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Feedforward neural networks provide the dominant model of how the brain performs visual8

object recognition. However, these networks lack the lateral and feedback connections,9

and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human10

and nonhuman primate brain. Here we investigate recurrent convolutional neural networks11

with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of12

connections yields four architectures (B, BT, BL, and BLT), which we systematically test13

and compare. We hypothesized that recurrent dynamics might improve recognition perfor-14

mance in the challenging scenario of partial occlusion. We introduce two novel occluded15

object recognition tasks to test the efficacy of the models, digit clutter (where multiple16

target digits occlude one another) and digit debris (where target digits are occluded by17

digit fragments). We find that recurrent neural networks outperform feedforward control18

models (approximately matched in parametric complexity) at recognising objects, both in19

the absence of occlusion and in all occlusion conditions. Recurrent networks were also20

found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural21

networks are better in two respects: (1) they are more neurobiologically realistic than their22

feedforward counterparts; (2) they are better in terms of their ability to recognise objects,23

especially under challenging conditions. This work shows that computer vision can benefit24

from using recurrent convolutional architectures and suggests that the ubiquitous recurrent25

connections in biological brains are essential for task performance.26

1 Introduction27

The primate visual system is highly efficient at object recognition, requiring only brief presentations28

of the stimulus to perform the task (Potter, 1976; Thorpe et al., 1996; Keysers et al., 2001).29
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Within 150ms of stimulus onset, neurons in inferior temporal cortex (IT) encode object information30

in a form that is robust to transformations in scale and position (Hung et al., 2005; Isik et al.,31

2014), and is predictive of human behavioural responses (Majaj et al., 2015).32

This rapid processing lends support to the idea that invariant object recognition can be explained33

through a feedforward process (DiCarlo et al., 2012), a claim that has been supported by the recent34

successes of feedforward neural networks in computer vision (e.g. Krizhevsky et al., 2012) and35

the usefulness of these networks as models of primate visual processing (Riesenhuber and Poggio,36

1999; Serre et al., 2007; Wallis and Rolls, 1997; Yamins et al., 2013, 2014; Khaligh-Razavi and37

Kriegeskorte, 2014; Güçlü and van Gerven, 2015).38

The success of feedforward models of visual object recognition has resulted in feedback processing39

being underexplored in this domain. However, both anatomical and functional evidence seems to40

suggest that feedback connections play a role in object recognition. For instance, it is well known41

that the ventral visual pathway contains similar densities of feedforward and feedback connections42

(Felleman and Van Essen, 1991; Sporns and Zwi, 2004; Markov et al., 2014), and functional43

evidence from primate and human electrophysiology experiments show that processing of object44

information unfolds over time, beyond what would be interpreted as feedforward processing (Sug-45

ase et al., 1999; Brincat and Connor, 2006; Freiwald and Tsao, 2010; Carlson et al., 2013; Cichy46

et al., 2014; Clarke et al., 2015). Some reports of robust object representations, normally at-47

tributed to feedforward processing (Isik et al., 2014; Majaj et al., 2015), occur within temporal48

delays that are consistent with fast local recurrent processing (Wyatte et al., 2014). This sug-49

gests that we need to move beyond the standard feedforward model if we are to gain a complete50

understanding of visual object recognition within the brain.51

Fast local recurrent processing is temporally dissociable from attentional effects in frontal and52

parietal areas, and is thought to be particularly important in recognition of the degraded objects53

(for a review see Wyatte et al., 2014). In particular, object recognition in the presence of occlusion54

is thought to engage recurrent processing. This is supported by the finding that recognition55

under these conditions produces delayed behavioural and neural responses, and recognition can56

be disrupted by masking, which is thought to interfere with recurrent processing (Johnson and57

Olshausen, 2005; Tang et al., 2014; Wyatte et al., 2012). Furthermore, competitive processing,58

which is thought to be supported by lateral recurrent connectivity (Adesnik and Scanziani, 2010),59

aids recognition of occluded objects (Kolankeh et al., 2015). Scene information can also be60

decoded from areas of early visual cortex that correspond to occluded regions of the visual field61

(Smith and Muckli, 2010) further supporting the claim that feedback processing is engaged when62

there is occlusion in the visual input.63

Occluded object recognition has been investigated using neural network models in previous work,64
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which found an important role for feedback connections when stimuli were partially occluded65

(O’Reilly et al., 2013). However, the type of occlusion used in these simulations, and previous66

experimental work, has involved fading out or deleting parts of images (Wyatte et al., 2012;67

Smith and Muckli, 2010; Tang et al., 2014). This does not correspond well to vision in natural68

environments where occlusion is generated by objects occluding one another. Moreover, deleting69

parts of objects, as opposed to occluding them, leads to poorer accuracies and differences in early70

event-related potentials (ERPs) that could indicate different effects on local recurrent processing71

