n = 591 miRNAs) 

(Supplementary Table 1).  

2. Known and novel bacterial or viral infections 

We validated our approach of pathogen detection using seven datasets with known 

infection status. The samples in these datasets are known to be infected with seven 

bacterial pathogens and three viral pathogens. Of note, we focused on within-dataset 

comparison in order to avoid technical confounders (Supplementary Table 2). For each 

sample, k-mer counts were calculated for all infectious species present in Kraken 

database (4336 viral and 2784 bacterial/archaeal genomes) and differential abundance 

analysis was carried out for those species that have at least 3 counts (baseMean) in a 
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particular comparison. As expected, in all comparisons the known pathogen represented 

the best hit (i.e., smallest adjusted p-value) except Vaccinia virus (Fig. 3a). However, 

Vaccinia virus has the highest log2 fold change as expected within the dataset 

(GSE54235) comparison. It is worthy to note that Chlamydia trachomatis detection is 

based on sRNA-seq performed on conjunctival tissue from children with follicular 

trachoma and children with healthy conjunctivae, indicating a good performance of our 

pathogen detection pipeline from tissues. 

Next, we aimed to find novel associations of pathogens with disease. We took all the 

comparisons, which has “healthy” and at least a disease state annotation (Supplementary 

Table 2). In order to achieve more specificity we took only comparisons that have less 

than 6 pathogens significantly up-regulated in disease as compared to healthy (FC > 1 

and padj < 0.1). There were a total of 8 comparisons but we removed “GSE69837” as this 

was a known case (Chlamydia trachomatis already shown in Fig. 3a). It was interesting 

to find viruses and bacteria significantly upregulated in sRNA-seq data in certain disease 

compared to healthy patients (Fig. 3b). Some of the most interesting cases are highlighted 

in this section below. 

Mycobacterium marinum in patients with ileal Crohn’s disease. In the original study, 

expression of microRNAs in mucosae of patients with a normal pouch after colectomy for 

intractable ulcerative colitis was compared to several control cohorts, among them was a 

cohort of patients with Crohn’s disease (CD) of the terminal ileum (Ben-Shachar et al., 

2016). CD patients were previously not exposed to immunosuppression. Compared to 

patients with non-inflamed ileal pouch, patients with ileal CD showed an increased 

mucosal expression of Mycobacterium marinum. The bacterial genus Mycobacterium 
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causes diverse diseases in humans, of which Tuberculosis is the most serious with 

around one-quarter of the world population latently infected and approximately 1.6 million 

deaths in 2017 on a global scale. M. marinum is a non-tuberculous (also termed “atypical”) 

Mycobacterium species, which is ubiquitously abundant in aquatic environments 

(Johnson et al., 2015). Infection of humans is well known, but it is considered a rare event. 

It typically occurs after exposure to contaminated water or infected marine animals, and 

it is more common in immunosuppressed individuals. The most commonly affected organ 

is the skin, in more severe cases involvement of muscles, bones or joints is reported 

(Johnson et al., 2015). Opportunistic infection with M. marinum in CD is recognized in 

those patients receiving anti-tumour necrosis factor therapy (e. g. infliximab) (Ferreira et 

al., 2012). However, to the best of our knowledge, enteric super-infection with M. marinum 

has not been reported in the literature so far. Interestingly, due to the resemblance of the 

granulomatous intestinal inflammation in CD with enteric infection caused by other 

Mycobacteria, it has been hypothesized that Mycobacterial infection is involved in the 

pathogenesis of CD, with much focus on M. avium paratuberculosis (McMullen et al., 

2015). However, the aetiological significance of this pathogen in CD remains uncertain. 

Hence, the gut mucosal prevalence of M. marinum and its potential pathophysiologic 

significance in patients with CD should be further explored. 

Methanosphaera stadtmanae in patients with schizophrenia. We detected an 

overabundance of Methanosphaera stadtmanae in neurons derived from induced 

pluripotent stem cells (iPSC) of patients with schizophrenia, compared to healthy controls. 

M. stadtmanae is an Archaeal microorganism which is frequently detected in the healthy 

human gut microbiota (Dridi et al., 2009). It is involved in intestinal methanogenesis and 
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associated fermentative dynamics.  M. stadtmanae is recognised by the innate immune 

system, therefore it can induce inflammatory cytokine responses and could have diverse 

immunomodulatory functions (Bang et al., 2014). Interestingly, M. stadtmanae was found 

with an increased prevalence in faecal samples of patients with inflammatory bowel 

diseases (IBD) Crohn’s disease (CD) and ulcerative colitis with antigen-specific IgG-

responses (Blais Lecours et al., 2014). Immune system processes have been proposed 

to be involved in the pathogenesis of schizophrenia (Pouget, 2018). Regarding the 

immune-genetic basis of schizophrenia, genome-wide pleiotropy has been reported 

between schizophrenia and CD as well as an increased prevalence of schizophrenia in 

patients with IBD (Bernstein et al., 2019). Therefore, the potential immunogenic 

importance of M. stadtmanae in schizophrenia should be investigated. 

