
Ketamine and short-term plasticity 
 

1 

 

 
NMDA receptor blockade causes selective prefrontal 
disinhibition in a roving auditory oddball paradigm 
 
Rosch RE*1,2, Auksztulewicz R1,3, Leung PD1, Friston KJ1, Baldeweg T2 
 

1Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK. 2Developmental Neurosciences 
Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 3EH, UK. 3Department 
of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK 

 
 
ABSTRACT 
 
N-methyl-D-aspartate receptors (NMDARs) are 
expressed widely throughout the human cortex. Yet 
disturbances in NMDAR transmission – as 
implicated in patients with schizophrenia or 
pharmacologically induced – can cause a regionally 
specific set of electrophysiological effects. Here, we 
present a double-blind placebo-controlled study of 
the effects of the NMDAR blocker ketamine in 
human volunteers. We employ a marker of auditory 
learning and putative synaptic plasticity – the 
mismatch negativity – in a roving auditory oddball 
paradigm. Using recent advances in Bayesian 
modelling of group effects in dynamic causal 
modelling, we fit biophysically plausible network 
models of the auditory processing hierarchy to 
whole-scalp evoked response potential recordings. 
This allowed us to identify the regionally specific 
effects of ketamine in a distributed network of 
interacting cortical sources. Under placebo, our 
analysis replicated previous findings regarding the 
effects of stimulus repetition and deviance on 
connectivity within the auditory hierarchy. 
Crucially, we show that the effect of ketamine is 
best explained as a selective change in intrinsic 
inhibition, with a pronounced ketamine-induced 
reduction of inhibitory interneuron connectivity in 
frontal sources. These results are consistent with 
findings from invasive recordings in animal models 
exposed to NMDAR blockers, and provide evidence 
that inhibitory-interneuron specific NMDAR 
dysfunction may be sufficient to explain 
electrophysiological abnormalities of sensory 
learning induced by ketamine in human subjects.  
 
INTRODUCTION 
 
N-methyl-D-aspartate receptor (NMDAR) hypofunction 
is believed to be one of the primary causes of 
schizophrenia, a common neuropsychiatric condition 
(1–5). In healthy human subjects, pharmacological 
interventions such as exposure to ketamine, which acts 
as a non-competitive NMDAR antagonist, can in part 
reproduce a recognisable set of symptoms and signs 
(such as delusional beliefs, hallucinations, working 
memory deficits and social withdrawal), and 
electrophysiological brain abnormalities associated with 
schizophrenia (6–8). Molecular genetics and cellular 
neuroscience have provided many important insights 

into the underlying pathophysiology. These approaches 
often identify abnormalities at the level of 
neurotransmitters and their receptors (9, 10), neuronal 
microstructural changes (11, 12) and localised features 
of neuroanatomy (13). However, relating 
pathophysiological hypotheses based on these findings 
to dysfunction at the whole-brain level in schizophrenia 
remains challenging (1, 14). 
 
Computational models of neuronal function – often 
framed at the scale of neuronal populations – offer a 
bridge between putative synaptic mechanisms of 
disease and observed psychopathology or 
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endophenotypes: they allow both bottom up predictions 
of the effects of synaptic changes on the function of 
neuronal ensembles and networks (15, 16), and 
(through model inversion techniques) a top down 
inference about plausible pathophysiological 
mechanisms underlying observed whole-brain 
phenotypes (17–19).  
 
The auditory mismatch negativity (MMN) is generally 
impaired in schizophrenia (17, 20, 21) and a similar 
impairment can be induced with ketamine in healthy 
human subjects. The MMN is based on a stereotyped 
response to deviants or oddballs embedded within 
regular stimulus sequences, and has emerged as an 
important tool for probing brain function using non-
invasive electroencephalography (EEG) recordings in 
human subjects. MMNs are difference waves of evoked 
response potentials (ERPs) to the unexpected deviant 
stimuli compared to repeated standard stimuli (22–28). 
This difference can be observed in a variety of 
paradigms, ranging from deviant responses in simple 
auditory, visual or somatosensory stimulus sequences 
to MMN-like responses to violations of syntactic or 
semantic expectations in language paradigms (29–31).  
 
The domain-general nature of MMN responses suggest 
that they arise from general mechanisms underlying 
sensory processing in the brain. A dominant theory that 
accommodates such perceptual inference is formalised 
in the predictive coding framework (32, 33): Based on 
Helmholtz’s notion that the brain attempts to infer the 
causes of sensations (34, 35), predictive coding 
proposes that the brain generates predictions of its 
sensory input. When sensation deviates from these 
predictions, prediction error signals are generated and 
passed along the sensory processing hierarchy. This 
framework integrates competing views regarding the 
neurobiological basis of MMN responses. According to 
the predictive coding account, the MMN arises both 
from disruptions of neural adaptation (classically 
regarded the neural adaptation hypothesis, (36)), and 
adjustments of the model on which predictions of future 
stimuli are based (classically regarded the model-
adjustment hypothesis, (37)). There is increasing 
evidence across different experiments, sensory 
domains and even species suggesting that predictive 
coding provides a good explanation of MMN type 
responses (28, 33, 38–40). However, currently there is 
limited evidence on how the physiological mechanisms 
underlying the MMN are affected by ketamine.    
 
One empirical approach to test hypotheses regarding 
the neuronal processes underlying the MMN is dynamic 
causal modelling (DCM). In DCM of ERPs, biophysically 
informed models of cortical microcircuitry (41, 42) – 
typically based on neural masses – are fitted to 
measured data using variational Bayesian model 
inversion techniques (43, 44). This approach has been 
widely applied to model changes in neuronal coupling 
that underlie observed ERPs in auditory MMN 
paradigms (17, 22, 27, 45–48), producing network-wide 
electrophysiological consequences, during sequence 
learning (49) and responses to deviants (46, 50) that are 

consistent with predictive coding. The DCM approach 
has previously been applied both to MMN responses in 
patients with schizophrenia (48),  patients with 
psychosis and family members (17), and healthy human 
subjects treated with ketamine (51), all of which have 
identified modulations of connectivity between cortical 
sources as underlying the observed MMN differences 
between groups. The latter study specifically identified 
a single forward connection from left primary auditory 
cortex to left superior temporal gyrus to be altered 
significantly by ketamine, by applying classical statistics 
to the connectivity estimates provided by DCM.  
 
