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7Neurology Department, CHU de Grenoble, Hôpital Michallon, F-38000 Grenoble, France
8Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Université Lyon, Lyon, France
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Previous work demonstrated a direct correspondence between the hierarchy of the human visual areas and
layers of deep convolutional neural networks (DCNN) trained on visual object recognition. We used DCNNs
to investigate which frequency bands carry feature transformations of increasing complexity along the ventral
visual pathway. By capitalizing on intracranial depth recordings from 100 patients and 11293 electrodes we
assessed the alignment between the DCNN and signals at different frequency bands in different time windows.
We found that activity in low and high gamma bands was aligned with the increasing complexity of visual
feature representations in the DCNN. These findings show that activity in the gamma band is not only a
correlate of object recognition, but carries increasingly complex features along the ventral visual pathway.
These results demonstrate the potential that modern artificial intelligence algorithms have in advancing our
understanding of the brain.

Significance Statement1

Recent advances in the field of artificial intelligence have revealed2

principles about neural processing, in particular about vision.3

Previous works have demonstrated a direct correspondence4

between the hierarchy of human visual areas and layers of deep5

convolutional neural networks (DCNNs), suggesting that DCNN6

is a good model of visual object recognition in primate brain.7

Studying intracranial depth recordings allowed us to extend pre-8

vious works by assessing when and at which frequency bands the9

activity of the visual system corresponds to the DCNN. Our key10

finding is that signals in gamma frequencies along the ventral11

visual pathway are aligned with the layers of DCNN. Gamma12

frequencies play a major role in transforming visual input to13

coherent object representations.14

Introduction 1

Biological visual object recognition is mediated by a hierarchy 2

of increasingly complex feature representations along the ventral 3

visual stream (DiCarlo et al., 2012). Intriguingly, these transfor- 4

mations are matched by the hierarchy of transformations learned 5

by deep convolutional neural networks (DCNN) trained on natu- 6

ral images (Güçlü and van Gerven, 2015). It has been shown that 7

DCNN provides the best model out of a wide range of neurosci- 8

entific and computer vision models for the neural representation 9

of visual images in high-level visual cortex of monkeys (Yamins et 10

al., 2014) and humans (Khaligh-Razavi and Kriegeskorte, 2014). 11

Other studies have demonstrated with fMRI a direct correspon- 12

dence between the hierarchy of the human visual areas and layers 13

of the DCNN (Güçlü and van Gerven, 2015; Eickenberg et al., 14

2016; Seibert et al., 2016; Cichy et al., 2016b). In sum, the 15

increasing feature complexity of the DCNN corresponds to the 16
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increasing feature complexity occurring in visual object recog-1

