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Abstract

Background: Transmission in epidemics of infectious diseases is characterized by a
high level of subject-specific elements. These include heterogeneous infection conditions,
time-dependent transmission potential, and age-dependent contact structure. These
insights are often lost in epidemic models using population data. Here we submit an
approach that can capture these details, paving the way for studying epidemics in a
more mechanistic and realistic way.
Methods: Using experimental data, we formulated mathematical models of a pathogen
infection dynamics from which we can simulate its transmission potential
mechanistically. The models were then embedded in our implement of an age-specific
contact network structure that allows to express all elements relevant to the
transmission process. This approach is illustrated here with an example of Ebola virus
(EBOV).
Results: The results showed that within-host infection dynamics can capture EBOV’s
transmission parameters as good as approaches using population data. Population
age-structure, contact distribution and patterns can also be captured with our network
generating algorithm. This framework opens vast opportunities for the investigations of
each element involved in the epidemic process. Here, estimating EBOV’s reproduction
number revealed a heterogeneous pattern among age-groups, prompting questions on
current estimates which are not adjusted for this factor. Assessments of mass
vaccination strategies showed that a time window from five months before to one week
after the start of an epidemic appeared to be effective. Noticeably, compared to a
non-intervention scenario, a low vaccination coverage of 33% could reduce number of
cases by ten to hundred times as well as lessen the case-fatality rate.
Conclusions: This is the first effort coupling directly within-host infection model into an
age-structured epidemic network model, adding more realistic elements in simulating
epidemic processes. Experimental data at the within-host infection are shown able to
capture upfront key parameters of a pathogen; the applications of this approach will
give us more time to prepare for potential epidemics. Population of interest in epidemic
assessments could be modeled with an age-specific contact network without exhaustive
amount of data. Further assessments and adaptations for different pathogens and
scenarios are underway to explore multilevel aspects in infectious diseases epidemics.
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Background

Epidemics of infectious diseases are listed among the potential catastrophes and can

be potentially misused as mass destruction weapons [1]. Overwhelming research ef-

forts have been developed to early predict the danger of the epidemics but their crisis

nature left scientists no better option than learning from the past [2, 1]. However,

confronting outbreaks of emerging infections requires swift responses and thus the

ability to evaluate quickly and early potential outcomes [1]. As such, computer sim-

ulations of epidemic models undoubtedly hold the potential as the first-aid toolbox

for decision making amid the crisis [1, 3, 4].

A majority of epidemic modelling studies has exclusively relied on the availability

of outbreak data [5, 6, 7, 8]. This approach requires that sufficient incidence data are

available; for example, data at the end of an epidemic or at least until its peak [9].

As such, it would have limited applicability to newly emerging epidemics. Moreover,

mechanistic models based on outbreak data are often oversimplified [10, 11]. For

example, the effective transmission probability [7] has been usually simplified as a

single parameter that reflects collective effects of the contact rate with the infectious,

the infectivity of the infectious, and the susceptibility of the susceptible; influential

factors of a disease transmission such as transmission probability and contact rate

were mostly fixed while they dynamically change in reality [11]. As a result, these

key processes in the disease transmission are lost, especially the transient nature of

the infection course as well as the dynamics of the active population portion in an

epidemic [12, 11].

In reality, the within-host infection process determines key parameters in the

disease transmission [13, 12, 14, Fig. 1]. In an infected subject, interactions between

the viruses and immune responses shape the viral load dynamics that ultimately

defines the incubation period, the transmission potential, and the recovery rate

[15, 14]. It is also evident that susceptibility to infection is not the same for all the

susceptible but, among others, it is highly correlated with a subject’s age due to the

aging of the immune systems [16, 17]. Differences in the within-host infection profile

as well as the susceptibility to infection complicate greatly epidemic models but at

the same time underline their influential roles in determining epidemics features

and effects of certain intervention strategies [18, 19, 20].
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Figure 1 Schematic presentation of the two infections processes in an outbreak. At the

within-host level, viral replication and immune responses race with each other that eventually

determines an individual infectivity, for example, his symptoms and possibly behaviours. At the

between hosts level, infected individuals make contact(s) with susceptible individual(s) that

eventually lead to a transmission, depending on both the infectivity of the infectious and the

susceptibility of the susceptible. Noting that while contact network can be fixed, the portion

actively partake in epidemic spreading dynamically change over time [?, see]]Bansal:2007ct.