(Johnson and Olshausen, 2005). Therefore, it is important to investigate the effects of actual72

object occlusion in neural networks to complement prior work on deletion.73

In scenes where objects occlude one another it is important to correctly assign border ownership74

for successful recognition. Border ownership can be thought of as indicating which object is the75

occluder and which object is being occluded. Border ownership cells require information from76

outside their classical receptive field and border ownership signals are delayed relative to the initial77

feedforward input, which both suggest the involvement of recurrent processing (Craft et al., 2007).78

A number of computational models have been developed to explain border ownership cells. What79

is common amongst these models is the presence of lateral or top-down connections (Zhaoping,80

2005; Sakai and Nishimura, 2006; Craft et al., 2007). The importance of recurrent processing for81

developing selectivity to border ownership further suggests that recurrence has an important role82

for recognising occluded objects.83

To test the effects of occlusion, we developed a new generative model for occlusion stimuli. The84

images contain parameterised, computer-generated digits in randomly jittered positions (option-85

ally, the size and orientation can also be randomly varied). The code for generating these images86

is made available at https://github.com/cjspoerer/digitclutter. The task is to correctly87

identify these digits. Different forms of occlusion are added to these images, including occlusion88

from non-targets and other targets present in the image, we refer to these as digit debris and digit89

clutter, respectively. The first form of occlusion, digit debris, simulates situations where targets90

are occluded by other objects that are task irrelevant. The second case, digit clutter, simulates91

occlusion where the objective is to account for the occlusion without suppressing the occluder,92

which is itself a target. This stimulus set has a number of benefits. Firstly, the underlying task93

is relatively simple to solve, which allows us to study the effects of occlusion and recurrence with94

small-scale neural networks. Therefore, any challenges to the network will only result from the95

introduction of occlusion. Additionally, as the stimuli are procedurally generated, they can be96

produced in large quantities, which enables the training of the networks.97

Recurrent processing is sometimes thought of as cleaning up noise, where occlusion is a special case98

of noise. A simple case of noise is additive Gaussian noise, but we hypothesise that recurrence is99

unlikely to show benefits in these conditions. Consider the case of detecting simple visual features100
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that show no variation, e.g. edges of different orientations. An optimal linear filter can be learnt101

for detecting these features. This linear filter would remain optimal under independent, additive102

Gaussian noise, as the expected value of the input and output will remain the same under repeated103

presentations. Whilst this result does not exactly hold for the case of non-linear filters that are104

normally used in neural networks, we might expect similar results. Therefore, we would expect105

no specific benefit of recurrence in the presence of additive Gaussian noise. If this is true, we106

can infer that the role of recurrence is not for performing object recognition in noisy conditions,107

generally. Otherwise, it would support the conclusion that reccurence is useful across a wider108

range of challenging conditions.109

In this work, we investigate object recognition using convolutional neural networks. We extend the110

idea of the convolutional architecture to networks with bottom-up (B), lateral (L), and top-down111

(T) connections in a similar fashion to previous work (Liang and Hu, 2015; Liao and Poggio, 2016).112

These connections roughly correspond to processing information from lower and higher regions in113

the ventral visual hierarchy (bottom-up and top-down connections), and processing information114

from within a region (lateral connections). We choose to use the convolutional architecture as it is115

a parameter efficient method for building large neural networks that can perform real-world tasks116

(LeCun et al., 2015). It is directly inspired by biology, with restricted receptive fields and feature117

detectors that replicate across the visual field (Hubel and Wiesel, 1968) and advances based118

on this architecture have produced useful models for visual neuroscience (Kriegeskorte, 2015).119

The interchange between biology and engineering is important for the progress of both fields120

(Hassabis et al., 2017). By using convolutional neural networks as the basis of our models, we121

aim to maximise the transfer of knowledge from these more biologically motivated experiments to122

applications in computer vision, and by using recurrent connections, we hope that our models will123

contribute to a better understanding of recurrent connections in biological vision whilst maintaining124

the benefits of scalability from convolutional architectures.125

To test whether recurrent neural networks perform better than feedforward networks at occluded126

object recognition, we trained and tested a range of networks to perform a digit recognition task127

under varying levels of occlusion. Any difference in performance reflects the degree to which128

networks learn the underlying task of recognising the target digits, and handle the occlusion when129

recognising the digit. To differentiate between these two cases we also look at how well networks130

trained on occluded object recognition generalise to object recognition without occlusion. We also131

test whether recurrence shows an advantage for standard object recognition and when dealing with132

noisy inputs, more generally, by measuring object recognition performance with and without the133

presence of additive Gaussian noise. Finally, we study whether any benefit of recurrence extends134

to occluded object recognition where the occluder is also a target, the networks are tested on135

multiple digit recognition tasks where the targets overlap.136
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2 Material and Methods137