nition in the primate brain (Kriegeskorte, 2015; Yamins and2

DiCarlo, 2016).3

However, fMRI based studies only allow one to localize object4

recognition in space, but biological visual object recognition is5

also specific in time and frequency. With time-resolved magne-6

toencephalography (MEG) recordings it has been demonstrated7

that the correspondence between the DCNN and neural signals8

peaks in the first 200 ms (Cichy et al., 2016b; Seeliger et al.,9

2017). Here we test the remaining dimension: that biological10

visual object recognition is also specific to certain frequencies.11

In particular, there is a long-standing hypothesis that especially12

gamma band (30− 150 Hz) signals are crucial for object recog-13

nition (Singer and Gray, 1995; Singer, 1999; Fisch et al., 2009;14

Tallon-Baudry et al., 1997; Tallon-Baudry and Bertrand, 1999;15

Lachaux et al., 1999; Wyart and Tallon-Baudry, 2008; Lachaux16

et al., 2005; Vidal et al., 2006; Herrmann et al., 2004; Hipp et17

al., 2011; Gaillard et al., 2009; Srinivasan et al., 1999; Levy et18

al., 2015). Hence, if DCNN capture biological object recognition19

there should be a correspondence between the DCNN layers and20

gamma signals along the ventral visual pathway.21

To empirically evaluate the specific role of gamma frequency22

in visual object recognition we assessed the alignment between23

the responses of layers of the DCNN and the neural signals in five24

distinct frequency bands and three time windows along the areas25

constituting the ventral visual pathway. Based on the previous26

findings we expected that: 1) mainly gamma frequencies should27

be aligned to the DCNN; 2) the correspondence between the28

DCNN and gamma should be confined to early time windows; 3)29

the correspondence between gamma and the DCNN layers should30

be restricted to visual areas. In order to test these predictions31

we capitalized on direct intracranial depth recordings from 10032

patients with epilepsy and a total of 11293 electrodes implanted33

throughout the cerebral cortex.34

Studying the alignment between the DCNN and gamma fre-35

quencies would also help to elucidate the role of gamma band36

signals in object recognition. The classic view is that gamma37

band activity signals the emergence of coherent object represen-38

tations (Singer and Gray, 1995; Singer, 1999; Fisch et al., 2009).39

However, it is possible that gamma frequencies carry feature40

transformations of increasing complexity instead of reflecting41

solely the final product of object recognition. Suggestive evidence42

for this view is provided by studies demonstrating that feedfor-43

ward activity from lower to higher visual areas is carried by the44

gamma frequencies along the ventral visual pathway (Van Kerko-45

erle et al., 2014; Bastos et al., 2015; Michalareas et al., 2016). The46

existence of quantifiable increase of feature complexity along the47

layers of DCNN allows one to use the DCNN as a computational48

model to assess whether signals in the gamma frequency indeed49

reflect such gradual transformations.50

We observed that activity in the gamma range along the ven-51

tral pathway is statistically significantly aligned with the activity52

along the layers of DCNN: gamma (31− 150 Hz) activity in the53

early visual areas correlates with the activity of early layers of54

DCNN, while the gamma activity of higher visual areas is bet-55

ter captured by the higher layers of the DCNN. We also found56

that neural activity in the theta range (5− 8 Hz) throughout the57

visual hierarchy correlated with higher layers of DCNN.58

Materials and Methods 1

Our methodology involves four major steps described in the fol- 2

lowing subsections. In “Patients and Recordings” we describe 3

the visual recognition task and data collection. In “Processing 4

of Neural Data” we describe the artifact rejection, extraction of 5

spectral features and the electrode selection processes. “Process- 6

ing of DCNN Data” shows how we extract activations of artificial 7

neurons of DCNN that occur in responses to the same images as 8

were shown to human subjects. In the final step we map neural 9

activity to the layers of DCNN using representational similarity 10

analysis. See Figure 1 for the illustration of the analysis workflow. 11

Patients and Recordings 12

100 patients of either gender with drug-resistant partial epilepsy 13

and candidates for surgery were considered in this study and 14

recruited from Neurological Hospitals in Grenoble and Lyon 15

(France). All patients were stereotactically implanted with multi- 16

lead EEG depth electrodes (DIXI Medical, Besançon, France). 17

All participants provided written informed consent, and the 18

experimental procedures were approved by local ethical commit- 19

tee of Grenoble hospital (CPP Sud-Est V 09-CHU-12). Recording 20

sites were selected solely according to clinical indications, with 21

no reference to the current experiment. All patients had normal 22