Chimpanzee herpesvirus in Lewy body dementia. We detected an increased 

abundance of a viral pathogen identified as chimpanzee herpesvirus (ChHV) in the 

cerebral cortex of patients with lewy body dementia (LBD) compared to non-demented 

controls (Hébert et al., 2013). ChHV is an alphaherpesvirus closely related to human 

herpes simplex virus type 2 (HSV-2) (Severini et al., 2013). LBD is a neurodegenerative 

disorder, which underlies 4.2% of all dementia cases, second only to Alzheimer’s 

dementia (AD) (Vann Jones et al., 2014). The aetiology of LBD is obscure, but growing 

evidence points towards neuro inflammation as a key pathophysiologic factor, analogous 

to the pathogenesis of AD (Surendranathan et al., 2015). In AD it is assumed that multiple 

pathogens infecting the brain are key triggers of neural dysfunctional protein 

accumulation and neuro inflammation in genetically vulnerable individuals (Harris et al., 

2015). Among the pathogens detected in brains of AD patients, multiple lines of evidence 
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point at herpes simplex virus type 1 (HSV-1) and HSV-2 as two of the main drivers of AD 

neurodegeneration (Harris et al., 2015; Sochocka et al., 2017). Given the close 

phylogenetic relationship between ChHV and HSV-2, ChHV might play a role in 

inflammatory neurodegenerative processes in LBD similar to the other herpesviruses in 

AD. Therefore, the association detected in the present study should be further elaborated. 

3. Analyzing in-house data and comparing with SEA data 

One of the key features available in SEA is uploading the in-house data and comparing it 

with the already integrated data. Mostly, researchers use different analysis pipelines to 

carry out differential expression or classification, which makes it very hard to compare the 

results with the publicly available data. Therefore, we require a database with interactive 

visualizations that has all the publicly available data analyzed using the same pipeline 

with same parameters. For SEA, we have analyzed and integrated all the data using 

Oasis 2 pipeline. We expect that comparing the in-house data with the data in SEA will 

yield disease-specific signatures, in this case a sRNA or group of sRNAs. Note that 

uploading to SEA requires the output of Oasis 2 (supplementary material).  

In order to test this feature, we uploaded in-house sRNA-seq data from well 

characterized 47 Parkinson disease (PD) and 53 frequency-matched healthy controls, 

which is a baseline data from the longitudinal de novo Parkinson disease (DeNoPa) 

cohort (Supplementary Table 3) and available as “demo user data” in SEA. SEA gives us 

a unique opportunity to identify PD-specific biomarkers associated with early-stage PD 

that can eventually help us in early diagnosis, therefore, better treatment of the disease. 

Below we describe the differential expression and classification results from PD data and 
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an approach in order to identify PD-specific biomarkers that do not overlap with other 

neurodegenerative diseases. 

We found four significantly differentially expressed (DE) miRNAs with adjusted p-value 

less than 0.1. Out of these, two are up-regulated in PD (hsa-miR-502-3p and hsa-miR-

532-5p) and two are down-regulated in PD (hsa-miR-30d-5p and hsa-miR-22-5p) 

(Supplementary Table 3). Next, we overlapped these four DE miRNAs with all the 

neurodegenerative disease-related datasets integrated in SEA. We focused on nine 

comparisons (from five datasets) in which one of the conditions is a healthy state and the 

other is a diseased condition (Alzheimer’s disease (AD), Lewy body dementia, tangle-

predominant dementia, Huntington’s disease (HD), Frontotemporal dementia or 

Hippocampal sclerosis of aging). Out of the two up-regulated miRNAs in PD, one (hsa-

miR-502-3p) is up-regulated in Alzheimer's disease and one (hsa-miR-532-5p) is up-

regulated in both Alzheimer’s and Huntington’s disease (Fig. 4a). In contrast, none of the 

down-regulated miRNAs in PD were found to be significantly down in any of these nine 

comparisons. Interestingly, it has been shown that the expression of miR-22 is down-

regulated in a 6-hydroxydopamine-induced cell model of PD using RT-PCR (Yang et al., 

2016). Moreover, Margis et al., found that hsa-miR-22 has reduced expression in the 

blood of de novo PD patients (Margis et al., 2011). Furthermore, family members of hsa-

miR-30d-5p are known to be deregulated in PD (Leggio et al., 2017) and putatively target 

the PD-related gene, LRRK2 (PARK8) (Heman-Ackah et al., 2013). These results 

confirms, the potential role of hsa-miR-30d-5p and hsa-miR-22-5p in PD. To explore the 

mechanism by which these two miRNA are involved in PD, we performed gene ontology 

(GO) analysis of the validated and predicted targets using webgestalt (Wang et al., 2017). 
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The top ten terms ranked according to FDR adjusted p-value are shown in the (Fig. 4b). 

The top significant hit (FDR < 0.1) is axon development. Recent publications (Bolam et 

al., 2012; Pissadaki et al., 2013; Surmeier et al., 2017) have suggested the role of 

massive and unmyelinated axonal arbor in PD. In substantia nigra pars compacta (SNc), 

the axonal arbor of dopamine neurons is very large as compared to other neuronal types. 