The interplays between within-host infection and between hosts transmission led

to arising attempts connecting the two levels [14, 21, 22, 12, 23, 24, 25, 4], but the

approach is still at its infancy [13]. On one hand, most of these models were concep-

tual and theoretical [13] or rely on assumptive and previously obtained parameter

estimates [26, 15, 27]. We propose that this limitation can be overcome by using

explicitly within-host infection model. On the other, implementations of population

level models were either a general representation using probabilistic assumption

[28, 29] or a demanding implementation of a particular population [27, 30, 15].

These approaches, while able to recover valuable insights, may not be representa-

tive and accessible for another population of interest, as none or massive amount

data are needed. In this case, using measures of social mixing, such as number of

contacts per day, can be highly consistent across regions [31, 32], representative for

most connectivities relevant to disease spread [33, 34], and need not to be data-

intensive [35].

Based on our previous studies of within-host EBOV infection [36, 37, 38], we

brought forward a developed within-host infection model to study transmission

fitness at the population level. We built a network model based on social contact

data [31] and the respective epidemic simulation algorithm embedding the within-

host model into the network model. In this way, the models are both data-informed
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while modest amount of data are needed. Parameters obtained from simulations

were compared to those estimated based on actual outbreak data and empirical

observations. The results showed that using with-host infection model not only

uncovered faithful estimate of the transmission parameters, but also allowed the

evaluations of detailed and realistic intervention effects. Implementations of the

network model from social contact data is straightforward and can be extend for

larger scale simulation on high performance computer clusters. In that capacity,

epidemic assessments and preparations can be conducted quickly, ahead of time,

and with high-resolution requirements.

Methods

In an EBOV-infected subject, different immune systems components dynamically

evolve in response to the viral replication dynamic. As a result, a series of events

is triggered determining infection outcomes such as infectious status, symptoms,

recovery, or death [39, 40, 41]. Therefore, the EBOV replication dynamics within a

host were used in this paper to infer it transmission parameters.

Within-host model

Using viral dynamics and immune responses data within a host, mathematical re-

lations can be defined to test hypothesized infection mechanisms [42, 36]. In this

context, non-human primates (NHPs) are the standard animal model for developing

EBOV’s therapeutics and vaccines in humans [43, 44] which recently has been used

to develop an effective vaccine against EBOV [45]. Epidemiological and pharma-

cological studies reported that a viral load higher than 106 copies/mL [44, 46] is

associated with a higher mortality rate, whereas observations on experimental data

in NHPs showed that a viral load level higher than 106 TCID50 was fatal [40, 39].

Here the viral load dynamics were simulated based on the model as follows [38]:

dV

dt
= rV V

(
1− V

KV

)(
V

In + V

)(
1− Ab

KAb

)
(1)

where rV ,KV and In denote the replication rate, the host’s carrying capacity, and

a constraint threshold expressing the lag-phase growth of the virus. The parame-

ter KAb represents the strength of the immune system at which the antibody titre

inhibits the viral net growth rate [38]. The model parameters were obtained previ-
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ously [38] using two experimental datasets on NHPs [39, 40]. The antibody dynamic

(Ab) was also fitted in [38] to data of NHPs vaccinated with vesicular stomatitis

virus (VSV-EBOV) vaccine [40]. The VSV-EBOV has recently showed efficacy in

human [45]. Detailed of model fitting and data can be found in [38] with extracted

parameters are also presented in Code and examples — Epidemic simulations.

Simulated subject-specific infection course

To simulate subject-specific infection course, the antibody response strength KAb

was varied from a normal level approximately 102.5 [47, 40] to the highest observed

level of 104.5 [40]. This value was assumed to vary based on individual’s age assum-

ing followed U-shaped function with higher susceptibility in infants and elderly [16,

Fig. 1] (extracted data presented in Code and examples — Epidemic simulations).