2.1 Generative model for stimuli138

To investigate the effect of occlusion in object recognition, we opt to use a task that could be139

solved trivially without the presence of occlusion, computer generated digit recognition. Each140

digit uses the same font, colour, and size. The only variable is the position of the digit, which is141

drawn from a uniform random distribution. This means, the only invariance problem that needs142

to be solved is translation invariance, which is effectively built into the convolutional networks143

we use. Therefore, we restrict ourselves to only altering the level of occlusion to increase task144

difficulty. This means we need to use some challenging occlusion scenarios to differentiate between145

the models. However, this allows us to isolate the effects of occlusion and, by keeping the overall146

task relatively simple, we can use small networks, allowing us to train them across a wide range147

of conditions.148

We generate occlusion using two methods, by scattering debris across the image, digit debris,149

and by presenting overlapping digits within a scene, which the network has to simultaneously150

recognise, digit clutter.151

For digit debris, we obtain debris from fragments of each of the possible targets, taking random152

crops from randomly selected digits. Each of these fragments are then added to a mask that153

is overlaid on the target digit (Figure 1). As a result, the visual features of non-target objects,154

that the network has to ignore, are present in the scene. These conditions mean that summing155

the overall visual features present for each digit becomes a less reliable strategy for inferring the156

target digit. This is in contrast to deletion where there is only a removal of features that belong157

to the target.158

However, within natural visual scenes, occlusion is generated by other whole objects. These159

objects might also be of interest to the observer. In this scenario, simply ignoring the occluding160

objects would not make sense. In digit clutter, these cases are simulated by generating images161

with multiple digits that are sequentially placed in an image, where their positions are also drawn162

from a uniform random distribution. This generates a series of digits that overlap, producing a163

relative depth order. The task of the network is then to recognise all digits that are present.164

Design of these images was performed at high resolution (512 × 512 pixels) and, for computational165

simplicity, the images were resized to a low resolution (32 × 32 pixels) when presented to the166

network.167

In these experiments we use stimulus sets, that vary in either the number of digits in a scene168

- three digits, four digits, or five digits - or the number of fragments that make up the debris169
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Generate the digit Get random crops
for the debris

Overlay the debris 
on the digit

Figure 1: The process for generating stimuli for digit debris. First the target digit is generated.
Random crops of all possible targets are taken to create a mask of debris, which is applied to the
target as an occluder.

- 10 fragments (light debris), 30 fragments (moderate debris), or 50 fragments (heavy debris).170

Examples from these stimulus sets are shown in Figure 2. This allows us to measure how the171

performance of the networks differ across these task types and levels of occlusion.172

For each of these image sets, we randomly generated a training set of 100,000 images and a173

validation set of 10,000 images, which were used for the determining the hyperparameters and174

learning regime. All analyses where performed on an independent test set of 10,000 images.175

All images underwent pixel-wise normalisation prior to being passed to the network. For an input
pixel x in position i, j, this is defined as

x̂i,j =
xi,j − x̄i,j

sxi,j

(1)

where xi,j is the raw pixel value, x̄i,j is the mean pixel value and sxi,j
is the standard deviation176

of pixel values. The mean and standard deviation are computed for each specific position across177

the whole of the training data.178

To test the hypothesis that the benefit of recurrence is not simply for cleaning up noise, we also179

test the network on object recognition where the input has additive Gaussian noise. To prevent180

ceiling performance, we use the MNIST handwritten digit recognition data set (LeCun et al.,181

1998). The MNIST data set contains 60,000 images in total that are divided into a training set182

of 50,000 images, a validation set of 5,000 images, and a testing set of 10,000 images.183

We add Gaussian noise to these images after normalisation, which allows an easy interpretation in184

terms of signal to noise ratio. In this case, we use Gaussian noise with a standard deviation of 1185

and 2, which produces images with a signal-to-noise ratio (SNR) of 1 and 0.5, respectively.186
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10 fragments
(target: 3)

30 fragments
(target: 0)

50 fragments
(target: 2)

3 digits
(targets: 3, 5, 4

4 digits
(targets: 9, 4, 7, 1)

5 digits
(targets: 7, 8, 6, 3, 1)

Figure 2: High resolution examples from the stimulus sets used in these experiments. The top
row shows digit debris stimuli for each of the three conditions tested here, with 10, 30, and 50
fragments. The bottom row shows digit clutter stimuli with 3, 4, and 5 digits.

2.2 Models187

In these experiments we use a range of convolutional neural networks (for an introduction to this188

architecture, see Goodfellow et al., 2016). These networks can be categorised by the particular189

combination of bottom-up, lateral, and top-down connections that are present. As it does not190

make sense to construct the networks without bottom-up connections (as information from the191

input cannot reach higher layers), we are left with four possible architectures with the following192

connections, bottom-up only (B), bottom-up and top-down (BT), bottom-up and lateral (BL), and193

bottom-up, lateral and top-down (BLT). Each of these architectures are illustrated schematically194

in Figure 3.195

Adding top-down or lateral connections to feedforward models introduces cycles into the graphical196

structure of the network. The presence of cycles in these networks allow recurrent computations197

to take place, introducing internally generated temporal dynamics to the models. In comparison,198
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Input

BT BLT
La

ye
rs

BL

Readout Readout

Input Input Input

Readout

Bottom-up (B) Lateral (L) Top-down (T)

Figure 3: Schematic diagrams for each of the architectures used. Arrows indicate bottom-up
(blue), lateral (green), and top-down (red) convolutions.