or corrected to normal vision. 23

Electrode Implantation 24

Eleven to 15 semi-rigid electrodes were implanted per patient. 25

Each electrode had a diameter of 0.8 mm and was comprised 26

of 10 or 15 contacts of 2 mm length, depending on the target 27

region, 1.5 mm apart. The coordinates of each electrode con- 28

tact with their stereotactic scheme were used to anatomically 29

localize the contacts using the proportional atlas of Talairach 30

and Tournoux (Talairach and Tournoux, 1993), after a linear 31

scale adjustment to correct size differences between the patients 32

brain and the Talairach model. These locations were further 33

confirmed by overlaying a post-implantation CT scan (show- 34

ing contact sites) with a pre-implantation structural MRI with 35

VOXIM R© (IVS Solutions, Chemnitz, Germany), allowing direct 36

visualization of contact sites relative to brain anatomy. 37

All patients voluntarily participated in a series of short exper- 38

iments to identify local functional responses at the recorded sites 39

(Vidal et al., 2010). The results presented here were obtained 40

from a test exploring visual recognition. All data were recorded 41

using approximately 120 implanted depth electrode contacts per 42

patient with a sampling rates of 512 Hz, 1024 Hz or 2048 Hz. For 43

the current analysis all recordings were downsampled to 512 Hz. 44

Data were obtained in a total of 11293 recording sites. 45

Stimuli and Task 46

The visual recognition task lasted for about 15 minutes. Patients 47

were instructed to press a button each time a picture of a fruit 48

appeared on screen (visual oddball paradigm). Non-target stim- 49

uli consisted of pictures of objects of eight possible categories: 50

houses, faces, animals, scenes, tools, pseudo words, consonant 51

strings, and scrambled images. The target stimuli and last three 52

categories were not included in this analysis. All the included 53

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/133694doi: bioRxiv preprint 

https://doi.org/10.1101/133694
http://creativecommons.org/licenses/by/4.0/


250 images

baseline signal

LF
P 

re
sp

on
se

 to
 

ea
ch

 im
ag

e

29
04

00
 n

od
es

72
23

4 
pi

xe
ls

av
er

ag
e 

ba
nd

 a
ct

iv
ity

 
of

 re
sp

on
si

ve
 p

ro
be

 p

baseline signal

250 images

RDM of responses

25
0 

im
ag

es

rpixp rconv1p rconv2p rconv3p rconv4p rconv5p rfc6p rfc7p rfc8p

Spearman correlations between probe RDM and DCNN RDMs

RDMs in the pixel space and each layer’s space
250

25
0

probe p implanted 
in a test subject

Probe p is 
mapped to a 

Brodmann area

10,000 permutations to assess the significance 
of correlation between RDMs

X X

Mapping of brain areas to layers of DCNN

bipolar 
reference

—

MNI 
coordinates of 

probe p

C

A B

D

E

18
66

24
 n

od
es

64
89

6 
no

de
s

64
89

6 
no

de
s

43
26

4 
no

de
s

40
96

 n
od

es

40
96

 n
od

es

10
00

 n
od

es

γ

Figure 1 Overview of the analysis pipeline. 250 natural images are presented to human subjects (panel A) and to an artificial vision system

(panel B). The activities elicited in these two systems are compared in order to map regions of human visual cortex to layers of deep convolutional

neural networks (DCNNs). A: LFP response of each of 11293 electrodes to each of the images is converted into the frequency domain. Activity
evoked by each image is compared to the activity evoked by every other image and results of this comparison are presented as a representational

dissimilarity matrix (RDM). B: Each of the images is shown to a pre-trained DCNN and activations of each of the layers are extracted.

Each layer’s activations form a representation space, in which stimuli (images) can be compared to each other. Results of this comparison are
summarized as a RDM for each DCNN layer. C: Subject’s intracranial responses to stimuli are randomly reshuffled and the analysis depicted

in panel A is repeated 10000 times to obtain 10000 random RDMs for each electrode. D: Each electrode’s MNI coordinates are used to map the
electrode to a Brodmann area. The figure also gives an example of electrode implantation locations in one of the subjects (blue circles are the

electrodes). E: Spearman’s rank correlation is computed between the true (non-permuted) RDM of neural responses and RDMs of each layer
of DCNN. Also 10000 scores are computed with the random RDM for each electrode-layer pair to assess the significance of the true correlation
score. If the score obtained with the true RDM is significant (the value of p < 0.001 is estimated by selecting a threshold such that none of the
probes would pass it on the permuted data), then the score is added to the mapping matrix. The procedure is repeated for each electrode and

the correlation scores are summed and normalized by the number of electrodes per Brodmann area. The resulting mapping matrix shows the
alignment between the consecutive areas of the ventral stream and layers of DCNN.