As infective dose can alter the course of infection [48], the initial condition V (0) of

model Eq. (1) was varied depending on from whom a subject acquires the infection,

i.e., equals the lethal dose (Vc = 100.15 [38]) times the transmission potential of

whom transmits the disease. Here we assumed a direct relation [13] between the

transmission potential and the viral load at the time of infection, i.e., the transmis-

sion potential pTrans(t) = V (t)/KV . Note that pTrans(t) = 1 does not guarantee a

successful transmission, but it was considered collectively with its contacts suscep-

tibility and with the existence of such a contact (details in Code and examples —

Epidemic simulations).

Infection outcomes definitions

Empirical observations from both EBOV infected human and NHPs showed that

the time from symptom onset to death is approximately one week [39, 40, 49]. Based

on this and the viral load, we used the total area under the viral load curve (AUC)

seven days post-infection in the subjects that died as a threshold above which the in-

fection is lethal, i.e., AUC7 =
∫ 7

0
V (t)dt. Otherwise, infected subjects were assumed

recovered once the viral load was no longer detectable (Fig. 2). Depending on the

infective dose and the adaptive immune response strength, an infection will mani-

fest different viral dynamics. Based on that, we defined the transmission parameters

as in Table 1A-C (detailed implementations can be seen in Code and examples —

Epidemic simulations).
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Figure 2 Simulated infection course using within-host infection dynamics. The viral

replication, the antibody dynamics, and their interaction were modeled to define epidemiological

parameters. It is assumed that when the EBOV-specific antibody concentration reaches certain

threshold, it can inhibit the viral replication [50]. The total viral load under the curve (AUC) in

lethal cases is used to define infection outcomes [51].

The network model

The European’s contact patterns survey data [31] were used to generate a network

model reflecting the number of contacts, the mixing patterns among age-groups,

and a specific population age-structure. The age-distribution of the city Freetown

in Sierra Leon was used as the reference [52]. A detailed description of the imple-

mentation can be found in Code and examples — Generating age-specific contact

network. Because EBOV spreads through direct contacts with infectious subjects

[48], and that the highest risk of infection is contacting with blood, faeces, and

vomit [53], we used only the data of physical contacts and excluded those con-

tacts with a duration less than five minutes. To account for the transmission route

through funeral practices in EBOV outbreaks [2], we considered deceased EBOV-

infected subjects infectious until they were buried. During the last epidemics in

Sierra Leone, the time from death to burial was one to two days on average but can

be a week [54]. As data regarding this variable’s distribution are not available, this

number was randomly assigned using a truncated normal distribution at zero and

seven with unit mean and variance (detailed implementations can be seen in Code

and examples — Epidemic simulations).
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Table 1 Definitions of transmission parameters based on viral load and epidemics outcomes based on
network model.

Measure Definition

A Incubation period the interval between exposure to a pathogen

and initial occurrence of symptoms [5] was de-

fined from the infection time to the first time

the viral load crosses over the detectable thresh-

old (Fig. 2).

B Time from symptom onset

to recovery[5]

defined as the interval between the first day of

detectable viral load and the first day the viral

load goes undetectable (Fig. 2).

C Time from symptom onset

to death[5]

defined as the interval between the first day with

detectable viral load and the day the area under

the viral load curve (AUC) crosses the reference

threshold AUC7 (Fig. 2).

D Basic reproductive number

(R0)

calculated based on the network of infected sub-

jects at the end of an epidemic. In terms of net-

work models, this equals the mean degree dis-

tribution of the infected network, considering a

directed network without loops (e.g., Fig. 5A).

The R0 by age-group was also calculated in the

same fashion based on the assigned age-attribute.

Note that in epidemics with intervention, the R0

is called the effective reproductive number (Re).

E Final infected fraction the proportion of infected nodes at the end of the

epidemic simulations.

F Case-fatality rate the proportion of nodes died as a result of EBOV

infection calculated as the end of epidemics.