temporal dynamics of feedforward networks can only be driven by changes in the input. The effect199

of recurrent connections can be seen through the unrolling of the computational graph across time200

steps. In these experiments, we run our models for four time steps and the resulting graph for201

BLT is illustrated in Figure 4.202

As the recurrent networks (BT, BL, and BLT) have additional connections compared to purely203

feedforward networks (B), they also have a larger number of free parameters (Table 1). To control204

for this difference, we test two variants of B that have a more similar number parameters to the205

recurrent networks. The first control increases the number of features that can be learned by the206

bottom-up connections and the second control increases the size of individual features (known as207

the kernel size). These are referred to as B-F and B-K, respectively. Conceptually, B-K is a more208

appropriate control compared to B-F, as it effectively increases the number of connections that209

each unit has, holding everything else constant. In comparison, B-F increases the number of units210

within a layer, altering the layers representational power, in addition to changing the number of211

parameters. However, B-F is more closely parameter matched to some of the recurrent models,212

which motivates the inclusion of B-F in our experiments.213
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Readout

Input

La
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rs
Readout

Input

Readout

Input

Readout

Input

Time

Figure 4: The computational graph of BLT unrolled over four time steps. The shaded boxes
indicate hidden layers that receive purely feedforward input (blue) and those that receive both
feedforward and recurrent input (purple).

2.2.1 Architecture overview214

All of the models tested consist of two hidden recurrent convolutional layers (described in Section215

2.2.2) followed by a readout layer (described in Section 2.2.3). Bottom-up and lateral connections216

are implemented as standard convolutional layers with a 1×1 stride. The feedforward inputs217

between the hidden layers go through a max pooling operation, with a 2×2 stride and a 2×2218

kernel. This has the effect of reducing the height and width of a layer by a factor of two. As a219

result, we cannot use standard convolutions for top-down connections, as the size of the top-down220

input from the second hidden layer would not match the size of the first hidden layer. To increase221

the size of the top-down input, we use transposed convolution (also known as deconvolution Zeiler222

et al., 2010) with an output stride of 2×2. This deconvolution increases the size of the top-down223

input so that it matches the size of the first hidden layer. The connectivity of this layer can be224

understood as a normal convolutional layer with 2×2 stride where the input and output sides of225

the layer have been switched.226

As feedforward networks do not have any internal dynamics and the stimuli are static, feedforward227

networks only run for one time step. Each of the recurrent networks are run for four time steps.228

This is implemented as a computational graph unrolled over time (Figure 4), where the weights229
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Model Kernel size No. Features No. parameters No. units

B 3 × 3 32 9,920 40,970

B-F 3 × 3 64 38,272 81,930

B-K 5 × 5 32 26,816 40,970

BT 3 × 3 32 19,168 40,970

BL 3 × 3 32 28,416 40,970

BLT 3 × 3 32 37,568 40,970

Table 1: Brief descriptions of the models used in these experiments including the number of
learnable parameters and the number of units in each model.

for particular connections are shared across each time step. The input is also replicated at each230

time point.231

To train the network, error is backpropagated through time for each time point (Section 2.2.4),232

which means that the network is trained to converge as soon as possible, rather than at the final233

time step. However, when measuring the accuracy, we use the predictions at the final time step234

as this generally produces the highest accuracy.235

2.2.2 Recurrent convolutional layers236

The key component of these models is the recurrent convolutional layer (RCL). The inputs to237

these layers are denoted by h(τ,m,i,j), which represents the vectorised input from a patch centred238

on location i, j, in layer m, computed at time step τ , across all features maps (indexed by k).239

We define h(τ,0,i,j) as the input image to the network.240

For B, the lack of recurrent connections reduces RCLs to a standard convolutional layer where241

the pre-activation at time step τ for a unit in layer m, in feature map k, in position i, j is defined242

as243

zτ,m,i,j,k = (wb
m,k)

T h(τ,m−1,i,j) + bm,k (2)

where τ = 0 (as B only runs for a single time step) the convolutional kernel for bottom-up244

connections is given in vectorised format by wb
m,k and the bias for feature map k in layer m is245

given by bm,k.246

In BL, lateral inputs are added to the pre-activation, giving247
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zτ,m,i,j,k = (wb
m,k)

T h(τ,m−1,i,j) + (wl
m,k)

T h(τ−1,m,i,j) + bm,k (3)

The term for lateral inputs (wl
m,k)

T h(τ−1,m,i,j) uses the same indexing conventions as the bottom-248

up inputs in Equation 2, where wl
m,k is the lateral convolutional kernel in vectorised format. As249

the lateral input is dependent on outputs computed on the timestep τ − 1, they are undefined for250

the first time step, when τ = 0. Therefore, when τ = 0 we set recurrent inputs to be a vector of251

zeros. This rule applies for all recurrent input, including top-down inputs.252

In BT, we add top-down inputs to the pre-activation instead of lateral inputs. This gives253

zτ,m,i,j,k = (wb
m,k)

T h(τ,m−1,i,j) + (wt
m,k)

T h(τ−1,m+1,i,j) + bm,k (4)

Where the top-down term is (wt
m,k)