Here, we build on the existing literature by applying 
recent hierarchical Bayesian modelling procedures to a 
double-blind placebo-controlled auditory MMN study of 
the effects of ketamine on coupling in the auditory 
hierarchy. Using a parametric empirical Bayes 
approach to group inversion of subject-specific DCMs 
(52), we use a hierarchical model that includes (i) within-
session coupling changes explaining ERPs to both 
deviant stimuli (i.e. modelling the classical mismatch 
response) and to repetitions of the same standard (i.e. 
modelling repetition suppression effects); and (ii) within-
subject, but between-session differences in the first-
level DCMs induced by ketamine in the double-blind 
cross-over trial design. 
 
In the original description of DCM analysis of MMN 
responses (22, 45, 46), parameter changes are typically 
restricted to synaptic coupling changes that are 
plausibly affected by sensory input and condition 
specific changes. Therefore previous DCM analyses of 
ketamine effects (51) limit the possible explanations of 
observed ketamine effects to a subset of cortical 
coupling. However, pharmacological interventions can 
potentially have a more distributed effect on cortical 
function; by influencing the excitation/inhibition balance 
within cortical microcircuits, by changing the intrinsic 
timescales of cortical areas, or by modulating 
postsynaptic gain (53). These effects can now be 
modelled efficiently with a hierarchical model that 
distinguishes between within session (e.g. oddball) and 

 
ID 
 

 
Dose  (mg/kg/h) 

 
Age  (years) 

 
Gender 

A 0.250 23 Male 
C 0.250 21 Male 
E 0.250 23 Male 
G 0.083 22 Male 
I 0.083 22 Male 
J 0.250 22 Male 
K 0.083 23 Male 
M 0.083 26 Male 
N 0.083 22 Male 
O 0.083 24 Male 
P 0.083 25 Male 
R 0.083 22 Male 
T 0.083 22 Male 
U 0.083 22 Male 
W 0.083 25 Male 
X 0.250 21 Male 
Y 0.250 25 Male 
Z 0.083 23 Male 
 
Table 1: Study subject details 
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between session (e.g., ketamine) effects. In this work 
we used recent developments in hierarchical modelling 
(i.e., empirical Bayes) and Bayesian model reduction to 
identify the best (reduced) model that explains both 
oddball and ketamine effects. Bayesian model reduction 
identifies the best model of treatment effects that could 
potentially be expressed in an unknown combination of 
parameters or connections (52, 54). It does this by 
removing redundant parameters; thereby increasing 
model evidence. We used Bayesian model reduction to 
identify which combination of intrinsic (within-source) or 
extrinsic (between-source) synaptic connections 
changed during the presentation of oddball stimuli and 
how these changes were contextualised by the 
administration of ketamine. 
 
We hoped to replicate previous findings regarding 
network-wide changes underlying MMN responses in 
the brain, and to identify the network coupling changes 
underlying short term sensory learning during 
repetitions of the same stimuli. Furthermore, we want to 
characterise the effects of ketamine – as an NMDAR 
blocking agent – on the MMN response in healthy 
subjects. NMDA receptors are prevalent in the 
supragranular layers of the cortex, suggesting particular 

relevance of NMDAR transmission to backward 
connections in the cortical hierarchy that target 
superficial layers (55). However, NMDAR are unevenly 
distributed across cortical interneuron subtypes, 
indicating that the overall effects of NMDAR-blockade 
may be better represented in regionally-specific intrinsic 
coupling changes (excitatory, or inhibitory), that affect 
specific sub-populations rather than extrinsic coupling 
between regions (56).  
 
ERP abnormalities – induced by NMDAR-blockade with 
ketamine – may be broadly underwritten by two distinct 
mechanisms: (i) Ketamine may alter the basic setup of 
the auditory processing network in terms of synaptic 
function (i.e. excitatory/inhibitory coupling, synaptic time 
constants, between-source connectivity) irrespective of 
the auditory context. Note that because of the 
nonlinearities in the neuronal system, even a context-
invariant change in connectivity (i.e., in parameter 
space) may produce differential effects in standard 
versus deviant responses in the various ERPs (i.e., in 
measurement space). (ii) Alternatively, ketamine and 
the ensuing NMDAR-blockade may have a direct impact 
on synaptic plasticity induced by the sensory learning 
during the roving MMN paradigm. In other words, 

 

 
Figure 1. Ketamine causes a reduction in the mismatch negativity (A) Evoked response potentials (ERPs) are shown for repetitions of a sound 
within a roving oddball paradigm. The first exposure to a sound within a sequence, D1, provokes a typical deviance response at the Fz electrode. 
ERPs for three different repetitions, S2, S6 and S36 show increasing positivity with a peak at approximately 120ms. The bold red lines indicate 
time points for which the S36 and D1 ERPs are significantly different across the group (i.e. the effect of deviance, 𝑝 < 0.05, Bonferroni-corrected 
for multiple comparisons); bold green lines indicate time points for which S36 and S2 are significantly different (i.e. the effect of repetition, 𝑝 < 0.05, 
Bonferroni-corrected for multiple comparisons, differences only tested for the 0-300ms peristimulus time interval). Ketamine reduces both the 
deviance and repetition effects. (B) Difference waveforms at Fz are shown for D1-S36. The peak amplitude of the around 150ms is significantly 
bigger for the placebo condition compared to ketamine. (C) The panels show the difference between D1 and S2, S6 and S36 respectively across 
time (y-axis), and channels (x-axis, arranged from left to right). Across all condition, there is a ketamine related reduction in mismatch responses. 
  