Transmission outcomes definitions

To obtain EBOV’s epidemics metrics, the within-host infection model was embedded

into network model. Simulations of EBOV epidemic are detailed in Box 1. In short,

a network of ten thousand nodes was generated. Scenarios in which the population

was randomly vaccinated during one-week vaccination programs were tested and

compared to a control simulation without interventions. For each scenario, one

thousand simulations were performed, each of which started with a single random

index case. Each time when a contact occurs, the viral load at the time point was

extracted to determine the transmission potential. Next, the susceptibility of the

contact persons were computed as a function of their age [16]. A Bernoulli trial

was then used to determine if the contact results in an infection given the overall

transmission probability. If the transmission succeeds, the newly infected subject
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Box 1. EBOV epidemic simulation process

1 Choose index case(s), simulate infection course with lethal infective dose

2 For each time step ti in simulation time T

(a) For each infectious node i. Compute current transmission potential

pIi = V (ti)/KV , pIi ∈ [0, 1]

ii. Find neighbours j = 0, ..., n, compute their

susceptibility with respect to their age [16]:

pSj = fS(agej), pSj ∈ [0, 1]

iii. Compute the transmission probability pi,j = pIipSj
, decide if a

neighbour is infected with a Bernoulli trial iv. Update newly infected

nodes: store infection course, infection time, dose of infection, and

fate decision. v. Update previously infected nodes if they are

recovered or died.

(b) Update death nodes: if buried removed the node from infectious

nodes.

Stop the simulation when there is no longer an infectious node. Noting that

extra weights, e.g., contact duration, can be incorporated into iii.

has its own infection profile computed. Based on simulation outputs, the epidemic

outcomes were determined as in Table 1D-F (detailed implementations can be seen

in Code and examples — Epidemic simulations).

Computational implementation

The simulations were written in vectorized R language [55]. Computation of in-

fection dynamics of newly infected node were done on-the-fly after obtaining its

infective dose and immunization status. For nodes with identical conditions, their

infection courses are copied instead of recomputing the ordinary differential equa-

tions (ODEs) for speed (Code and examples — Epidemic simulations). Repeated

runs of epidemic simulations to obtain uncertainty estimates were done on com-

puter clusters of the Center for Scientific Computing (CSC) of the Goethe Univer-

sity Frankfurt. Distributing of computation resources was sent from within R to

SLURM Workload Manager.
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Results

Basic transmission characteristics

Simulations of the outcomes of the within-host infection model showed a highly

skewed distribution of the basic transmission parameters (Fig. 3). The incubation
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Figure 3 Extrapolations of the delay distributions post EBOV infection using within-host

infection model. Simulations of the with-host infection model with varied infective dose and

immune strengths. The median of the three distributions are 9, 9.7, and 3.8 for A, B, and C,

respectively.

period derived from viral load dynamics ranged from 2.6 to 12.4 days (median: 3.8)

compared to the previous estimates based on actual outbreak data ranging from

3.35 to 12.7 days [5]. The delay time from infection to recovery ranged from 6.9

to 17.6 days (median: 9.7) while previous estimates of this interval ranged from 2

to 26 days (median: 10) [5]. The time from infection to death ranged from 8.1 to

15.1 days (median: 9) compared to previous estimates ranged from 3 to 21 (median:

9–10) [5].

The network model

Figure 4 shows an example of the generated networks and its required data. The

network is returned as an adjacent matrix that is compatible to available network

analyses algorithms, e.g., igraph [56]. Storing as a sparse matrix, a regular installa-

tion of R can generate reliably networks 10-20 thousand nodes with the generation

time 6-10 minutes on a single thread Intel Core i7, 8GB RAM. In particular, giving

a network of size N ∈ N, each node is assigned an age such that the network’s

age-distribution resemble that of a target population. Subsequently, nodes were as-

signed a number of contacts per day follow a defined contact distribution. Finally,
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Figure 4 A Generated network of one hundred individuals that mimics distribution of physical

contact, contact matrix, and population age structure. The node’s size reflects its number of

contacts. Nodes in the same age-group have the same colour; B Distribution of number of

physical contacts shows a majority of individuals have a few physical contact per day [31]; C A

heat map of contact matrix shows higher contact frequencies in darker shades. The matrix reflects

the assortative pattern of human contacts, that is people contact mainly with their peers, follow

by their children or parents. The age-group with the highest contacts are teenager and young

adults [31]; D Reconstructed age-structure of Sierra Leon population based on Statistics Sierra

Leone and ICF International data [52].

the algorithm visits each node to generate the defined number of contacts, not at

random but follow a defined contact matrix.

Calculating basic reproductive number (R0)

After each simulation, the uninfected nodes were removed from the initial network.