T h(τ−1,m+1,i,j), and wt
m,k is the top-down convolutional kernel254

in vectorised format. In our models, top-down connections can only be received from other hidden255

layers. As a result, top-down inputs are only given when m = 1 and otherwise they are set to a256

vector of zeros. The rule for top-down inputs also applies to top-down inputs in BLT.257

Finally, we can add both lateral and top-down inputs to the pre-activation, which generates the258

layers we use in BLT259

zτ,m,i,j,k = (wb
m,k)

T h(τ,m−1,i,j) + (wl
m,k)

T h(τ−1,m,i,j) + (wt
m,k)

T h(τ−1,m+1,i,j) + bm,k (5)

The output, hτ,m,i,j,k, is calculated using the same operations for all layers. The pre-activation260

zτ,m,i,j,k is passed through a layer of rectified linear units (ReLUs), and local response normalization261

(Krizhevsky et al., 2012).262

ReLUs are defined as263

σz(zτ,m,i,j,k) = max({0, zτ,m,i,j,k}) (6)

and local response normalisation is defined for input xτ,m,i,j,k as264

ω(xτ,m,i,j,k) = xτ,m,i,j,k

c+ α

min(n−1,k+n/2)∑
k′=max(0,k−n/2)

x2
τ,m,i,j,k′

−β

(7)
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For local response normalisation, we use n = 5, c = 1, α = 10−4, and β = 0.5 throughout. This265

has the effect of inducing competition across the n closest features within a spatial location. The266

features are ordered arbitrarily and this ordering is held constant.267

The output of layer l at time step t is then given by268

hτ,m,i,j,k = ω(σz(zτ,m,i,j,k)) (8)

2.2.3 Readout layer269

In the final layer of each time step, a readout is calculated for each class. This is performed in270

three steps. The first stage is a global max pooling layer, which returns the maximum output271

value for each feature map. The output of the global max pooling layer is then used as input272

to a fully connected layer with 10 output units. These outputs are passed through a sigmoid273

non-linearity, σy(x), defined as274

σy(x) =
1

1 + e−x
(9)

This has the effect of bounding the output between 0 and 1. The response of each of these275

outputs can be interpreted as the probability that each target is present or not.276

2.2.4 Learning277

At each time step, the networks give an output from the readout layer, which we denote ŷt, where278

we interpret each output as the probability that a particular target is present or not.279

In training, the objective is to match this output to a ground truth y, which uses binary encoding280

such that its elements yi are defined as281

yi =

1 if i ∈ y′

0 otherwise
(10)

Where y′ is the list of target digits present.282

We used cross-entropy to calculate the error between ŷt and y, which is summed across all time283

steps284
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E(ŷ,y) = −
T∑
t=0

N∑
i=0

yi · log ŷt,i + (1− yi) · log(1− ŷt,i) (11)

L2-regularisation is included, with a coefficient of λ = 0.0005, making the overall loss func-285

tion286

L(ŷ,y) = E(ŷ,y) + λ||w||2 (12)

Where w the vector of all trainable parameters in the model.287

This loss function was then used to train the networks by changing the parameters at the end of288

each mini-batch of 100 images according to the momentum update rule289

vn+1 = µvn − ε
∂L(ŷ,y)

∂w
(13)

wn+1 = wn + vn+1 (14)

Where n is the iteration index, µ is the momentum coefficient, and ε is the learning rate. We use290

µ = 0.9 for all models and set ε by the following weight decay rule291

εn = ηδ
e
d (15)

Where η is the initial learning rate, δ is the decay rate, e is the epoch (a whole iteration through292

all training images), and d is the decay step. In our experiments we use η = 0.1, δ = 0.1, and293

d = 40. All networks were trained for 100 epochs. The parameters for the training regime where294

optimized manually using the validation set.295

2.3 Analysing model performance296

2.3.1 Comparing model accuracy297

We measured the performance of the networks by calculating the accuracy across the test set. For298

digit clutter tasks with multiple labels, we took the top-n class outputs as the network predictions,299

where n is the number of digits present in that task.300
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Accuracy was compared within image sets by performing pairwise McNemar’s tests between all of301

the trained models (McNemar, 1947). McNemar’s test is used here, which uses the variability in302

performance across stimuli as the basis for statistical inference (Dietterich, 1998). This does not303

require repeated training from different random seeds, which is both computationally expensive,304

and redundant, as networks converge on highly similar performance levels. By avoiding the305

need to retrain networks from different random initialisations we are able to explore a variety of306

qualitatively different architectures and infer differences between them.307

To mitigate the increased risk of false positives due to multiple comparisons, we control the false308

discovery rate (the expected proportion of false positives among the positive outcomes) at 0.05 for309

each group of pairwise tests using the Benjamini-Hochberg procedure (Benjamini and Hochberg,310