This leads to the hypothesis that these dopamine neurons have selective and exceptional 

vulnerability in PD, and have a higher energy demand that may play a crucial role in cell 

death (Pissadaki et al., 2013). 

To further gain insights of unique PD biomarkers, we explored the classification results 

integrated in SEA. PD and healthy were classified with an AUC of 0.89 (Fig. 4d). 

Interestingly, the classifier used only 18 sRNAs to separate the two states 

(Supplementary Table 3). We overlapped these 18 sRNAs with the classification results 

from other neurodegenerative diseases integrated in SEA (Fig. 4c). There are only three 

sRNA that are also found in AD or HD but they have opposite change of expression. This 

suggests the specificity of these sRNAs to PD as compared to other neurodegenerative 

diseases. Furthermore, to filter out sRNAs known to be associated with other 

neurodegenerative diseases, we used the association database of sRNA-disease 

association available in SEA. The results showed that hsa-miR-342-3p has been 

associated with other neurodegenerative diseases (Montag et al., 2009; Saba et al., 

2008). Next, we also filtered out sRNAs if the base mean read count is less than 5 and 

also, hsa-miR-502-3p that was found to be up-regulated in AD (Fig. 4a). Then we run a 

random forest classifier using the normalized counts for the remaining 15 sRNAs and 

hsa-miR-22-5p that is down-regulated in our data. (Fig. 4d) shows that using 16 sRNAs 
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to classify PD and controls, yielded 85% area under the curve (AUC) with 83% recall and 

77% of precision. Furthermore, to find the relevance of the 13 known miRNAs (out of 16 

sRNAs) in PD, we obtained their target genes from SEA (only 10 miRNAs out of 13 have 

targets supported by strong evidence) and overlapped with the targets genes of PD 

associated miRNAs in SEA. Interestingly, these 10 known miRNAs targets 96 genes, 

which are known to be associated with PD (Fig. 4e, Supplementary Table 3). The list 

includes TP53 (Alves da Costa et al., 2011) that contributes to the apoptotic deterioration 

taking place in PD, PTEN (Ogino et al., 2016) that has been linked to PD via DNA damage 

and DNA repair machinery, SMAD1 (Hegarty et al., 2018) is an important regulator 

required for neurite growth, EZH2 (Södersten et al., 2014) is a lysine methyltransferase 

component of polycomb repressive complex 2 that has been associated with PD and 

BCL2 (van der Heide et al., 2013) is required for proper development of the dopaminergic 

system and has been implicated in the pathogenesis of PD. To gain further insights into 

the 3 novel predicted miRNAs (out of 16 sRNAs) used to classify PD and controls, we 

performed gene enrichment analysis on their target genes using webgestalt (Zhang et al., 

2005). The novel miRNAs were p-hsa-miR-113, p-hsa-miR-247, and p-hsa-miR-235-

1/2/3 (supplementary material). We used miRDB (Wong et al., 2015) to get target genes 

for the mature sequences of these predicted miRNAs (material and methods). 

Interestingly the GO terms for these miRNAs were neuron differentiation, generation 

of neurons, neurogenesis and regulation of intracellular signal transduction (Fig. 

4f). All these processes are highly related to PD, and hence we think these novel miRNAs 

should further be explored and validated in the laboratory. Predicted structure of these 

miRNAs can be found in supplementary material.  
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All together, these results make a strong case in favor of using SEA in order to retrieve 

disease-specific biomarkers. 

Conclusions 

SEA is designed for the biological or medical end-user that is interested to define where 

and when a sRNA of interest is expressed. Prototypical questions that can be addressed 

with SEA are: What is the expression of hsa-miR-488-5p across all human tissues? Is 

hsa-miR-488-5p expressed higher in adenocarcinomas as compared to other cancer 

types? Is the tissue-specific expression of hsa-miR-488-5p conserved in mice? Its unique 

selling points are the deep and standardized annotation of meta-information, the re-

analysis of published data with Oasis 2 to reduce analysis bias, a user-friendly search 

interface that supports complex queries, and the fast and interactive visualization of 

analysis results across 10 organisms (Table 1) and various sRNA-species. SEA also 

contains information on the expression of currently 769 high-quality predicted miRNAs, 

across organisms and tissues.  

In addition, SEA also stores sRNA differential expression, sRNA based classification, 

pathogenic sRNA signatures from bacteria and viruses and pathogen differential 

expression. Furthermore, SEA can be used to search gene targets or diseases 

associated with a miRNA. Moreover, SEA allows end users to upload their analysis 

results of differential expression and classification from Oasis 2. This will allow users to 

compare their data to over 4200 experimental samples across different conditions. SEA 

also provides users with an option to perform on the fly analysis such as overlapping 

differentially expressed sRNAs or pathogens across different studies or the most 

important features (sRNAs) identified with classification. SEA enables end users to re-
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submit samples from interactive plots for differential expression or classification, this will 

help users to choose samples of their choice from an experiment. 