 

.CC-BY-NC 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2017. ; https://doi.org/10.1101/133371doi: bioRxiv preprint 

https://doi.org/10.1101/133371
http://creativecommons.org/licenses/by-nc/4.0/


Ketamine and short-term plasticity 
 

4 

 

changes in measured deviant responses may be 
caused by ketamine sensitive plasticity; namely, an 
interaction between deviant and drug effects at the level 
of connectivity. Given that DCM estimates both synaptic 
plasticity induced by deviants and changes induced by 
ketamine, we can disambiguate these hypotheses 
based on measurements of MMN responses. 
 
RESULTS 
 
ERP results in sensor space 
In this roving oddball paradigm, sequences of the same 
sound were repeated up to 36 times, before a new 
sequence began at another random tone frequency. 
This means that when averaging ERPs to the same 
position within sequences, each mean ERP contains 
responses to a range of physical tone frequencies – 
thus the averages differ not in physical property of the 

sound played, but only in their location within a 
sequence.  
Here, we show the resulting grand mean ERPs across 
all eighteen participants (details in Table 1) at the fronto-
central (Fz) electrode for the 1st (deviant, D1), 2nd, 6th 
and 36th (standards, S2, S6, S36) exposures to the 
same sound as grand mean averages across subjects; 
separately for placebo and ketamine conditions (Fig 
1A). Response to the first stimulus (D1) constitutes a 
typical deviance response, with an early negativity (N1, 
peak around 150ms), and later positivity (P3a, peak 
around 250ms) that differs significantly from the S36 
ERP around those time intervals (Fig 1A: Deviance 
effect (red) - paired t-test at each time point, 𝑝 < 0.05, 
Bonferroni-corrected for multiple comparisons). 
Responses to the standard tones (S2, S6, S36) 
illustrate the build-up of a positivity peaking at around 
120ms, known as memory trace formation. This 

 

 
Figure 2. Two-level hierarchical DCM model space. (A) Effects of repetition were modelled as changes in a combination of forward/backward 
connections and intrinsic modulatory gain parameters in a coupled network of six cortical sources. Repetition effects were parameterised as a 
mixture of monophasic decay and phasic activation as shown in the right panels. (B) Ketamine effects were modelled at the second level; i.e. as 
systematic differences in connectivity parameters. Each cortical source corresponds to a canonical microcircuit, with four populations that is 
parameterised with extrinsic and intrinsic coupling parameters. The second level model space consists of combinations of these parameters which 
explain the differences between placebo and ketamine conditions.     
A1 – primary auditory cortex; STG – superior temporal gyrus, IFG – inferior frontal gyrus  
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positivity is significantly different between S2 and S36 
for segments ranging from approx. 50ms to approx. 
200ms (Fig. 2A: Repetition effect (green) – paired t-test 
at each time point, 𝑝 < 0.05, Bonferroni-corrected for 
multiple comparisons).  
 
Ketamine reduced both deviance and repetition effects, 
compared to placebo with a collapse of the time 
windows for which these effects were significant 
(duration of significant deviance effect: placebo 112ms, 
ketamine 90ms; duration of significant repetition effect: 
placebo 120ms, ketamine 98ms). The difference, 
mismatch negativity waveforms (Fig 1B) peaks at a 
significantly higher amplitude for the placebo condition 
for the early (N1, paired t-test, 𝑡(17) = 1.85:  𝑝 = 0.04) 

but not the late (P3a, 𝑡(17) = 1.10:  𝑝 > 0.05) 
component. The ketamine-induced attenuation of the 
MMN is apparent across the whole scalp when plotting 
all channels (Fig 1C).    
 
Effects of repetition on connectivity 
Repetition effects were modelled as changes in 
connectivity parameters in a distributed cortical auditory 
network comprising three bilateral sources arranged 
along a processing hierarchy. Repetition effects or 
plasticity were modelled as a linear mixture of two time 
courses (shown in Fig 2A): a monophasic decay and a 
phasic repetition effect. This constitutes the full model; 
i.e., where both monophasic, and phasic repetition 
effects could modulate forward and backward 
connections as well as intrinsic modulations at each 
level of the cortical hierarchy (model FBi in Fig 2A). The 
model fits for this model in each subject are shown in 
Fig 3A).  
 
Subsequently a set of reduced models was estimated 
using Bayesian model reduction. These reduced 
models comprised each of the models in Fig 2A paired 
with the monophasic decay effect, the phasic repetition 
effect, or both, resulting in a total of 24 models. 
Bayesian model comparison provides decisive 
evidence for the full model (i.e. FBi with both 
monophasic and phasic effects) at the group level (Fig 
2B) and for each individual subject.  
 
Bayesian parameter averages for forward connections, 
backward connections, and modulatory self-
connections (shown here for A1 where the strongest 

effects were observed) are shown in Fig 3C, suggesting 
different time courses of changes for different types of 
connections. There is an overall reduction in forward 
and backward connectivity across repetitions. However, 
the largest change is earlier in the forward connections 
(D1 to S2) than backward connections (S2 to S6). 
Modulatory gain parameters are reduced from D1 to S2, 
before increasing between S2 and S36. These 
differences in the relative modulation of different types 
of connections underlie the differences observed in the 
model predictions for ERPs for different repetitions. 
 