stimuli had the same average luminance. All categories were pre-1

sented within an oval aperture (illustrated on Figure 1). Stimuli2

were presented for a duration of 200 ms every 1000− 1200 ms in3

series of 5 pictures interleaved by 3-s pause periods during which4

patients could freely blink. Patients reported the detection of a5

target through a right-hand button press and were given feed-6

back of their performance after each report. A 2-s delay was7

placed after each button press before presenting the follow-up8

stimulus in order to avoid mixing signals related to motor action9

with signals from stimulus presentation. Altogether, we measured 1

responses to 250 natural images. Each image was presented only 2

once. 3

Processing of Neural Data 4

The final dataset consists of 2823250 local field potential (LFP) 5

recordings – 11293 electrode responses to 250 stimuli. 6

3
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To remove the artifacts the signals were linearly detrended1

and the recordings that contained values ≥ 10σimages, where2

σimages is the standard deviation of responses (in the time win-3

dow from −500ms to 1000ms) of that particular probe over4

all stimuli, were excluded from data. All electrodes were re-5

referenced to a bipolar reference. The signal was segmented in6

the range from −500 ms to 1000 ms, where 0 marks the moment7

when the stimulus was shown. The −500 to −100 ms time win-8

dow served as the baseline. There were three time windows in9

which the responses were measured: 50− 250 ms, 150− 350 ms10

and 250− 450 ms.11

We analyzed five distinct frequency bands: θ (5− 8 Hz), α12

(9− 14 Hz), β (15− 30 Hz), γ (31− 70 Hz) and Γ (71− 150 Hz).13

To quantify signal power modulations across time and frequency14

we used standard time-frequency (TF) wavelet decomposition15

(Daubechies, 1990). The signal s(t) is convoluted with a complex16

Morlet wavelet w(t, f0), which has Gaussian shape in time (σt)17

and frequency (σf ) around a central frequency f0 and defined18

by σf = 1/2πσt and a normalization factor. In order to achieve19

good time and frequency resolution over all frequencies we slowly20

increased the number of wavelet cycles with frequency ( f0
σf

was21

set to 6 for high and low gamma, 5 for beta, 4 for alpha and 3 for22

theta). This method allows obtaining better frequency resolution23

than by applying a constant cycle length (Delorme and Makeig,24

2004). The square norm of the convolution results in a time-25

varying representation of spectral power, given by: P (t, f0) =26

|w(t, f0)s(t)|2.27

Further analysis was done on the electrodes that were respon-28

sive to the visual task. We assessed neural responsiveness of29

an electrode separately for each region of interest – for each30

frequency band and time window we compared the average31

post-stimulus band power to the average baseline power with32

a Wilcoxon signed-rank test for matched-pairs. All p-values from33

this test were corrected for multiple comparisons across all elec-34

trodes with a false discovery rate (FDR) procedure (Genovese et35

al., 2002). In the current study we deliberately kept only pos-36

itively responsive electrodes, leaving the electrodes where the37

post-stimulus band power was significantly weaker than the aver-38

age baseline power for future work. Table 1 contains the numbers39

of electrodes that were used in the final analysis in each of 1540

regions of interest across the time and frequency domains.41

θ α β γ Γ

50− 250 ms 1299 709 269 348 504
150− 350 ms 1689 783 260 515 745
250− 450 ms 1687 802 304 555 775

Table 1 Number of positively responsive electrodes in each of the
15 regions of interest in a time-resolved spectrogram.