Then the reproductive number is calculated as the average network degree, con-

sidering the network as directed and without loop (Fig. 5-Left). Simulation results

showed that the overall estimate of the R0 was 1.43 (Fig. 5-Right). However, the

estimates differed by age-groups with the highest of 4.7 for the group of 10-14 years

of age. Generally, the age-groups with a higher contact rate had also a higher R0.

Simulations of epidemics with varied intervention strategies showed that the Re can

be reduced below one if the vaccination program with 85% coverage were deployed
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Figure 5 Left. Three examples infected networks. The three networks were randomly chosen

from the simulated epidemics. Uninfected nodes were removed and the network are plotted. Based

on these, the R0 was calculated based on the edges assuming a directed network, i.e., each edge

counted in only one direction. Right. Estimates of the basic reproductive number without any

intervention, overall and by age-groups. Simulations of a network of size ten thousand during a

period of one year. One thousand simulations were run, each time with a random index case. At

the end of each simulation, networks of infected nodes were extracted to compute the average

number of secondary infections.

as far as five months before the introduction of the index case (time zero) or as late

as one week after that (Supplemental Figure 1). This coverage threshold was tested

as it is the highest vaccine coverage currently achieved worldwide for some diseases,

e.g., Hepatitis B, measles, and polio [57]. Late initiations of similar interventions

from one to five months after the time zero gradually shift the Re to the outbreak

domain.

A lower vaccination coverage of 33% appeared not protective and posed a potential

of outbreak regardless the time of vaccination program (Supplemental Figure 1).

This coverage was tested as it is a theoretical protective threshold, i.e., 1-1/R0 [58].

Note that the tested time window of five months before the appearance of the index

case was chosen based on the windows of opportunity for EBOV vaccination [38].

As of now, no data are available on the secondary antibody responses to EBOV; it

was assumed that secondary responses are similar to the primary responses.

Case-fatality rate

Simulations showed that the case-fatality rate in the absence of intervention is

90.93% (Supplemental Figure 2) which falls in the range of literature estimates

of 0.4 to 0.91 [5]. Furthermore, simulation results showed that all the intervention

strategies mentioned previously can reduce the case-fatality rate. These results high-

light a benefit of vaccination programs even they are late, i.e., they can reduce the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/133421doi: bioRxiv preprint 

https://doi.org/10.1101/133421
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nguyen et al. Page 12 of 22

disease severity in newly infected subjects after the vaccination program. As such,

relying solely on R0 as the indicator for evaluating intervention programs could

have overlooked this life-saving aspect.

Epidemic final size

Theoretical analyses of epidemic models showed when the R0 is larger than one,

the final size of an epidemic will converge to a two points distribution: either the

epidemic dies out with a small number of infected cases or the epidemic takes

off and converges to a normal distribution [58]. Simulation results confirmed this

epidemic behavior (Fig. 6). The results showed that without intervention, EBOV

had approximately 50% to infect more than half the population. The introduction of
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Figure 6 Distribution of the final infected fraction in different timing and coverage of

vaccination strategies. A synthetic population of ten thousand individuals was generated. One

thousand simulations were run to simulate the epidemic in the time course of one year. Each time,

one individual was chosen randomly as the index case. Circles, diamonds, and connected lines are

median. Filled areas are the corresponding non-parametric densities estimates [59]. Two median

values are presented for multi-modal density estimates, determining by inflection points.

vaccination programs at both the coverage thresholds previously mentioned and at

any vaccination time points under assessments were able to scale down the epidemic

size (Fig. 6). The two points epidemics size distribution gradually converged to a

uni-modal distribution centring at a low infected fraction when the vaccination

programs were deployed earlier. The high vaccine coverage strategy can effectively
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eliminate the possibilities of having a major outbreak infecting a large proportion of

the population. This can be achieved when the vaccination programs were deployed

any time from a week to five months before time zero.

A random vaccination program covering 33% of the population one week before

the epidemics can reduce the final size by more than 100 times compared to a

no intervention scenario. However, the low coverage strategy still showed a small

probability that epidemics can become major whereas the high coverage strategies

did not. Vaccination programs deployed during the epidemics can also substantially

reduce the epidemics size. The intervention conducted one month after time zero

can also reduce the final size by more than ten times. These interventions not only

able to reduce the final size, but they can also increase the epidemics extinction

probability.