Effects of ketamine on model parameters 
At the second level of the analysis, we combined all 
individual subject DCMs for placebo and ketamine 
conditions into a single PEB model to identify parameter 
changes induced by ketamine. Initially, we performed 
Bayesian model comparison across alternative second-
level models where subsets of extrinsic or intrinsic 
model connectivity parameters (as detailed in Table 2) 
were free to explain the ketamine effect (Fig 4A). Across 
this model space, there is very strong evidence for 
modulations in, and only in the intrinsic connectivity (g 
parameters) within cortical sources. In other words, 
these and only these parameters are required to explain 
the ketamine induced ERP changes described above. 
 
An inspection of the winning second-level model 
revealed that of these g parameters, only a subset is 
affected by ketamine (Fig 4B). The biggest effect size is 
seen in g3 that represents the strength of inhibition 
supplied by inhibitory interneurons to excitatory spiny 
stellate cells. This parameter is modulated in opposite 
direction in the lower areas of the hierarchy (increased 
in right primary auditory cortex A1, left and right superior 
temporal gyrus STG; decreased in left and right inferior 
frontal gyrus IFG).  
 
To simulate the (highly nonlinear) effects of these 
parameter changes on observed ERPs, we 
implemented a forward model based on the grand mean 
DCM inversion. Starting from the grand mean 
parameter estimates, this simulation gradually 
increased g3 in bilateral STG, while decreasing the 
same parameter in bilateral IFG. The effects of these 
reciprocal changes on source-space ERPs are shown 
in Fig 4C. This analysis reveals an attenuation and 
small increase in latency in the IFG response that 

 
 

 

Intrinsic coupling parameters Extrinsic model parameters 
 

1 Superficial pyramidal cell (sp) time constant 𝐴𝑓𝑤𝑑 Extrinsic forward connection (sp to ss) 

2 Inhibitory interneuron (ii ) time constant 𝐴𝑏𝑤𝑑 Extrinsic backward connection (dp to sp) 

3 Spiny stellate interneuron (ss) time constant 𝐵𝑓𝑤𝑑  Repetition effects on extrinsic forward connection 

4 Deep pyramidal cell (dp) time constant 𝐵𝑏𝑤𝑑 Repetition effects on extrinsic backward connection 

𝑔1 sp modulatory self inhibition   

𝑔2 sp to ss inhibitory connection   

𝑔3 ii to ss inhibitory connection   

𝑀 Modulatory gain (sp self inhibition)   

𝑁 Repetition effects on modulatory gain 
 

  

 
Table 2: Canonical microcircuit model parameters 
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resembles the observed changes in the mismatch 
negativity response at the Fz electrode in Fig 2B. The 
responses at STG level are overall reduced in amplitude 
with a decrease in response latency. Very little effect is 
observed on responses in A1.  
 
Further analysis of the relationship between the 
excitatory interneurons (spiny stellate cells) and the 
main output neurons (superficial pyramidal cells) is 
shown in Fig 4D. Plotted terms of estimated neuronal 
responses (i.e. source space), these graphs represent 
the evolution of spiny stellate and superficial pyramidal 
cell responses during the deviance ERPs, starting from 
baseline (where spiny stellate and superficial pyramidal 
cell activity is equal to zero), and returning to baseline 
as a cycle through neuronal state space. These plots 
show the relative impact of the g3 parameter changes 
on spiny stellate and superficial pyramidal cell 

populations. Strikingly, in IFG – where g3, or the 
inhibitory interneuron inhibition on spiny stellate cells, is 
reduced – this plot reveals a decrease in superficial 
pyramidal cell amplitude with relative preservation of 
spiny stellate cell activity. Conversely, in STG where g3 
is increased, the amplitude of spiny stellate cells is 
relatively decreased compared to superficial pyramidal 
cells, with an overall shift into more negative superficial 
pyramidal cell responses. 
 
DISCUSSION 
 
Here, we present a double-blind placebo-controlled 
study of ketamine effects on cortical responses to 
disruptions and repetitions within regular auditory 
sequences. Using a hierarchical dynamic causal model, 
we replicate previous findings in regards to network 
changes that explain the response both to deviants and 

 

 
 
Figure 3. Repetition effects. (A) ERPs to the 1st (Deviant, D1), 2nd, 6th, and 36th (Standards, S2, S6, S36) presentation of a sound within a sequence 
were modelled in subject-specific DCMs. The first principal eigenmode of the prediction in sensor space (bold colours), and the corresponding mode 
of the empirical scalp data (light colours) are shown for each individual. These suggest a good fit for the main components of the ERP waves. (B) 
Bayesian model comparison was performed to compare models in which the repetition effect was monophasic, phasic or both, and included 
modulations of forward F, backward B, or intrinsic i connections and their combinations. The winning model across the group was the full model, 
where monophasic and phasic repetition effects impact on forward, backward and intrinsic connection. (C) Bayesian parameter averages across 
this full model for each individual subject show changes in connection strength across repetitions for forward, backward and intrinsic modulatory 
connections. Error bars indicate the 95% Bayesian confidence interval.  
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to an increasing number of repetitions of the same 
sound. Furthermore we identify region-specific changes 
in cortical microcircuits that may underlie the ketamine-
induced changes in MMN. The modelling analysis here 
thus integrates short-term sensory learning effects, the 
different cortical responses induced by deviants and 
changes to the system caused by NMDAR-blockade 
with ketamine.  
 
Computational modelling links whole brain 
observations with synaptic mechanisms 
The modelling presented here applies recent 
developments in the Bayesian treatment of dynamic 
causal models to questions that bridge conceptual 

scales: How does a pharmacological agent, whose 
action is reasonably well understood at the microscale 
of the individual neuronal membrane, produce 
observable brain phenotypes? How does systemic 
application of ketamine produce effects on specific 
evoked response potentials with regionally distinct 
patterns? 
 