1995).311

2.3.2 Comparing model robustness312

To understand whether networks have varying levels of robustness to increased task difficulty (i.e.313

increased levels of debris, clutter, and Gaussian noise), we test for differences in the increase in314

error between all networks as task difficulty increases.315

To achieve this, we fit a linear model to the error rates for each network separately, with the316

difficulty levels as predictors (e.g. light debris = 1, moderate debris = 2, heavy debris = 3). We317

extract the slope parameters from the linear models for a pair of networks and test if the difference318

in these slope parameters significantly differs from zero, by using a permutation test319

To construct a null distribution for the permutation test, we randomly shuffle predictions for320

a single image between a pair of networks. Error rates are then calculated for these shuffled321

predictions. A linear model is fit to these sampled error rates, for each model separately, and the322

difference between the slope parameters is entered into the null distribution. This procedure is323

run 10,000 times to approximate the null distribution. The p-value for this test is obtained by324

making a two-tailed comparison between the observed value for the difference in slope parameters325

and the null distribution. Based on the uncorrected p-values, a threshold is chosen to control the326

FDR at 0.05.327
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Figure 5: Classification error for all models on single digit detection under varying levels of debris.
Examples of the images used to train and test the networks are also shown. Matrices to the right
indicate significant results of pairwise McNemar tests. Comparisons are across models and within
image sets. Black boxes indicate significant differences at p < 0.05 when controlling the expected
false discovery rate at 0.05.

3 Results328

3.1 Recognition of digits under debris329

3.1.1 Learning to recognise digits occluded by debris330

Networks were trained and tested to recognise digits under debris to test for a particular benefit331

of recurrence when recognising objects under structured occlusion. We used three image sets332

containing different levels of debris, 10 fragments (light debris), 30 fragments (moderate debris),333

and 50 fragments (heavy debris). For every model, the error rate was found to increase as the334

level of debris in the image increased (Figure 5)335

Under light and moderate debris, all but one of the pairwise differences were found to be sig-336

nificant (FDR = 0.05) with no significant difference between BL or BLT for light (χ2(1, N =337

10, 000) = 0.04, p = 0.835) and moderate debris (χ2(1, N = 10, 000) = 0.00, p = 0.960). Of338

the feedforward models, B-K was the best performing. The error rates for each of the models are339

shown in Table 2.340

Under heavy debris all pairwise differences were significant (FDR = 0.05) including the difference341
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Image set B B-F B-K BT BL BLT

Light debris 6.24% 4.23% 1.73% 1.30% 0.77% 0.80%

Moderate debris 40.73% 31.16% 11.68% 7.31% 3.72% 3.70%

Heavy debris 75.63% 68.49% 29.58% 17.01% 11.13% 9.32%

Table 2: Classification error for all of the models on single digit detection with varying levels of
debris.

Image set B B-F B-K BT BL BLT

Tested on debris 75.63% 68.49% 29.58% 17.01% 11.13% 9.32%

Tested without debris 79.37% 69.88% 0.34% 3.10% 2.11% 0.55%

Table 3: Classification error for all of the models on single digit detection when trained on heavy
debris and tested without debris.

between BL and BLT, which was not significant under light and moderate debris, with BLT out-342

performing BL. This suggests that at lower levels of occlusion, feedforward and lateral connections343

are sufficient for good performance. However, top-down connections become beneficial when the344

task involves recognising digits under heavier levels of debris.345

3.1.2 Learning to recognise unoccluded digits when trained with occlusion346

To test if the networks learn a good model of the digit when trained to recognise the digit under347

debris, we test the performance of networks when recognising unoccluded digits.348

When networks were trained to recognise digits under heavy debris, and tested to recognise349

unoccluded digits, we found all pairwise differences to be significant (FDR = 0.05, Figure 6). The350

best performing network was B-K, followed by recurrent networks. B and B-F performed much351

worse than all of the other networks (Table 3).352

These results show that feedforward networks (specifically B-K) can perform very well at recog-353

nising the digit without occlusion, when trained to recognise digits under occlusion. This suggests354

that they have learnt a good model of the underlying task of digit recognition. However, B-K per-355

forms worse than the recurrent models when recognising the target under occlusion. This indicates356

that B-K has difficulty recognising the digit under occlusion rather than a problem learning to357

perform the task of digit recognition given the occluded training images. In comparison, recurrent358

networks show much lower error rates when recognising the target under occlusion.359
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Figure 6: Classification error for all models trained under heavy debris conditions and tested with
or without debris. Examples of the images used to train and test the networks are also shown.
Matrices to the right indicate significant results of pairwise McNemar tests. Comparisons are
across models and within image sets. Black boxes indicate significant differences at p < 0.05
when controlling the expected false discovery rate at 0.05.