Discussion

Epidemic modelling aims to obtain generalized solutions to questions such as

whether or not a substantial population fraction is getting infected? how large

would the outbreak spread? and how can the outbreak be mitigated with certain

intervention approaches [58, 7]. Answering those questions requires the use of as-

sumptive parameters as well as actual outbreak data [7, 58, 26, 15]. Our results

showed that using information on within-host infection dynamics allows the identi-

fication of those key characteristics in the disease transmission.

Estimates of the incubation period suggest a contact tracing period of three weeks

for Ebola epidemics, matching the current WHO’s recommendation of 21 days [60].

Estimates of the delay distributions agreed that EBOV infected subjects can be

infectious from day 3 up to three weeks post infection [5]. Understanding of these

delay distributions is critical in both clinical and epidemiological perspectives [61].

These distributions, however, are most often only partially observed in practice: it

is difficult to know the exact time of exposure to the pathogen or to have complete

outbreak data [6, 62]. As such, parameter estimation of these distributions have been

relied on testing and comparing different distributional assumptions [62]. In this

paper, mechanistically generated transmission characteristics using viral dynamics

remarkably resemble literature estimates of Ebola. This approach is thus promising
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and practical given the accumulating experimental data on varieties of pathogens,

notably, the one that as yet unknown in epidemic contexts.

To determine infection outcomes, the threshold AUC7 was chosen based on sug-

gestions from empirical data in humans [49] and non-human primates [39, 40].

Simulations of the epidemics using this threshold revealed faithful estimates of the

EBOV case-fatality rate (Supplemental Figure 2), supporting the use of the total

viral load (AUC) as a criterion for determining infection outcomes. Although a more

precise threshold criterion is desirable, it might not be feasible to obtain in practice

considering inherent ethical reasons. Thus a similar criterion could be considered

when adapting this approach to other infectious diseases, but ideally with dedicated

experimental data.

Different classes of network models have been proposed, but they cannot repro-

duce properties observed in real world networks [63]. In addition, choices of theoret-

ical network structure used for simulation can alter epidemic outcomes [28]. Thus, a

network model at least obeying empirical data provides a more solid ground for epi-

demic simulations. Apart from mimicking the contact data properties, our network

model can express age-related infection traits via the assigned age attributes. It was

used here to express individual differences in the susceptibility to viral infection—an

important element in a realistic disease transmission. Although contact data might

not be available for a certain target area, the assortative patterns of human contacts

and the highly skewed distribution of the number of contacts might hold true across

regions [31, 32]. Thus, this paper presents a simple way to bring empirical data into

epidemic modelling studies.

Our current network model currently can only simulate epidemics in a small pop-

ulation of size 10-20 thousand. This is because of the limit in R with the theoretical

maximum square matrix size is approximately 45000 [55]. A more efficient storing of

the network could extend the network size, such as a lazy evaluation used in igraph

[56]. However, it could be more realistic to have several communities amount to a

large population size instead of a large single network. This can be implemented

by generating different communities across computers and allow them to communi-

cate, speeding also the computation processes [64]. In this case, additional data are

needed to model the communication among the communities, such as transportation

and immigration.
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Regarding EBOV epidemics, previous R0 estimates based on epidemic data were

diverse, depending on model choices and assumptions [5]. Our estimate of R0 was

1.4 which is within the range of the previous estimates, ranging from 1.2 to 2.6, with

some exceptional estimates up to 4.7 and 8.3 [5]. Notably, the estimates differed by

age-groups with the highest of 4.7 for the group of 10-14-years of age. Although

these estimates depend on Sierra Leon’s age-structure, the differences of R0 esti-

mate stress the role of the age-structure and contact patterns in the estimation of

R0, prompting that age-specific intervention strategies should be considered. The

estimates by sub-groups single out the effort required to control the epidemic [9].

With current assumptions, targeting interventions to the group 5-20-years of age

could be an effective strategy. Note that the differences of R0 by age-group could

explain the wide variation of the previous estimates where different samples were

employed [5].