The neural mass models applied in this analysis are 
mildly nonlinear approximations of neuronal populations 
that effectively capture a wide variety of normal (57, 58) 
and abnormal (59, 60) brain states and responses. The 
Bayesian approach allows one to assess how well a 
given model or hypothesis explains a set of 

 

 
Figure 4. Ketamine causes frontal lobe disinhibition. (A) Using PEB, 14 alternative second level models were considered, explaining 
differences between ketamine and placebo with changes in combinations of parameters. Bayesian model reduction shows that the model with 
changes in intrinsic connection parameters (𝐺) best explains the effects of ketamine on the ERPs. (B) Estimated parameter changes with 
Bayesian 95% confidence intervals (top), and posterior probability of the parameter being affected by ketamine (bottom) are shown. Significant 

changes were only observed in a subset of 𝐺 parameters, with the largest effects estimated for inhibitory interneuron (ii) connections to spiny 
stellate (ss) cells. In the bilateral STG, there was an increase in ii inhibition on ss, while in the bilateral IFG there is a ketamine-induced 
disinhibition of ss. (C) The effects of opposing changes in ii to ss inhibition at different hierarchical levels are shown in source space. Each 

graph shows superficial pyramidal cell (sp) activity in different regions for the 0 − 300𝑚𝑠 poststimulus interval with concurrent, but opposite 

modulation of parameter the ii to ss inhibition: In the STG the (log-scaled) connection strength is increased from 0 to 2, whilst in the IFG the 
strength is decreased from 0 to −2. This modulation causes an attenuation and increase in latency in the IFG response, with concurrent 
attenuation of early STG responses and a decrease in the latency of the response. (D) Neuronal state space plots show the relationship 
between sp and ss activity for different hierarchical levels and for increasing changes to the ii to ss inhibition. There is minimal effect on the 
A1. For STG, the parameter changes induce a reduction in ss response amplitude compared to sp and an overall shift towards more negative 
population output. In the IFG there is an inverse reduction of sp response amplitude compared to ss.  
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observations. This mesoscale modelling thus allows the 
testing of mechanistic hypotheses about non-invasive 
(human) data and therefore allows inference on hidden 
neuronal states in human subjects that cannot be 
directly measured (Moran et al., 2011). 
 
One of the key insights from this approach is not 
whether a given model is true or false, but rather a direct 
test of whether a specific mechanistic hypothesis is 
sufficient to explain a complex set of observations. 
Here, we compared a range of possible ketamine 
effects – on extrinsic excitatory coupling, intrinsic 
inhibition, and/or postsynaptic gain parameters – 
against each other based on whole-scalp ERP data 
from several experimental conditions at a subject-
specific level. The modelling allowed us to identify those 
parameters that have most explanatory power, and 
compare them with existing literature from different 
experiments. For example, although we allowed for an 
effect of ketamine on plasticity (i.e. changes in 
connectivity as opposed to connectivity per se) this 
effect was a redundant component of our models – and 
was eliminated during Bayesian model reduction. In 
other words, a more parsimonious explanation for the 
effects of ketamine on oddball or mismatch responses 
is a change in the excitability (or disinhibition) of 
particular sources within the auditory hierarchy. This 
effect contextualises repetition dependent changes in a 
way that is sufficient to explain the effect of ketamine on 
the mismatch negativity. 
 
Despite the complexity of both the datasets and the 
network models used for the model inversion, the 
results suggest that (i) acute NMDAR blockade effects 
on MMN responses can be explained by effects on a 
small set of key parameters, and (ii) the parameters 
identified are consistent with a wealth of findings from 
the basic science literature and studies of humans 
exposed to ketamine and patients living with 
schizophrenia. This non-trivial link between MMN 
changes and intrinsic inhibition within frontal 
microcircuits could not have been made without explicit 
computational modelling of human EEG generators, 
and provides further evidence for the relevance of 
GABAergic interneuron specific NMDAR hypofunction 
in the pathogenesis in psychotic illnesses such as 
schizophrenia (61, 62) – this instance, directly from a 
placebo-controlled human experiment.  
 
Deviance responses are caused by network-wide 
connectivity changes 
There is ongoing debate regarding the computational 
and neuronal basis of mismatch negativity responses in 
the human brain. These are often broadly summarised 
in terms of (i) the neural adaptation hypothesis, 
according to which MMNs can be explained by bottom-
up dishabituation responses of neuronal populations 
that adapt to auditory features of repeated stimuli (36); 
and (ii) the model adjustment hypothesis, according to 
which MMNs represent an error detection signal that 
result from a disruption of learned regularity in an 
auditory context (37). 
 

The existing literature suggests that both changes in 
primary auditory cortex sensory gain (consistent with 
the neural adaptation perspective), and 
forward/backward changes in extrinsic regional 
coupling (consistent with the model adjustment 
perspective) are required to explain the difference 
between whole scalp responses to standards and 
deviants (22, 46, 47). The results of the placebo 
component of this study support the same conclusion: 
Both changes in the intrinsic modulatory gain and the 
extrinsic coupling between sources is required to best 
explain the differences between deviance responses 
and responses to standard sounds.  
 
These findings are in keeping with a predictive coding 
account of MMN generation, aiming to integrate neural 
adaptation and model adjustment perspectives. 
According to the predictive coding framework, the brain 
actively generates predictions of the environment that 
are passed down from higher areas of the sensory 
processing hierarchies. These predictions are 
compared with incoming sensory input to produce 
prediction error signals, when sensation does not match 
the prediction. This prediction error signal passes up the 
cortical hierarchy, whilst at the same time resulting in a 
readjustment of intrinsic gain, or post-synaptic 
sensitivity in the primary sensory cortical areas (35, 40).  
 