3.2 Recognition of multiple digits360

To examine the ability of the networks to handle occlusion when the occluder is not a distractor,361

the networks were trained and tested on their ability to recognise multiple overlapping digits.362

When recognising three digits simultaneously, recurrent networks generally outperformed feed-363

forward networks (Figure 7), with the exception of BT and B-K where no significant difference364

was found (χ2(1, N = 30, 000) = 3.53, p = 0.06). All other differences were found to be sig-365

nificant (FDR = 0.05). A similar pattern is found when recognising both four and five digits366

simultaneously. However, in both four and five digit tasks, all pairwise differences were found367

to be significant, with B-K outperforming BT (Figure 7). This suggests that, whilst recurrent368

networks generally perform better at this task, they do not exclusively outperform feedforward369

models.370

3.3 MNIST with Gaussian noise371

To test the hypothesis that the benefit of recurrence does not extend to dealing with noise in372

general, we test the performance of the networks on MNIST with unstructured additive Gaussian373
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Figure 7: Classification error for all models on multiple digit detection with varying number so of
digits. Examples of the images used to train and test the networks are also shown. Matrices to
the right indicate significant results of pairwise McNemar tests. Comparisons are across models
and within image sets. Black boxes indicate significant differences at p < 0.05 when controlling
the expected false discovery rate at 0.05.

Image set B B-F B-K BT BL BLT

3 digits 9.35% 6.30% 3.74% 3.97% 2.45% 1.85%

4 digits 15.95% 12.37% 9.43% 10.88% 6.69% 5.94%

5 digits 19.57% 16.50% 13.97% 15.80% 12.31% 11.50%

Table 4: Classification error for all of the models on multiple digit recognition with varying numbers
of targets.
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Image set B B-F B-K BT BL BLT

No Noise 2.99% 2.42% 1.43% 0.95% 0.95% 0.95%

SNR = 1 13.01% 10.59% 4.04% 1.82% 2.01% 1.96%

SNR = 0.5 39.04% 35.15% 17.44% 8.69% 11.51% 8.85%

Table 5: Classification error for all of the models on MNIST with varying levels of Gaussian noise.

noise.374

The error rates for all models were found to grow as the amount of noise increased (Table 5).375

Recurrent networks performed significantly better than the feedforward models on MNIST (FDR376

= 0.05). This supports the idea that recurrent networks are not only better at recognition under377

challenging conditions, but also in more standard object recognition tasks.378

All pairwise differences were found to be significant between feedforward models. Recurrent379

networks continued to outperform feedforward networks with the addition of Gaussian noise (Fig-380

ure 8).381

At the highest noise levels (SNR = 0.5), BL was found to perform significantly worse than both BT382

(χ2(1, N = 10, 000) = 61.69, p < 0.01) and BLT (χ2(1, N = 10, 000) = 55.12, p < 0.01). This383

means that top-down connections might be more useful for than lateral connections recognising384

digits under high levels of additive Gaussian noise.385

3.4 Robustness under challenging conditions386

When testing for robustness to increasing levels of debris and Gaussian noise, we found that387

recurrent networks were always more robust than the feedforward networks. This relationship was388

not found in the case of clutter. Only one network, BT, was found to be significantly less robust389

to increases in clutter, and all other networks were found to have similar levels of robustness390

(Figure 9).391

Within feedforward networks, B-K was always the most robust to debris and noise, and B-F was392

always more robust than B. Within recurrent networks, BLT was the most robust to debris and393

BL was more robust to debris than BT. However, BLT and BT were more robust than BL to394

Gaussian noise.395

These results suggest that, when debris or Gaussian noise are added, recurrent models take smaller396

hits to the error rate than feedforward networks. However, when clutter is added, recurrent397

networks (though still better in absolute performance) take similar hits to the error rate.398
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Figure 8: Classification error for all models on recognition in MNIST with and without Gaussian
noise. Examples of the images used to train and test the networks are also shown. Matrices to
the right indicate significant results of pairwise McNemar tests. Comparisons are across models
and within image sets. Black boxes indicate significant differences at p < 0.05 when controlling
the expected false discovery rate at 0.05.

More specifically, in the scenarios tested here, lateral recurrence seem to have greater benefit when399

handling debris and top-down connections improve robustness to Gaussian noise. By utilising400

both lateral and top-down connections, BLT is more robust to both increasing levels of debris and401

increasing levels of Gaussian noise.402

4 Discussion403

We found support for the hypothesis that recurrence helps when recognising objects in a range of404

challenging conditions, as well as aiding recognition in more standard scenarios. The benefit of405

recurrence for object recognition in challenging conditions appears to be particularly strong in the406

case of occlusion generated by a non-target and the addition of Gaussian noise, with recurrent407

networks appearing more robust. In the multiple digit recognition tasks, where the occlusion is408

generated by other targets, the best performing networks are still recurrent. However, recurrent409

networks are not more robust, than feedforward networks, to an increased number of digits.410

Of the feedforward models, B-K is always the best performing and can outperform recurrent models411

in some tasks, in the case of multiple digit recognition. One potential explanation is that B-K412
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model in column is more robustmodel in row is more robust

Figure 9: Pairwise differences in model robustness to increased task difficulty. Arrows indicate
the more robust model out of the pair tested.