The following assumptions were used in the paper given the lack of specific experi-

mental data, but further efforts to produce data are needed to refine and to adapt to

other settings: (i) Secondary antibody responses are the same as primary responses:

This underestimates the effect of the vaccination strategies conducting before the

epidemics. Experimental studies on secondary immune responses to EBOV infection

are needed, especially those with a longer follow-up period. (ii) The transmission

potential is directly related to viral load: This is although simple and reasonable,

but different types of relationship, such as non-linear, might exist [13]. Dedicated

animal experiments to define the exact relationship between the viral load the abil-

ity to transmit the virus are needed. (iii) The contact pattern is the same between

European countries and Sierra Leone: Although the contact patterns seemed similar

across countries [31], a more sociable population would increase the estimate of R0.

(iv) Infection statuses have no influences on the network structure, except those

were buried. This could overestimate R0 [65]. Taking people’s behaviour changes

into epidemic modelling remains a grand challenge [65]. (v) Susceptibility to EBOV

infection is similar to a general viral infection disease: Studies on susceptibility func-

tions are lacking and require more attentions of the infection research community.
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Conclusion

Throughout this paper, we showed the possibilities to investigate practical and in-

triguing questions using a within-host viral dynamic model and an age-structured

network model. The advantages of using explicitly within-host dynamics are the

availability of experimental data, the possibility of conducting experiments to char-

acterize transmission parameters, and the ability to provide high-resolution subject-

specific responses to infection. The advantages of using an age-structured network

model are its simple implementation, its representativeness for disease transmission,

and the availability of the age-structured data. Therefore, immunological studies of

infectious agents could be seamlessly integrated into studies of between hosts trans-

mission, promoting evidence-based public health practices.
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51. Vegvari, C., Hadjichrysanthou, C., Cauët, E., Lawrence, E., Cori, A., de Wolf, F., Anderson, R.M.: How Can

Viral Dynamics Models Inform Endpoint Measures in Clinical Trials of Therapies for Acute Viral Infections?

PLoS ONE 11(7), 0158237–13 (2016). doi:10.1371/journal.pone.0158237

52. Statistics Sierra Leone (SSL) and ICF International: Sierra Leone Demographic and Health Survey 2013.

Freetown, Sierra Leone and Rockville, Maryland, USA: SSL and ICF International., ??? (2014)

53. World Health Organization: What We Know About Transmission of the Ebola Virus Among Humans. Ebola

situation assessment, ??? (2014)

54. Lipton, J.: Care and burial practices in urban Sierra Leone. Technical report (October 2014)

55. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria (2015). R Foundation for Statistical Computing. https://www.R-project.org/

56. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex

Systems, 1695 (2006)

57. World Health Organization: Immunization Coverage. Geneva: World Health Organization, ??? (2010)

58. Britton, T.: Stochastic epidemic models: A survey. Mathematical Biosciences 225(1), 24–35 (2010). 0910.4443

59. Bowman, A., Azzalini, A.: R Package sm: Nonparametric Smoothing Methods (version 2.2-5.4). University of

Glasgow, UK and Università di Padova, Italia (2014)
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Additional Files

Code and examples — Generating age-specific contact network

The R code for generating an example contact network can be previewed at http://doi.org/10.5281/zenodo.1037264

Code and examples — Epidemic simulations

Example R code for epidemic simulations can be previewed at https://doi.org/10.5281/zenodo.1045404
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Figure 7 Estimates of the reproductive number in different vaccination schemes. Simulations of

a network of size ten thousand during a period of one year. One thousand simulations were run,

each time with a random index case. At the end of each simulation, network of infected nodes

were extracted to compute the average number of secondary infection.

Supplemental Figure 2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/133421doi: bioRxiv preprint 

https://doi.org/10.1101/133421
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nguyen et al. Page 22 of 22

● ●
●

● ● ●

●

●
● ● ●

●

●

● ●
●

● ● ●
●

●
● ● ● ●

●

−5 −4 −3 −2 −1 −1w. 1w. 1 2 3 4 5 Control

0.0

0.2

0.4

0.6

0.8

1.0
Index case >

>

Vaccination time in months (w.: week)

C
as

e−
fa

ta
lit

y 
ra

te

Vaccine coverage

85%
33%

Figure 8 Case-fatality rate in different vaccination schemes. Simulations of a network of size ten

thousand during a period of one year. One thousand simulations were run, each time with a

randomly index case. At the end of each simulation, the network of infected nodes was extracted

to compute the case-fatality rate.
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