Each electrode’s MNI coordinates were mapped to a corre-42

sponding Brodmann brain area (Brodmann, 1909) using Brod-43

mann area atlas contained in MRICron (Rorden, 2007) software.44

To summarize, once the neural signal processing pipeline is45

complete, each electrode’s response to each of the stimuli is rep-46

resented by one number – the average band power in a given47

time window normalized by the baseline. The process is repeated48

independently for each time-frequency region of interest.49

Processing of DCNN Data 1

We feed the same images that were shown to the test subjects to 2

a deep convolutional neural network (DCNN) and obtain activa- 3

tions of artificial neurons (nodes) of that network. We use Caffe 4

(Jia et al., 2014) implementation of AlexNet (Krizhevsky et al., 5

2012) architecture (see Figure 7) trained on ImageNet (Rus- 6

sakovsky et al., 2015) dataset to categorize images into 1000 7

classes. Although the image categories used in our experiment 8

are not exactly the same as the ones in the ImageNet dataset, 9

they are a close match and DCNN is successful in labelling them. 10

The architecture of the AlexNet artificial network can be seen 11

on Figure 7. It consists of 9 layers. The first is the input layer, 12

where one neuron corresponds to one pixel of an image and acti- 13

vation of that neuron on a scale from 0 to 1 reflects the color 14

of that pixel: if a pixel is black, the corresponding node in the 15

network is not activated at all (value is 0), while a white pixel 16

causes the node to be maximally activated (value 1). After the 17

input layer the network has 5 convolutional layers referred to 18

as conv1-5. A convolutional layer is a collection of filters that 19

are applied to an image. Each filter is a small image that rep- 20

resents a particular visual pattern. A filter is applied to every 21

possible position on an input image and if the underlying patch 22

of an image coincides with the pattern that the filter repre- 23

sents, the filter becomes activated and translates this activation 24

to the artificial neuron in the next layer. That way, nodes of 25

conv1 tell us where on the input image each particular visual 26

pattern occurred. Hierarchical structure of convolutional layers 27

gives rise to the phenomenon we are investigating in this work 28

– increase of complexity of visual representations in each sub- 29

sequent layer of the visual hierarchy: in both the biological and 30

artificial systems. Convolutional layers are followed by 3 fully- 31

connected layers (fc6-8). Each node in a fully-connected layer 32

is, as the name suggests, connected to every node of the previous 33

layer allowing the network to decide which of those connections 34

are to be preserved and which are to be ignored. 35

For each of the images we store the activations of all nodes of 36

DCNN. As the network has 9 layers we obtain 9 representations 37

of each image: the image itself (referred to as layer 0) in the pixel 38

space and the activation values of each of the layers of DCNN. 39

See pane B of figure 1 for the cardinalities of those feature spaces. 40

Mapping Neural Activity to Layers of DCNN 41

Once we extracted the features from both neural and DCNN 42

responses our next goal was to compare the two and use a simi- 43

larity score to map the brain area where a probe was located to a 44

layer of DCNN. By doing that for every probe in the dataset we 45

obtained cross-subject alignment between visual areas of human 46

brain and layers of DCNN. There are multiple deep neural net- 47

work architectures trained to classify natural images. Our choice 48

of AlexNet does not imply that this particular architecture cor- 49

responds best to the hierarchy of visual layers of human brain. It 50

does, however, provide a comparison for hierarchical structure of 51

human visual system and was selected among other architectures 52

due to its relatively small size and thus easier interpretability. 53

Recent studies comparing the responses of visual cortex with 54

the activity of DCNN have used two types of mapping methods. 55

The first type is based on linear regression models that predict 56

4
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neural responses from DCNN activations (Güçlü and van Gerven,1

2015). The second is based on representational similarity analy-2

sis (RSA) (Kriegeskorte et al., 2008). We used RSA to compare3

distances between stimuli in the neural response space and in the4

DCNN activation space (Cichy et al., 2016a).5

Representational Dissimilarity Matrices6

We built a representation dissimilarity matrix (RDM) of size7

number of stimuli × number of stimuli (in our case 250× 250)8

for each of the probes and each of the layers of DCNN. Given9

a matrix RDMfeature space a value RDMfeature space
ij in the ith10

row and jth column of the matrix shows the Euclidean distance11

between the vectors vi and vj that represent images i and j12

respectively in that particular feature space. Note that the pre-13

processed neural response to an image in a given frequency band14

and time window is a scalar, and hence correlation distance is not15

applicable. Also, given that DCNNs are not invariant to the scal-16

ing of the activations or weights in any of its layers, we preferred17

to use closeness in Euclidean distance as a more strict measure18

of similarity. In our case there are 10 different features spaces19

in which an image can be represented: the original pixel space,20

8 feature spaces for each of the layers of the DCNN and one21

space where an image is represented by the preprocessed neural22

response of probe p. For example, to analyze region of interest23

of high gamma in 50− 250 ms time window we computed 50424

RDM matrices on the neural responses – one for each positively25

responsive electrode in that region of interest (see Table 1), and26

9 RDM matrices on the activations of the layers of DCNN. A27

pair frequency band and a time window, such as “high gamma28

in 50-250 ms window” is referred to as region of interest in this29

work.30

Representational Similarity Analysis31

The second step was to compare the RDMprobe p of each probe32

p to RDMs of layers of DCNN. We used Spearman’s rank33

correlation as measure of similarity between the matrices:34

ρprobe p
layer l = Spearman(RDMprobe p,RDMlayer l). (1)