Moreover, SEA is continuously growing and aims to eventually encompass all sRNA-

seq datasets across all organisms deposited in GEO and other repositories. Genome 

versions will be updated with every major release of SEA. SEA will be backwards 

compatible in the future by allowing users to choose previous genome versions and 

annotations. A detailed comparison of SEA to other existing sRNA expression databases 

highlights that SEA is superior in terms of supported organism, annotations, diseases, 

tissues, sRNA based classification, pathogen k-mer DE, known miRNA disease 

associations, user specific experimental data upload, cross study comparisons and re-

analysis with selected samples (Table 2).   

As far as we are aware, SEA is the only sRNA-seq database that supports ontology-

based queries, supporting single or combined searches for five predefined keys 

(organism, tissue, disease, cell type, and cell line) across all datasets. However, the SEA 

database system contains additional (meta)-information including age, gender, 

developmental stage, genotype as well as technical experimental details such as the 

sequencing instrument and protocol details (e.g., library kit, RNA extraction procedure). 

We plan to normalize most of this additional information in future versions of SEA. This 

will allow users, for example, to query and analyze sRNA expression effects that are 

introduced by library kit or sequencing platform differences (both of these features can 

introduce large biases in the detection and expression of sRNAs). Other future 

developments will include information on sRNA editing, modifications, and mutation 

events. 
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In summary, SEA supports interactive result visualization on all levels, from querying 

and displaying of sRNA expression information to the mapping and quality information for 

each of the over 4200 samples. SEA is a fast, flexible, and fully interactive web application 

for the investigation of sRNA and pathogen expression across cell lines, tissues, 

diseases, organisms, and sRNA-species. As such, SEA should be a valuable addition to 

the landscape of sRNA expression databases.  

Additionally, we presented the most comprehensive set of tissue specific miRNAs till 

date. We were able to provide by far the most complete set of 591 distinct tissue specific 

miRNAs across 30 tissues. To our knowledge this is by far the most comprehensive 

analysis (set) of tissue specific miRNAs. 

In the current work, we also found pathogen signatures from sRNA-seq data. We found 

signatures of pathogens in severe diseases like dementia. In brief, we found differential 

regulation of mycobacterium marinum in patients with ileal crohn’s disease, 

methanosphaera stadtmanae in patients with schizophrenia and chimpanzee herpesvirus 

in Lewy body dementia. 

From our in house Parkinson’s disease data, we were able to find potential biomarkers 

based on differential expression and classification for the early detection of PD. The top 

term for the gene ontology (GO) analysis of the two down-regulated miRNAs is axon 

development, suggesting their role in PD. Moreover, gene targets of the sRNAs for the 

top important features (potential biomarkers) for PD using classification were overlapping 

with the targets of the known PD miRNAs. Additionally, GO analysis for the targets of the 

three novel miRNAs are neuron differentiation, generation of neurons, neurogenesis and 
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regulation of intracellular signal transduction (Fig. 4f). We think these novel miRNAs 

should be further explored and validated in the laboratory.  

Lastly, researchers have used massive sRNA data from SEA for other tasks, for 

example, it enables to use deep learning for data augmentation problem such as 

predicting sex and tissue based on sRNA expression profiles (Fiosina et al., 2019). As 

such, SEA should be a valuable addition to the landscape of sRNA-seq web applications. 

 

Material and methods 

miRNA tissue specificity :  To compute tissue specificity index (TSI) for all the miRNAs 

in SEA, we calculated median of reads per million (RPM) for each miRNAs within a 

dataset having the same tissue. Healthy and diseased samples were mixed for tissues 

within the same dataset.  Shannon entropy from BioQC R package was used to calculate 

TSI for each miRNA across tissues. 

Novel miRNA gene targets : miRDB (Wong et al., 2015) was used to obtain targets of 

the novel miRNAs. We restricted the analysis to highly probable gene targets having a 

score of 70 or more. 

Text mining pipeline: To extract miRNA-gene targets, a dedicated text mining pipeline 

that reads unstructured text data and outputs structured data that includes the detected 

and normalized genes and miRNAs as well as the relations between them. Named entity 

recognition software ProMiner (Hanisch et al., 2005, Fluck et al. 2007) and 

MiRNADetector (Bagewadi et al. 2015) are used to detect and normalize genes and 

miRNAs, respectively. Both detectors are incorporated in the BELIEF text mining pipeline 
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(Madan et al., 2016) that contains machine learning models to detect specific relations 

from the complete Medline abstracts. 

Gene enrichment analysis: Gene enrichment analysis was performed using webgestalt 

R package version 0.3.0. 

In house parkinson disease data: 

Isolation of total RNA from peripheral blood sample: Peripheral blood samples were 

collected into PAXgene Blood RNA tube (PreAnalytiX) from consenting patients and 

healthy controls, the tubes were gently inverted for multiple times, incubated for 20-24 

hours under room temperature and stored under -80 °C until processing. Total RNA was 

isolated using the PAXgene Blood RNA kit (PreAnalytiX) according to the manufacturer’s 

protocol. The purity and concentration of isolated RNA were measured with NanoDrop™ 

2000 spectrophotometer  (Thermo Fisher Scientific). The RNA integrity was determined 

by Agilent RNA 6000 Nanochip (Agilent Technologies) using the 2100 Bioanalyzer 

(Agilent Technologies).  

