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Abstract—Nanopores represent the first commercial technology
in decades to present a significantly different technique for DNA
sequencing, and one of the first technologies to propose direct
RNA sequencing. Despite significant differences with previous
sequencing technologies, read simulators to date make similar
assumptions with respect to error profiles and their analysis. This
is a great disservice to both nanopore sequencing and to computer
scientists who seek to optimize their tools for the platform.
Previous works have discussed the occurrence of some k-mer
bias, but this discussion has been focused on homopolymers,
leaving unanswered the question of whether k-mer bias exists
over general k-mers, how it occurs, and what can be done to
reduce the effects. In this work, we demonstrate that current read
simulators fail to accurately represent k-mer error distributions,
We explore the sources of k-mer bias in nanopore basecalls, and
we present a model for predicting k-mers that are difficult to
identify. We also propose a new SNaReSim, a new state-of-the-
art simulator, and demonstrate that it provides higher accuracy
with respect to 6-mer accuracy biases.

I. INTRODUCTION

DNA sequencing has become an integral component of bio-
logical research, with applications ranging from gene network
or organism identification through biological engineering.
DNA sequencing has historically been dominated by synthesis-
based approaches involving the replication of an existing DNA
or cDNA molecule, with the attachment of fluorescent probes
during synthesis for visualization of the base being added in
a 4-dimensional color space. These approaches tend to have a
bias in the reads selected, and tend to have reduced accuracy
near the beginning and end of reads, however there tends to
be minimal error bias within a single read [1]. Conversely,
nanopore reads escape the read selection bias due to a lack of
pre-amplification, but they provide only a single dimension of
measurement, resulting in a significant within-read bias [2].
This bias is unaccounted for and lacks a published model,
but it has significant implications for current generation read
aligners [3]-[5] which rely on perfect or nearly perfect “seed”
sequences. Unfortunately, this behavior is unaccounted for in
current generation read simulators.

We demonstrate that in fact there is a read bias, that is
more pronounced than the previously observed homopolymer
bias, and that current generation simulators are unable to
properly model this distribution. We propose a simulator based
on a modified Markov chain that allows for the mutation of
a reference sequence in a way that significantly improves
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simulation fidelity. To accomplish this task, we identify the
accuracy of individual k-mers and their behavior in different
contexts. We also predict key features of the error bias,
and calculate their individual contributions to the final error.
Our simulator is fully automated, allowing for both in silico
amplification of read data, or simulation of data on completely
novel genomes. Our contributions are summarized below:

e We demonstrate that while some base calling error is
random there is a significant component that is systematic
and unaccounted for (section IV-A).

o We develop a set of features for predicting k-mer accu-
racy and show that our model generally correlates well
with data found empirically (section IV-B).

o We propose an algorithm for simulating reads, a variant
of the Hidden Markov Model employed by Nanosim [6],
with modifications to apply observed k-mer bias. We
demonstrate that it models the k-mer error distribution
better than other popular read simulators [6]-[8] (sec-
tion IV-C).

II. RELATED WORK

Cost, throughput, and accuracy have been major hindrances
in DNA sequencing. With the development of NGS technolo-
gies cost has reduced while throughput and accuracy continue
to climb. Still, simulators offer a significant benefit due to
their low cost and exceptionally high throughput, allowing
testing while developing new algorithms. Simulators aim to
produce sequences with the most fidelity possible for their
given platform. As such, simulated reads should account for
biological and technical bias [9].

Simulators typically generate synthetic reads by extracting
a sequence from a reference genome and then introducing
errors into that sequence. Parameters required by simulators to
introduce these features into the sequence are either provided
at run time or are stored inside a metadata called a model
or error profile. By analyzing the alignment of empirical data
to a reference genome error profiles are created. Errors have
been generated by first predicting a quality score [10], by base
position within a simulated read [11], or by predicting an error
sequence and then applying it to a read [6], [7], [12].