incorporates some of the benefits of recurrence by having a larger receptive field. This is because413

recurrence increases the effective receptive field of a unit by receiving input from neighbouring414

units. This may also explain why BT tends to be the worst performing recurrent model (and415

outperformed by B-K) in some tasks. BT does not have lateral connections that more directly416

integrate information from neighbouring units, but information has to go through a higher layer417

first in order to achieve this. The difference in performance between BT and BL may also tell us418

about what tasks benefit more directly from incorporating information from outside the classical419

receptive field (where BL shows an advantage) as opposed to specifically utilising information420

from more abstract features (where BT shows an advantage). In these experiments, BLT is the421

best performing network across all tasks, showing that it is able to utilise the benefits of both422

lateral and top-down connections.423

We find evidence to suggest that feedforward networks have particular difficulty recognising objects424

under occlusion generated by debris, and not just learning the task of recognising digits when425

trained with heavily occluded objects (Section 3.1.2). This gives specific support to the hypothesis426

that recurrent processing helps in occluded object recognition.427

Recurrent networks also outperformed the parameter matched controls on object recognition tasks428

where no occlusion was present (Section 3.3). This is consistent with previous work that has shown429

that recurrent networks, similar in architecture to the BL networks used here, perform strongly430

compared to other feedforward models with larger numbers of parameters (Liang and Hu, 2015).431

Therefore, some level of recurrence may be beneficial in standard object recognition, an idea that432

is supported by neural evidence that shows object information unfolding over time, even without433
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the presence of occlusion (Sugase et al., 1999; Brincat and Connor, 2006; Freiwald and Tsao,434

2010; Carlson et al., 2013; Cichy et al., 2014; Clarke et al., 2015).435

This work suggests that networks with recurrent connections generally show performance gains436

relative to feedforward models when performing a broad spectrum of object recognition tasks.437

However, it does not indicate which of these models best describe human object recognition.438

Future comparisons to neural or behavioural data will be needed to test the efficacy of these439

models. For example, as these models are recurrent and unfold over time, they can be used to440

predict human recognition dynamics for the same stimuli, such as reaction time distributions and441

the order that digits are reported, in the multiple digit recognition tasks.442

Furthermore, we can study whether the activation patterns of these networks predict neural443

dynamics of object recognition. This is similar to previous work that has attempted to explain444

neural dynamics of representations using individual layers of deep feedforward networks (Cichy445

et al., 2016), but by using the recurrent models we can directly relate temporal dynamics in the446

model to temporal dynamics in the brain. For instance, in tasks with multiple targets (such as447

those in Section 3.2) we can look at the target representations over recurrent iterations and layers448

in the model, and compare this to the spatiotemporal dynamics of multiple object representations449

in neural data. Testing these models against this experimental data will allow us to better450

understand the importance of lateral and top-down connections, in these models, for explaining451

neural data.452

In addition, whilst we know that adding recurrent connections leads to performance gains in these453

models, we do not know the exact function of these recurrent connections. For instance, in the454

case of occlusion, the recurrent connections might complete some of the missing information455

from occluded regions of the input image, which would be consistent with experimental evidence456

in cases where parts of the image have been deleted (O’Reilly et al., 2013; Smith and Muckli,457

2010). Alternatively, as our occluders contain visual features that could be potentially misleading,458

recurrent connections may have more of an effect of suppressing the network’s representation459

of the occluders through competitive processing (Adesnik and Scanziani, 2010; Kolankeh et al.,460

2015). Recurrent connectivity could also learn to produce border ownership cells that would461

help in identifying occluders in the image (Zhaoping, 2005; Sakai and Nishimura, 2006; Craft462

et al., 2007), which would help suppress occluders in tasks where occluders are non-targets. If463

these networks are to be useful models of visual processing, then it is important that future work464

attempts to understand the underlying processes taking place.465

It could be argued that BLT performs the best due to the larger number of parameters it can466

learn. However, we know that the performance of these networks is not only explained by the467

number of learnable parameters, as B-F has the largest number of parameters of the models468
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tested (Table 1) and performs poorly in all tasks relative to the recurrent models. Finding exactly469

parameter matched controls for these models that are conceptually sound is difficult. As discussed470

earlier (Section 2.2), altering the kernel size of the feedforward models is the best control, but471

this provides a relatively coarse-grained way to match the number of parameters. Altering the472

number of learnt features allows more fine-tuned controls for the number of parameters, but this473

also changes the number of units in the network, which is undesirable. We believe that the models474

used here represent a good compromise between exact parameter matching and the number of475

units in each model.476

This research suggests that recurrent convolutional neural networks can outperform their feed-477

forward counterparts across of diverse set of object recognition tasks and that they show greater478

robustness in a range of challenging scenarios, including occlusion. This builds on previous work479

showing a benefit of recurrent connections in non-convolutional networks where parts of target480

objects are deleted (O’Reilly et al., 2013). This work represents initial steps for using recurrent481

convolutional neural networks as models of visual object recognition. Scaling up these networks482

and training them on large sets of natural images (e.g. Russakovsky et al., 2015) will also be483

important for developing models that mirror processing in the visual system more closely. Future484

work with these networks will allow us to capture temporal aspects of visual object recognition that485

are currently neglected in most models, whilst incorporating the important spatial aspects that486

have been established by prior work (DiCarlo et al., 2012). Modelling these temporal properties487

will lead to a more complete understanding of visual object recognition in the brain.488
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