small RNA library preparation: Small RNA libraries were prepared using 1 ug high-

quality RNA following the protocol of Illumina TrueSeq small RNA library kit (Illumina). In 

brief, 3’adapter was denatured for 2 minutes under 70°C, and ligated to the RNA with T4 

RNA Ligase 2 deletion mutant for 1 hour at 28°C. Then the reaction was stopped with 

stop solution for 15 minutes under 28°C. Subsequently, 5’ adapter was denatured for 2 

minutes at 70°C , then added to the RNA with ATP and T4 DNA ligase for 1 hour under 

28°C . After adaptors ligation, the RNA was reverse transcribed to complement DNA 

(cDNA) by using SuperScript II Reverse Transcriptase (Thermo Fisher Scientific) and 

dNTPs for 1 hour at 50°C. Then, the cDNA was indexed and amplified with PCR mix and 
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primers supplied in the kit for 12 cycles (denaturing at  98°C for 30 s, annealing at 60°C 

for 30 s, extension at 72°C for 15 s, with a final extension at 72°C for 10 min). Amplified 

and indexed cDNAs were then pooled together, mixed with DNA loading dye and loaded 

on a 5% TBE acrylamide gels (Bio-Rad). After 57 minutes electrophoresis under 145 V, 

the gel was stained with Midori Green for 5 minutes and viewed under the UV 

transilluminator, fragments between Illumina’s custom ladder 145 bp to 160 bp were cut 

out for library preparation. The gel was centrifuged at 20,000 x g for 2 minutes through a 

Gel Breaker tube (Bio-Cat). Then cDNA was eluted from the homogenized gel by adding 

300ul UltraPure water and shaking under 800 x rpm for 2 hours. Then the gel was 

transferred on a 5 um filter tube (Bio-Cat) and centrifuged for 10 seconds under 600 x g 

and the gel debris was separated. Afterward, 2ul Glycoblue, 30ul of 3M sodium acetate 

and 975ul 100% ethanol (pre-chilled under -20°C) were added and well mixed to the 

sample, following an immediate centrifuge at 20,000 x g for 20 minutes under 4°C. After 

remove and discard the supernatant, the pellet was washed with 500ul 70% pre-chilled 

ethanol. The supernatant was discarded after sample being centrifuged at 20,000 x g for 

2 minutes under room temperature, and the pellet was dried in a 37°C heat block for 10 

minutes with open lid. Finally, the pellet was resuspended in 10ul 10mM Tris-HCL (pH 

8.5) and the sample quality was checked using Agilent High Sensitivity DNA chip (Agilent 

Technologies) using the 2100 Bioanalyzer (Agilent Technologies). All high quality libraries 

were then sequenced on Illumina HiSeq 2000 Sequencer.  

List of abbreviations 

SRA: Sequence Read Archive    GEO: Gene Expression Omnibus 

sRNA: Small RNA  miRNA: MicroRNA  DB: Database 
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Table 1. Supported SEA organisms and their corresponding genome versions. 

Organism genome-version genome-date 

Bos taurus UMD3.1 2009-11 

Caenorhabditis elegans WBcel235 2012-12 

Danio rerio GRCz10 2014-09 

Drosophila melanogaster BDGP6 2014-07 

Mus musculus GRCm38 2012-01 

Gallus gallus Galgal4 2011-11 

Rattus norvegicus Rnor_6.0 2014-07 

Homo sapiens GRCh38 2013-12 

Sus scrofa Sscrofa10.2 2011-08 

Anopheles gambiae AgamP4 2006-02 
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Table 2. Comparison of sRNA expression databases. 

Feature SEA miRmine1 DASHR22 miratlas3 YM500v34 

Organisms 10 1 1 2 1 

sRNA types 5 1 5 1 5 

Samples >4200 304 802 461 >8000* 

Novel miRNAs +     

Ontology search# +     

sRNA DE +    + 

sRNA Classification +     

Pathogen k-mer expression +     

Pathogen k-mer DE +     

miRNA targets +    + 

miRNA disease associations +     

User data upload +     

Cross study comparisons +     

Re-analysis with selected 

samples 

+     

Dataset search +   +  

Genome versions    +   

Modification Analysis      +  

This table includes recent sRNA expression databases and a list of features we deem relevant. *Supports 

mainly cancer-related datasets. #Use of ontological graphs for the annotation and querying of samples. 

1(Panwar et al., 2017), 2(Kuksa et al., 2019), 3(Vitsios et al., 2017), 4(Chung et al., 2017). 
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Table 3. SEA keys and used ontologies (as of June 2019). 

Key Ontology(s) # Annotations # Terms 

Organism NCBI Taxonomy1 4235 126 

Tissue BRENDA tissue / enzyme 

source2 

3021 190 

Disease Human Disease Ontology3 1951 287 

Cell type Cell Ontology4 732 304 

Cell line Cell Line Ontology5 

Experimental Factor Ontology6 

663 

134 

132 

76 

 

Table 4. SEA browser compatibility 

Browser Version 

Chrome 61.0.3163.100, 62.0.3202.62 

Mozilla Firefox 55.0.3, 56.0 (64-bit), 57.0 (64-bit) 

Chromium 62.0.3202.75 

Safari 11.0.1 

Internet explorer 11 

Browsers that are used to test SEA functionalities. 