Modeling of third generation single-molecule reads has
many advantages when compared with second generation se-
quencers. Polymerase chain reaction(PCR), required by second
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generation sequencers during the pre-amplification step, intro-
duces significant bias, but is not required for third generation
sequencers [13]. GC bias, a secondary effect of the PCR
amplification step, resulting in low base accuracy and high
coverage variability, is also removed [14]. Third generation
sequencing on the other hand has new challenges that must be
modeled. Simulators for third generation sequencers must deal
with longer reads containing significantly larger stretches of
errors, and a biased error that varies with nearby nucleotides.
There are two main platforms for third generation sequencing,
PacBio’s SMRT sequencing, and Oxford Nanopore’s nanopore
sequencing. Each platform has their own read simulators, but
none are unable to properly model the k-mer bias of nanopore
sequencing data.

NanoSim [6] is a read simulator for ONT data, modeling
reads as the result of a Hidden Markov model. The model
is fit by aligning empirical reads to a reference genome,
then collecting a list of error subtypes, lengths, and transition
probabilities. Reads can be simulated by sampling a length,
then generating a sequence of errors. One major limitation of
this approach is that it is unable to properly model k-mer bias;
this is somewhat overcome by a post-processing step where all
homopolymers of length greater than 5 (e.g. “AAAAAAA”)
are compressed to a length of 5.

LongISLND [8] is a read simulator developed for PacBio
data. It models k-mer bias explicitly and directly by storing
observed mutations for each k-mer it sees, stored as a key-
value pair. It also uses an Extended K-mer (EKmer) model
to aid in homopolymer error generation. An EKmer is a
regular k-mer followed by an integer representing a length
of homopolymer covering the middle term in the k-mer facil-
itating the simulation of arbitrary stretches of homopolymer
without explicitly observing them. One major limitation of
LongISLND is that while is is able to approximate the k-mer
bias it lacks the accuracy level observed in true ONT data.
This is likely due to ONT data having grouped errors (i.e. the
probability of error given an error exists nearby is higher than
normal) that are not properly modeled using their simulator.

III. PROBLEM DESCRIPTION

DNA has a label space of ¥ € {A4,C,T,G} representing
the different nucleotide bases. Let s € X" be a DNA strand
of length n. Using Nanopore technology, a series of discrete
measurements § is generated, representing the current that
passes through the nanopore at each time step from time
to to tr, where t reflects the total time required for s to
completely transit the Nanopore. This creates a corresponding
vector A € R?, where d >> n is the number of discrete
measurements obtained from time tg to tp.

The vector A is subsequently binned into ¢ different bins,
B = by, by...bg, using different time intervals that capture ~ %
measurements per bin. The mean p; and standard deviation o;
are subsequently derived for each bin b,. An approximation
strand, S, of the original strand s is reconstructed or “base
called” using the sequence of (u;, sigma;) pairs using ei-
ther a Recurrent Neural Network [15], or a Hidden Markov

Model [16], [17] in conjunction with a lookup table from the
Nanopore manufacturer that specifies the most probable k-
mer base pair for the given p; value. Using the R9 pore from
Oxford Nanopore 1, is best explained by a sequence of 6 DNA
bases, thus the k-mer length k£ = 6 is used in later analysis.

A. Error Source Identification

Naively, one may assume that error is distributed evenly
over §, however it is trivial to see that it is not the case. The
expected mean current . exists on a linear range, thus k-mers
near the minimum current are not as influenced by ¢ readings
lower than their expected mean, with the opposite true for
readings near the top of the range. Second, if the density range
of the k-mer currents is uneven, more error is to be expected
in high density regions [2]. Third, some sequences of K-mers
are easily identifiable due to large changes in current, while
others are difficult to identify due to small changes [2].

To elucidate the drivers of k-mer bias we first calculate
a list of k-mer accuracies K, and propose a set of features
F, where each feature f; confers an increase or decrease to
the accuracy of each k-mer. Error cannot be negative, thus
we can approximate the influence of each feature by solving
Equation 1.

arg min  ||Fx — B2
e 1
subject to x>0

Where x is a vector indicating the contribution of each factor
F. Fx is then the best approximation of the original k-mer bias
with respect to euclidean distance.