Sensory learning causes distinct patterns of 
change for different coupling parameters 
Using long sequences of sound repetitions allowed 
quantitative modelling of repetition responses: In the 
roving oddball paradigm, a deviant sound is repeated 
again and again until it becomes the new standard tone 
– and does not elicit a deviance response. Previous 
DCM analyses on repetition-induced changes in 
network coupling parameters have identified distinct 
temporal patterns in intrinsic vs. Extrinsic coupling 
changes: using short auditory sequences, Garrido et al 
(49) identified both monophasic decay and phasic 
change components in connectivity over repeated 
stimulus presentations. However, they found a clear 
difference in extrinsic connections, which were 
consistently reduced with each repetition; and intrinsic 
connections, which showed an initial phasic decrease 
before slowly increasing with repetition. 
 
These findings are replicated in the independent 
dataset analysed here: extrinsic connectivity 
consistently decreases with repetition, whilst intrinsic 
connectivity parameters at the primary auditory cortex 
show a first dramatic decrease, before slowly increasing 
with repetition. Interestingly, our findings also reveal a 
temporal dissociation between forward and backward 
connections: while forward connection strengths return 
to their baseline value almost immediately (i.e. at the 2nd 
exposure to the sound), backward connection strengths 
remain higher for longer, with similar, persistently high 
parameter values at 1st and 2nd exposure to the sound.  
 
This asymmetry in the time course of forward and 
backward plasticity revealed by the paradigm used here 
reflects a more general difference in the temporal 
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dynamics along the cortical hierarchy. Primate cortical 
areas are hierarchically ordered; not only in terms of 
functional processes, but also in the timescales of 
cortical activity (63, 64), with time constants that can 
differ by orders of magnitude. These distinct temporal 
scales in a hierarchically structured network support 
efficient tracking and prediction of complex sensory 
input (65), through the hierarchically segregated 
tracking of fast and slow changes at different levels of 
the hierarchy. Distinct temporal scales may help 
integrating auditory objects within auditory contexts, 
purported as one of the functions of stimulus-specific 
adaptation, a marker of auditory learning within primary 
auditory cortex (66, 67).  
 
Our findings speak to this hierarchical separation in time 
scales in the learning of sensory regularities. After the 
deviant, transiently increased forward (bottom-up) 
connections return very quickly to the baseline value, 
consistent with the short time-constants in lower cortical 
areas and the AMPA-predominance in these 
connections. Changes in backward (top-down) 
connections remain increased for a larger number of 
repetitions and as such encode synaptically the 
preceding sensory context (i.e. the recent occurrence of 
the deviant).  
 
NMDAR blockade has regionally specific effects on 
intrinsic connectivity 
Using a hierarchical Bayesian model of both repetition 
and ketamine effects means that all available data (i.e. 
individual subjects’ whole-scalp ERPs to the four types 
of tones, D1, S2, S6 and S26) are used to inform model 
comparison and the estimation of the effect sizes. 
Furthermore, Bayesian model reduction allowed for 
data-driven reduction of the model complexity to identify 
the most relevant model parameters affected by the 
ketamine intervention.  
 
Notably, our findings broadly replicate those presented 
by Schmidt et al. (51) – if we restrict our second level 
model space to only those parameters considered in the 
standard DCM analysis (i.e. A, B, M, and N parameters, 
cf. Fig. 4A), we can replicate their findings. Among 
those models, the highest model evidence is provided 
by a model where ketamine affects the forward 
connections between cortical sources, an effect also 
described in their analysis. However, in a larger model 
space, the regional effects of ketamine can be better 
explained with a different set of parameters.   
 
Our approach suggests that changes in a limited set of 
regional intrinsic connections best explain the ketamine 
effects. Furthermore, the most significant changes 
affect the same connection type: the inhibitory 
connection from inhibitory interneurons to spiny stellate 
interneurons, which is one of the coupling parameters 
between superficial (spiny stellate and superficial 
pyramidal cells) and deep neuronal oscillator pairs 
(deep pyramidal cells and inhibitory interneurons), 
supporting fast and slow intrinsic dynamics respectively 
(68). The direction of the modulation of this parameter 
depends on the affected cortical sources: the parameter 

estimates suggest that ketamine (assumed to be best 
described as NMDA receptor blockade) causes a 
decrease in inhibitory interneuron to spiny stellate 
inhibition in STG, with a concurrent increase in inhibitory 
interneuron to spiny stellate inhibition for IFG. When 
simulating the effects of these parameter changes at the 
different layers of the hierarchy, the IFG disinhibition 
notably results in a mild relative reduction in superficial 
pyramidal cell amplitude, whilst the STG response is 
characterised by larger amplitude reductions for both 
spiny stellate cell and superficial pyramidal cell 
populations.   
 
These findings speak to the complexity of NMDAR-
based transmission within cortical circuits. NMDA 
receptors have distinct distributions in different neuronal 
populations and exert direct effects on pyramidal cells, 
excitatory and inhibitory interneurons as well as 
modulating GABAergic transmission (56). We have 
focused on the auditory system and the mismatch 
negativity paradigm. Dynamic causal modelling of 
ketamine effects in other systems also implicates 
prefrontal regions; e.g. in a DCM study of fronto parietal 
coupling under ketamine (69) and in a study of fronto-
hippocampal coupling (70). Interestingly, cell-type 
specific deletion of NMDAR on parvalbumin positive fast 
inhibitory interneurons are already used as a preclinical 
model of schizophrenia in a interneuron subtype 
specific mouse NMDAR knock out (71) and even result 
in some further NMDAR dysfunction through resultant 
developmental changes (6), suggesting that some of 
the features of systemic NMDAR hypofunction can be 
captured with cell-type specific effects. Recently 
inhibitory interneuronal dysfunction, particularly in the 
prefrontal circuit have emerged as a potential 
mechanism causing aspects of the schizophrenia 
phenotype (72, 73), which is further supported by 
computational models of prefrontal cortex functions 
(74). 
 