                                                           
1 https://www.ncbi.nlm.nih.gov/taxonomy 
2 http://www.brenda-enzymes.info/ 
3 http://www.disease-ontology.org/ 
4 http://obofoundry.org/ontology/cl.html 
5 http://www.clo-ontology.org/ 
6 http://www.ebi.ac.uk/efo/ 
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Figure 1. SEA system architecture 

SEA system was developed using the modular system design approach (model-view-controller). The system has a presentation 

layer for user interface and visualization of search results. Presentation layer is followed by a business layer which transform 

complex user queries and distribute particular requests to the data access layer REST API services. There is a semantic data 

layer, to store and access primary and derived data together with annotations and links to secondary data. Annotation-DB stores 

metadata for experiments, samples, corresponding ontological terms as well as relations between dataset/sample, sample/term 

and term/term.  Association-DB contains information about sRNAs and genes chromosomal locations, miRNA target genes and 

miRNA disease associations. Expression-DB stores sRNA expression profiles, sRNA differential expression; sRNA based 

classification as well as pathogen detection and pathogen differential expression. It also store details about dataset processing 

pipeline and parameters. Oasis-DB was used to store novel predicted miRNA information. User DB contains in-house data 

uploaded by the end users from Oasis 2 pipeline. Semantic data integration layer integrates primary and secondary data into the 

mentioned databases. Microservices were implemented in order to achieve strong encapsulation and well-defined interfaces via 

REST APIs. 
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Figure 2. Tissue specific miRNAs  

Heatmaps show scaled expression (0-1) for each miRNA across all the tissues. 1 is maximum expression 

of a miRNA in that tissue compared to all other tissues. (a) Tissue specific miRNAs. miRNA across all 

tissues with TSI > 0.8 (n=591). (b) Ubiquitous miRNAs. miRNA expression across all tissues with TSI 

<= 0.2 (n=20). miRNAs names are omitted for simplicity. A complete list can be found in Supplementary 

Table 1. 
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Figure 3. Known and Novel bacterial or viral infections. (a) Known associations. Pathogen detection 

using seven datasets known to be infected with seven bacterial and three viral pathogens. Bar represents 

pathogen log2fold difference between the uninfected and infected state (Supplementary Table 2). Number 

on top of the bar denotes rank of the pathogen compared to all the other DE pathogens within the 

comparison (i.e., smallest adjusted p-value). (b) Novel associations. Heatmap shows log2fold difference 

of pathogens significantly upregulated in disease as compared to healthy (fold change > 1 and padj < 0.1) 

(Supplementary Table 2). Comparisons that have less than 6 pathogens significantly differentially 

expressed are selected for specificity. Details about dataset, comparison groups, log2fold and padj for both 

(a,b) are provided in (Supplementary Table 2). 
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Figure 4. In-house de novo Parkinson disease (DeNoPa). (a) sRNA DE Overlap. Overlap of 

upregulated sRNAs between in-house denopa (blue), AD (purple) and HD (orange). Overall nine 

neurodegenerative disease comparisons were considered and overlap was found with these two datasets. 

(b) Gene Ontology (GO) terms. Top 10 GO terms associated with the target genes of the two down 

regulated sRNAs. (c) sRNA classification Overlap. Overlap of classification features (sRNAs) between 

in-house denopa (blue), AD (two datasets) (purple) and HD (orange). (d) DeNoPa classification. 

Receiver‐operating characteristic (ROC) curve showing true‐ and false‐positive rates for DeNoPa disease 

prediction based on sRNA expression profile using 18 sRNAs in full model (blue) and 16 unique (not 

found in other neurodegenerative diseases) sRNAs (red). (e) PD associated genes. Network of PD 

associated genes and 13 known miRNAs from the classification. (f) GO terms for novel miRNAs. GO 

terms associated with the target genes of the three novel miRNAs from the classification. 
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Supplementary material 

1. Acquisition and analysis of sRNA datasets 

SEA acquires raw published sRNA-seq datasets and their primary annotation from Gene 

Expression Omnibus (GEO) and NCBI's Sequence Reads Archive (SRA) repository. GEO 

makes two databases in SQLite format available for download: GEOmetadb for 

annotations and SRAdb for SRA sequences. An automated data acquisition pipeline 

searches for new sRNA data bi-weekly, keeping SEA continuously updated. Following the 

acquisition of sRNA datasets, the SEA analysis workflow automatically analyzes new files 

using the Oasis 2.0 (http://oasis.ims.bio/). The SEA analysis workflow determines data 

quality and detects and quantifies sRNAs, including the prediction of novel, high-quality 

miRNAs. Low quality files are flagged automatically and subjected to manual curation. 

Any files not passing manual curation are removed from SEA. Subsequently, sRNA counts 

of high-quality samples are stored in the sRNA expression database while corresponding 

quality information is saved in the data quality repository. Pathogenic signatures from 

bacteria and viruses, supplying information on potentially infected samples is also 

incorporated into SEA. Additionally, SEA stores expression information of high-quality 

predicted miRNAs including the ID, organism, chromosomal location, precursor and 

mature sequences, structure, read counts, prediction scores, and detailed information on 

the software and its versions used to predict the miRNA. SEA’s primary analysis results 

including per sample quality and expression information can be examined and 
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downloaded as interactive web reports. Detailed information on the primary analysis of 

sRNAs and predicted miRNAs can be found in the Oasis 2 manuscript (Rahman et al.). 