B. Read Simulation

Read simulation occurs in 2 phases: model fitting, then
simulating reads from an input genome. Fitting the model
requires existing reads to be aligned to a reference genome,
alignment is performed using BWA-MEM [4] with standard
options. From each read, the top alignment is selected, and
unaligned reads are discarded. From the remaining reads,
parameters are extracted with respect to average error length
for the error types {Insertion, Deletion, Mismatch}, transition
probabilities, and the accuracy of all k-mers of length 6. The
inverse of the k-mer accuracy is also used as a “cost” of
correctly predicting a k-mer. These parameters are then stored
for downstream simulation.

Reads are simulated according to a hidden-markov model
(HMM) which generates transitions between correct and er-
roneous stretches, and the lengths of those stretches. This
approach has the benefit of easy explainability, but has limi-
tations in that it is unable to correctly model k-mer accuracy
distribution. Moreover, this shortfall is difficult to overcome,
as modeling k-mer accuracies as states would require an
intractable number of parameters. To remedy this situation we
allow errors and error lengths to be generated according to
the HMM, but we adjust the lengths by using a cost function
described above in a process detailed in Algorithm 1.
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Fig. 1: The accuracies of all 6-mers with: (A) Experiments all 6-mers sorted by accuracy with reference to themselves (B)
Experiments sorted with respect to Ecoli R9 2D (C) A single experiment divided randomly into 5 groups, sorted with respect
to the first group (D) only R9 ecoli template results when comparing between aligners

Data: read extracted from sample genome
Result: mutated read
while readPosition < readlength do
scaleFactor = mean k-mer cost around readPosition;
isError = random * scaleFactor < .5;
if isError then
‘ errorType = transition probability from HMM;
end
budget = length from model based on errorType;
while cost < budget do
cost += cost of k-mer at readPosition + i;
i+=1;
end
if isError then
| save the mutation to a mutation list
end
readPosition += i;

end
Algorithm 1: Generation of mutation list for sampled read
using the k-mer biased HMM model.

IV. RESULTS
A. Modeling K-mer Bias

Before attempting to model k-mer bias in real data is it
important to understand the granularity at which it occurs, and
the consistency. To this end we examined 2 public datasets '
to determine whether bias was present, and to what extent.
We show that while there is a consistent k-mer bias within
experiments, there are significant differences between the R7
and R9 pores in Figure 1. We attribute the majority of the
differences to the pores themselves, but some influence also
likely comes from different versions of ONT basecaller used
on each dataset.

B. Identifying Bias Sources

After identifying the presence of k-mer bias we attempted
to elucidate the source of the bias. To this end we generated
a set of features with each providing a score for each k-mer,
and we attempted to find a linear combination of each feature
capable of explaining the bias, and providing a fractional

1 {http://lab.loman.net/2016/07/30/nanopore-r9-data-release/,http://lab.

loman.net/2014/10/01/where-can-i- get-oxford-nanopore- miniontm-data-from/}
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Fig. 2: The accuracy of k-mer fit to the actual distribution from the R9 pore model. (A) Including the true accuracy of
neighboring k-mers as a feature (B) using only the features in Table I

Fias Sour‘c‘e _ Example Low | Example High | Contribution Source Sample Size SSE
Transition Identifiability AAAAAA ATATAT 64.6% -
Sequence Identifiability CTGTCA TATATT 332% Split R9 6,481 0.121
Standard Deviation CTAGAG TTGAAA 1.79% LongISLND RO 20’000 167.04
Fraction A CGTCGT AAAAAA 9.73%
Fraction T CGACGA TTITTT 2.90% LongISLND R9 4,000 167.80
Fraction C AGTAGT ccccecece 9.33% Nanosim R9 20,000 44.26
Fraction G CATCAT GGGGGG 7.03%
Nanosim R9 4,000 46.76
TABLE [: Identified error sources and their contribution to SNRG R9 20,000 9.52
k-mer overall accuracy with respect to Figure 2 SNRG R9 4,000 9.66
LongISLND R7 20,000 88.78
. . . . LongISLND R7 4,000 88.96
contribution of each step. As shown in Table I multiple error £ -
sources influence the accuracy fraction of each k-mer. We find Nanosim R7 20,000 30.76
that the strongest feature for predicting the accuracy is the Nanosim R7 4,000 36.16
median accuracy of neighbors at one step away. While this SNRG R7 20,000 5.24
is not directly helpful, it does suggest that direct modeling SNRG R7 4,000 5.48