Invasive recordings in the mouse prefrontal cortex 
suggest that in the microcircuit, the overall effect of 
NMDAR-transmission on inhibitory interneurons 
outweigh those directly on excitatory pyramidal cells: 
Specific NMDAR blockers cause a disinhibition effect by 
reducing the NMDAR-dependent activity of GABAergic 
interneurons and thus reducing inhibitory drive (53). In 
humans, proton magnetic resonance spectroscopy also 
suggests that there is a paradoxical increase in anterior 
cingulate glutamate in response to NMDAR blockade 
with ketamine (75).  
 
Thus, the DCM findings presented here provide 
functional evidence for ketamine to alter human 
dynamic cortical networks in the way suggested by the 
animal model findings. Our study provides evidence for 
a regionally selective disinhibition in response to 
NMDAR blockade, and thus further supports NMDAR 
hypofunction specific to GABAergic interneurons as a 
mechanism underlying ketamine-induced cortical 
abnormalities.   
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METHODS 
 
Subjects 
For this study, N=18 healthy male volunteers were recruited 
from the local university through advertisement. All subjects 
gave fully informed, written consent prior to participation in the 
study and the study was approved by the University of Lübeck 
Research Ethics Committee. Subjects were compensated for 
the time they contributed to the research study. Table 1 
presents subject details. 
 
All subjects answered a basic clinical and a more focussed 
psychiatric (SCL-90-R®) questionnaire and underwent a 
routine clinical examination (including ECG, auscultation, and 
blood pressure measurements). Subjects with pre-existing 
neurological, psychiatric or cardiac conditions, those with a 
family history of psychotic illness or epilepsy, and subjects on 
any regular medication were excluded from participation. 
Further exclusion criteria were left-handedness, smoking, and 
the regular use of recreational drugs.  Subjects were invited 
for two study sessions >3 weeks apart to participate both in 
the placebo, and the ketamine arm of the study.  
 
The experiment followed a randomised, placebo-controlled, 
double-blind cross-over design: Subjects were allocated to 
either ketamine- or placebo-first groups, which was counter-
balanced across subjects (9 in each group). Subjects and the 
researcher supervising EEG recording collection were blinded 
to the trial condition. However, because the higher ketamine 
dose was poorly tolerated by some subjects, the ketamine 
dose was reduced for subsequent data collection – the doses 
received by each subject are included in Table 1.   
 
 
Stimuli and EEG recording  
Electroencephalography was conducted using 20 electrodes 
(10-20 international system), placed using an EASYCAP 
electrode cap (www.easycap.de). Signals were recorded 
through a Compumedics Neuroscan© amplifier system. 
Auditory stimuli were pure tones presented in pseudorandom 
sequences: In the roving paradigm, sounds of the same 
frequency were repeated for an unpredictable number of 
repetitions (range 6 - 36), before either the frequency or the 
duration of individual stimuli changes (76). Sounds were 
presented at a volume of 80dB at frequencies ranging from 
700-1200 Hz, and with an inter-stimulus interval of 400ms. 
Subjects were given an incidental reading task and were 
instructed to ignore the sounds. 
 
Data were processed in an average referential montage, 
recorded at a sampling frequency of 500Hz and bandpass 
filtered to a frequency range of 0.1 – 80Hz. For each test-
session, data were divided into -100ms to 300ms peristimulus 
epochs. The roving paradigm contains deviant stimuli (e.g. the 
first sound presented at a new frequency), and standard 
sounds (e.g. multiple repetitions of the same sound). Because 
the characteristics of deviants and standards are not fixed, but 
with each new sequence of tones the standards are re-
learned, evoked response potentials can be quantified for the 
tone-by-tone transition from deviant to standard; as an initially 
novel sound is repeated and becomes a standard. Thus, we 
calculated average ERPs for the 1st (i.e., deviant D1), 2nd, 6th, 
and 36th (i.e., standards S2, S6, and S36) repetition of each 
tone. Baseline correction was performed based on 100-0ms 
peristimulus time segments only for D1, 250-300ms 
peristimulus time segments for S2; and 100-0ms & 250-
300ms peristimulus time segments for S6 and S36 (to avoid 
including the large P3a component present at the end of D1 – 
and prior to S2 – in the baseline correction, see Fig 2).  
 

Dynamic causal modelling  

Dynamic causal modelling (DCM) is a standard Bayesian 
technique to estimate the parameters of neural mass models 
of cortical activity from EEG measurements. Here, we apply a 
hierarchical (parametric empirical) Bayesian modelling 
approach to identify parameter changes across families of 
DCMs, in order to estimate the effects of ketamine on cortical 
processing of regular auditory sequences and their violations. 
All DCM analyses were performed using the free academic 
software SPM12 (http://www.fil.ion.ucl.ac.uk/spm/, Litvak et 
al. 2011), and custom code available online 
(doi.org/10.5281/zenodo.570595). 
 
Identifying prior parameter distributions from DCM on grand 
mean ERP curves 
In order to produce the best fits for model inversion at the level 
of single subjects, a DCM was first fitted to the grand mean 
average of the ERPs in the placebo condition. This grand 
mean DCM allowed changes in all model parameters. ERPs 
to the 1st (i.e. deviant D1), 2nd, 6th and 36th (i.e. standards S2, 
S6, S36) exposure to the same sound were modelled as 
connectivity changes in auditory network connectivity as 
described previously (49), and detailed below.  
 
A standard electromagnetic forward model was generated, 
linking channel-level observations with cortical activity based 
on a template three-shell cortical mesh in MNI space. The 
resulting lead-fields were used to reconstruct source ERP 
waveforms from six cortical locations taken from previously 
published literature (22, 46): left and right primary auditory 
cortex (A1), left and right superior temporal gyrus (STG), and 
left and right inferior frontal gyrus (IFG). The MNI coordinates 
used were: ltA1 [-42, -22, 7], rtA1 [46, -14, 8], ltSTG [-61, -32, 
8], rtSTG [59, -25, 8], ltIFG [-46, 20, 8], rtIFG [46, 20, 8]. 
 