2. Differential expression and Classification 

sRNA data differential expression (DE) and classification are obtained by passing obtained 

sRNA counts to DE and classification modules of Oasis. As biological conditions for 

comparisons, group annotations (Section 2.3) are used. This means that several 

comparisons inside of one dataset are possible. The results of DE analysis are mean value, 

fold change, p value and p adjusted value for each sRNA. The results of classification 

analysis are Gini index decrease for each sRNA.  

Those results show importance of the corresponding sRNA in distinguishing between two 

biological conditions. SEA stores above mentioned results together with group 

information, including annotations of conditions that were compared, list of samples in 

each group for provenance as well as DE and classification module version and initial 

settings for reproducibility. 

3. Semantic data layer 

Given diversity of biological data, the users of the corresponding information systems 

should be given a possibility to interpret data independently using common 

terminologies. For this purpose we developed a semantic data layer, which provides 

unified access to data together with metadata and interpretations. Metadata is 

normalized using ontologies, which makes annotations standardized and hierarchically 
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searchable. Data interpretations are represented by DE and classification result, 

described in Section 2. 

3.1. Ontologies 

In biological research, controlled biological vocabularies such as terminologies, 

ontologies, taxonomies play an important role for annotation, integration, and 

analysis of biological data. In order to allow for the interoperability of data, one 

important step is to standardize annotations using ontologies and semantic 

mapping (Schuurman and Leszczynski, 2008). Ontologies define standard terms, 

their properties, and the relations between them. Each term in the ontology has 

a unique identifier, and annotation terms that are connected to ontologies are 

called ‘normalized’. Another advantage of ontology use is a possibility to search 

by parent terms. Ontology is a hierarchical structure, where children are more 

specific as parents. Usually parents are connected to children using one of the two 

relations: “is-a” or “part-of”. “is-a” relation means that a child represents more 

specific term as a parent, for example Alzheimer’s disease is a tauopathy, 

tauopathy is a neurodegenerative disease. “part-of” relation means that a child is 

part of a parent, for example neocortex is part of a cerebral cortex, cerebral cortex 

is part of a brain. 

In order to enable the search across ontological hierarchies we integrated the 

relevant ontologies into the graph database Neo4j. Graph databases are NoSQL 

databases which support storage of objects and connections between them, as is 
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the case for ontologies. Following the manual curation, sample annotations are 

uploaded to the SEA annotation graph database including all ontological parent 

terms (having an ‘is-a’ or ‘part of’ relation to it). This allows search by ontology 

terms, as well as by their parents, which are in fact groups of terms (e.g. ‘cancer’ 

or ‘neurodegenerative disease’). SEA accesses ontologies via the Ontology Lookup 

Service using a REST interface, supporting complex and compound queries and 

query auto-completion. 

3.2. Annotation Process 

SEA’s sRNA annotation workflow maps free-text GEO annotations to standardized 

terms in three consecutive steps. In general, GEO data annotations are free text 

that can be parsed into key-value pairs. In a first fully automated step the 

annotation workflow extracts key-value relations and stores them in the 

annotation database. These key-value relations are extracted from an experiment 

or sample description text. It is unstructured and contains variety of information: 

therefore we opted for a NoSql annotation database with an optimized indexing 

for prototypical questions (supplementary section 2.4).  The second fully 

automated step normalizes the extracted keys and values using ontologies as 

standard dictionaries. SEA has a list of predefined keys, five of which (organism, 

tissue, disease, cell type, and cell line) can be currently queried for in SEA. Each 

extracted key is compared to predefined keys. For values, the ontologies are used 

as standard terminology dictionaries. For each pre-defined key, one or several 
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corresponding ontologies are used. Each extracted value is searched in the 

corresponding ontologies and, if the same or a similar term is found, we normalize 

the value by it.  

Automatic annotation is followed by semi-automatic manual curation. For that 

purpose, we developed an internal curation Web interface (Supplementary Fig 1) 

using Groovy/Grails7, which allows browsing and editing of annotations from the 

annotation database as well as manual normalization of keys and values in 

annotations, searching among pre-defined keys and corresponding ontologies. 

Thus, curators examine all keys and values for consistency and update missing or 

additional information with standardized terms where necessary (e.g. organism, 

tissue, cell type, cell line, disease). At the moment, all SEA annotations are 

manually curated, a quality standard that we intend to keep for every future SEA 

entry. 

3.3. Annotation criteria 

Some basic rules for annotation of sRNA-seq samples are discussed below: 

1. Annotations can be defined as experiment-level or sample-level 

annotations. Experiment level annotations are exactly the same for all 

samples of the dataset. Sample-level annotations differ among the 

samples of the dataset.  