of error sources must incorporate neighbor accuracy aspects.
Overall we find that our predictive model provides a good
first attempt, providing some insight, but leaving much of
the error signal uncaptured, as illustrated in Figure 2. We
expect that much of the remaining error signal is a result
of missing features that may be identified through a more
thorough analysis. We also expect that some of the error
signal cannot be captured through linear combinations. For
example, the original basecallers were incapable of capturing
homopolymers with a length greater than 5, using linear
combinations the k-mer “AAAAAA” would need to have 0
accuracy across all features, an unrealistic expectation.

C. Simulation Results

To validate our simulation results we generated read profiles
for Nanosim [6], PBSim [7], LONGIslnd [8], and the two sim-
ulators we have proposed. Nanopore sequencing experiments
typically yield between 10,000 and 20,000 reads [6], with
measured statistics being approximately identical at even 20%
of this size as shown in Figure 1(C). To measure this effect in
simulations, we generated 2 data sets with each simulator: one

TABLE II: Sum of squares error(SSE) between k-mer simu-
lators and their training, and between the fragmented R9 data
set and the complete one(Figure 1)

with 4,000 reads, and one with 20,000 reads. These reads were
then aligned using BWA-MEM [4] with standard parameters.
The sum of squares error is the sum of the difference between
the model 6-mer accuracy and the simulated k-mer accuracy,
for all 6-mers. Results of both large and small simulations
are shown in Table II, while the 20,000 read simulations are
shown in Figure 3. Ultimately we find that sample size has
very little influence on existing simulators, as the k-mer bias
is either completely un-modeled, or has systematic difficulties
capturing the k-mer error rate (LongISLND). In our simulators
we find some improvement through increased sample size,
though most of the remaining difference does appear to be
from systematic errors.
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Fig. 3: Comparison of 3 previously published sequencing simulators with the new model we proposed. Fit of R9 pore model
k-mer accuracies sorted internally(A), and by 2D Ecoli, the training model(B). Fit of R7 pore model k-mer accuracies sorted

internally(C), and by 2D ecoli, the training model (D).

V. CONCLUSION

We have demonstrated the presence of biased k-mer accu-
racy within Oxford Nanopore Technologies sequencing plat-
form. We show that this bias is consistent within experiments,
and to a large extent between sequence aligners, but varies
between pore models. This information is of significant value
to sequence aligners, many of which look for perfectly match-
ing seed sequences. Due to the bias in k-mer accuracy some
seed sequences are virtually impossible to find correctly, and
as such should be excluded from being chosen as seeds.

We demonstrate that this k-mer bias has some observable
and predictable foundation in the mean current readings of
each k-mer(i.e. the manufacturers pore model). This provides
a way to estimate the read accuracy for a provided pore model
without performing large sequencing runs; it also suggests
that a model-guided approach for nanopore design could
improve overall accuracy. Alternatively it could allow for the
development of specific pores, where accurate discrimination
of some k-mer subtypes is more important than others.

Finally we propose a novel nanopore read simulator capable
of modeling the k-mer bias observed in this experiment. We

demonstrate that our simulator has a significantly reduced
sum of squares error with respect to 6-mer accuracy when
compared with other simulators. This provides a more realistic
benchmark for sequence aligners to compare against, specif-
ically allowing for sequence aligners tailored for nanopore
sequencing data.

The availability of high accuracy reads allows for the
exploration of new applications, including; sequencing of
larger organisms, organism disambiguation when sequencing
a population, exact sequence detection in diploid and poly-
ploid organisms, and the ability to scaffold genomes across
exceptionally long repeat regions. Providing an understanding
of accuracy in nanopore design, and development of tools to
aid the alignment of the produced reads is thus critical to
continued progress.
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