In DCM, ERPs are modelled as neural population responses 
in a hierarchical network of reciprocally coupled sources with 
recurrent self-connections. Differences between ERPs were 
assumed to arise from changes in synaptic coupling; altering 
forward, backward and intrinsic (self) connection strengths 
between conditions. In analogy to the existing literature, we 
modelled the effect of deviancy as coupling changes (i.e., 
short-term plasticity) between presentations of the same 
sound using two temporal basis functions (monophasic decay, 
and a phasic effect, Fig 2A). Model inversion using these basis 
functions estimate the linear combination of the two effects 
that best explains the observed data, thus modelling a broad 
range of plausible time courses (49).  
 
The variational Bayes model inversion implemented in DCM 
provides both a measure for the log-model evidence (in the 
form of model free energy), and posterior densities for the 
parameter values. The expected parameter estimates 
(without the posterior covariances) from the grand average 
were used as prior expectations for the inversion of individual 
subjects in the second step of the DCM analysis.  
 
Individual model inversion and Bayesian model reduction to 
identify repetition effects 
Whole-scalp ERPs for each subject were extracted separately 
for the placebo and the ketamine condition, resulting in 36 
separate sessions (18 subjects, 2 conditions) for DCM 
analysis. For each DCM, the full network as described above, 
consisting of six hierarchically coupled cortical sources, was 
then equipped with prior expectations derived from the grand 
mean model inversion. Model inversion yielded separately 
parameterised DCMs for each subject and drug-condition, as 
well as an estimate of the associated log-model evidence.  
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To test whether network changes – estimated under our 
model – for both the difference between deviant and standard 
responses (50) and the effect of repetition (49) replicate 
existing findings in the literature, we then performed Bayesian 
model reduction and implicit comparison. In other words, we 
identified the best combination of parameter changes that 
could explain the observed ERP responses: Bayesian model 
reduction uses posterior parameter densities and free energy 
estimates from a fall or parent DCM to estimate the model-
evidence for a number of reduced or children DCMs, in which 
some combinations of parameters are fixed or do not allow 
condition specific variations. This approach replaces the 
previous standard approach of inverting several reduced 
DCMs separately and provides a computationally efficient 
alternative estimation of the log-likelihood across a large 
space of models (44, 52, 54).  The model space was based 
on the previous literature (22, 50), distinguishing between 
repetition-related changes of forward connections, backward 
connections and intrinsic modulatory gain parameters across 
a set of 2x2x2 = 8 factorial models (Fig 2A).  
 
Bayesian model comparison identified the reduced model that 
best explained the data for each subject. As each subject had 
a high model evidence for the same (winning) model (see 
Results), effects across the group were summarised using 
Bayesian parameter averages to quantify parametric changes 
in forward connections, backward connections and intrinsic 
modulatory gain across repetitions.  
 
Parametric empirical Bayes and ketamine effects 
DCM inversions at the first (session) level furnish posterior 
estimates of the repetition effects on connectivity 
independently for placebo and ketamine. To estimate 
systematic changes in model parameters with ketamine dose 
(none for placebo, low or high for the two dosages) within a 
Bayesian modelling framework, we applied a parametric 
empirical Bayesian (PEB) approach (78). In brief, PEB allows 
the Bayesian estimation of a general linear model explaining 
effects across individually inverted DCMs. This enables 
estimation of parametric random effects and inference about 
treatment effects that are common to all the individual DCMs. 
The second level model can be equipped with a number of 
different regressors, and estimation of the second level model 
provides both estimates of these second level DCM 
parameters, as well as the log-model evidence for the 
hierarchical model; thereby allowing Bayesian model 
comparison at the second level.  
Here we use PEB to (i) perform Bayesian model comparison 
across reduced models, where only a limited set of extrinsic, 

or intrinsic DCM parameters are used to explain the changes 
induced by ketamine, and (ii) quantify the parameter changes 
caused by ketamine in the winning model.  
 
Each PEB model contained all DCMs inverted under placebo, 
and ketamine for each individual (i.e. 36 first level DCMs). 
Regressors used for the PEB comprised the effect of ketamine 
(0 for placebo, 1 for low dose ketamine, 2 for high dose 
ketamine), the group mean and subject or block effects. Each 
PEB model differed only in which synaptic parameters (see 
Table 2) were used to explain ketamine effects. The 
parameters we considered included time constants 
(describing the shape of the kernel which maps the 
presynaptic inputs onto the postsynaptic membrane 
potentials), intrinsic connectivity parameters (quantifying the 
synaptic weights linking populations within cortical sources), 
modulatory gain parameters (quantifying the self-inhibition or 
gain of superficial pyramidal population, additionally 
modulated by inputs it receives from other regions), and 
extrinsic connectivity parameters (quantifying the weights 
linking different cortical sources). Crucially, we examined an 
effect of ketamine on (intrinsic and extrinsic) connectivity and 
repetition dependent effects parameterised in terms of basis 
functions at the first level. In other words, we allowed for both 
a non-specific (main) effect of ketamine on coupling – and an 
(interaction) effect on plasticity (in DCM, these are usually 
referred to as A and B parameters – see Tab 1). Bayesian 
model reduction of these second level models provided 
estimates of their associated log-evidence, which was used to 
identify the winning second-level model.   
 
The winning (reduced) model also provided estimates of the 
direction and size of the parameter changes induced by 
ketamine. Because these are estimated as posterior densities, 
they provide both an estimate of ketamine effects, and 
uncertainty around these effects, which can be used to 
estimate a Bayesian 95% confidence interval. Finally, in order 
to characterise the effects of the parameter changes induced 
by ketamine, we used the parameter estimates in simulation 
mode (i.e., in a forward model) to visualise their effects on the 
source-space ERPs. This forward model was based on the 
DCM fitted to the grand mean across the whole group.  
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