                                                           
7 https://grails.org/ 
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2. In exceptional situations, when experiment-level and sample-level 

annotations have the same key, the corresponding sample will have two 

annotations with that key (local annotation does not override the global 

one).  

3. In cases, where alternatives exist for an annotation term, we tried to be as 

specific as possible. For example, in case the sample is from breast 

fibrosarcoma and the term “breast fibrosarcoma” is available we will try to 

annotate it with the same term, although it can be annotated with breast 

cancer as well i.e. we choose the term deepest in the ontology tree. 

4. In cases where the relevant term cannot be found in any ontology, we tried 

to normalize the terms with synonyms or slightly less specific. The aim was 

to annotate as much as possible to have standard terms rather than just 

textual information 

3.4. Annotation of groups 

Apart from sRNA expression, SEA contains also results of differential expression 

and classification between different biological conditions. In order to make these 

comparisons automatically possible, biologically meaningful comparisons are also 

annotated manually. This annotation belongs to a dataset and we call it “sample 

group”. Sample group annotation includes annotation fields, which are important 

to define groups to compare. For example: 
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1. In the case an experiment has healthy and diseased patients. The desired 

comparison will be to perform differential expression or classification 

based on these two groups of samples. In this case, sample group is 

annotated as disease. The field disease contains two distinct values – 

disease name (for example, Alzheimer’s disease) and “healthy”. And 

correspondingly, one comparison will be made. 

2. In the case an experiment contains two diseases and healthy controls. 

Sample group is annotated as disease. The field disease contains three 

values – disease 1 name (for example, Alzheimer’s disease) disease 2 name 

(for example, Frontotemporal Dementia) and “healthy”. Correspondingly, 

three comparisons will be made: healthy vs. disease 1, healthy vs. disease 

2 and disease 1 vs. disease 2. 

3. In the case an experiment contains one disease with two stages and 

healthy controls. In this case, sample group is annotated as disease + 

disease details. Correspondingly, three groups will be created: 

disease+stage1, disease+stage2, healthy. Correspondingly, three 

comparisons will be made: healthy vs. disease stage1, healthy vs. disease 

stage2 and disease stage1 vs. disease stage2. 

3.5. Querying and visualization  

Application programming interfaces (APIs) were developed to access data in SEA 

databases. We developed annotation-API to access annotation-DB, association-
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API to access association-DB, expression-API to access expression-DB, 

predictedMirna-API to access Oasis-DB and SEA business logic API to call all these 

APIs based on the end user request and then combine their results (responses) 

back to the end user. Each API answer particular queries as explained below. 

1. Annotation-API to access Annotation-DB, and answer questions like 

a. Get all the experiments for term (will return experiments and 

samples along with annotation details for term as well as for the 

sub-type of term). Term can be disease, tissue, cell line, cell type, 

organism or their combination 

2. Association-API to access Association-DB, and respond to questions like 

a. Get all gene targets for a miRNA. 

b. Get all diseases that are associated with a miRNA from literature. 

c. Get all miRNAs that are associated with a disease or it’s sub-types. 

d. Get genomic coordinates for sRNA or target genes. 

3. Expression-API to access Expression-DB and shows 

a. Get expression of one or more sRNAs in a particular or all 

experiments. 

b. Get list of experiments where a particular sRNA is differentially 

expressed. 

c. Get list of experiments where a particular sRNA is identified as 

potential biomarker via classification. 

d. Get expression of a pathogen in a particular or all experiments. 
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e. Get list of all experiments where a particular pathogen is 

differentially expressed. 

4. PredictedMirna-API to access Oasis-DB (Rahman et al.) and shows 

a. Get list of all novel predicted miRNAs from Oasis-DB 

b. Get genomic coordinates and sequence for predicted miRNA(s). 

5. User-API to access User-DB and gets 

a. Get list of all user specific experiments (uploaded by the user). 

b. Get list of experiments where a particular sRNA is differentially 

expressed in their own uploaded data. 

c. Get list of experiments where a particular sRNA is identified as 

potential biomarker via classification in their own uploaded data. 

6. SEA business logic API: was built in order to put all those APIs together and 

make necessary data transformations between frontend and other APIs. 

As a result, the user can make queries to answer biological questions like; 

a. What is expression of one more sRNAs in specific cell types or 

tissues? 

b. Is a particular sRNA differentially expressed in Alzheimer’s disease? 

c. Compare sRNAs across different studies? 

d. What are differentially expressed sRNAs in breast cancer and 

healthy women? 

e. Common differentially expressed sRNAs or potential sRNAs based 

biomarker across particular disease or tissue. 
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f. Expression of one or more novel miRNAs for known diseased 

states. 

g. Analysis results with all the quality information for 350 datasets 

and over 4200 samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/133199doi: bioRxiv preprint 

https://doi.org/10.1101/133199
http://creativecommons.org/licenses/by/4.0/


54 
 

Supplementary Figures 

 

Supplementary Fig.1. Annotation-DB. Objects in the SEA graph database (Neo4j). A fragment of the 

SEA graph database is visualized, where green nodes represent datasets, red nodes represent samples and 

blue nodes represent ontology terms. Grey edges represent ‘is a’ relations between the different datasets, 

samples, and ontology terms. 
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