As a result of comparing RDMprobe p with every RDMlayer l
35

we obtain a vector with 9 scores: (ρpixels, ρconv1, . . . , ρfc8) that36

serves as a distributed mapping of probe p to the layers of37

DCNN (see pane E of Figure 1). The procedure is repeated38

independently for each probe in each region of interest.39

Statistical significance and controls40

To assess the statistical significance of the correlations between41

the RDM matrices we run a permutation test. In particular, we42

reshuffled the vector of brain responses to images 10000 times,43

each time obtaining a dataset where the causal relation between44

the stimulus and the response is destroyed. On each of those45

datasets we ran the analysis and obtained Spearman’s rank cor-46

relation scores. To determine score’s significance we compared47

the score obtained on the original (unshuffled) data with the dis-48

tribution of scores obtained with the surrogate data. If the score49

obtained on the original data was bigger than value obtained on50

the surrogate sets with p < 0.001 significance we considered the51

Figure 2 Mapping of the activity in Brodmann areas to DCNN lay-
ers. Underlying data comes from the activity in low gamma (31-70 Hz,
subfigures A and C) and high gamma (71-150 Hz, subfigures B and
D) bands in 150-350 ms time window. C and D are subselection of

the areas that constitute ventral stream: 17, 18, 19, 37, 20. There are
two important observations to made out of this plot: a) statistically
significant neural responses are specific to visual areas b) the align-
ment between the ventral stream and layer of DCNN is clearly visible.

Area 0 contains the regions of the brain not mapped by the atlas. The
numbers on the left of each panel show the number of significantly

correlating probes in each area out of the total number of responsive
probes in that area.

5
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score to be significantly different. The threshold of p = 0.001 is1

estimated by selecting such a threshold that on the surrogate2

data none of the probes would pass it.3

To size the effect caused by training artificial neural network4

on natural images we performed a control where the whole anal-5

ysis pipeline depicted on figure 1 is repeated using activations6

of a network that was not trained – its weights are randomly7

sampled from a Gaussian distribution N (0, 0.01).8

Quantifying properties of the mapping9

To evaluate the results quantitatively we devised a set of mea-10

sures specific to our analysis. Volume is the total sum of11

significant correlations (see Equation 1) between the probes in a12

subset of brain areas A and DCNN layers L:13

V areas A
layers L =

∑
a∈A

∑
l∈L

∑
p∈Sal

ρprobe p
layer l , (2)

where A is a subset of brain areas, L is a subset of layers, and14

Sal is the set of all probes in area a that significantly correlate15

with layer l.16

We express volume of visual activity as17

V
{17,18,19,37,20}
all layers , (3)

which shows the total sum of correlation scores between all layers18

of the network and the Brodmann areas that are located in the19

ventral stream: 17, 18, 19, 37, and 20.20

Visual specificity of activity is the ratio of volume in visual21

areas and volume in all areas together, for example visual speci-22

ficity of all of the activity in the ventral stream that significantly23

correlates with any of layers of DCNN is24

S
{17,18,19,37,20}
all layers =

V
{17,18,19,37,20}
all layers

V all areas
all layers

(4)

The measures so far did not take into account hierarchy of25

the ventral stream nor the hierarchy of DCNN. The following26

two measures are the most important quantifiers we rely on in27

presenting our results and they do take hierarchical structure28

into account.29

The ratio of complex visual features to all visual features is30

defined as the total volume mapped to layers conv5, fc6, fc731

divided by the total volume mapped to layers conv1, conv2,32

conv3, conv5, fc6, fc7:33

Careas A =
V areas A
conv5,fc6,fc7

V areas A
conv1,conv2,conv3,conv5,fc6,fc7

. (5)

Note that for this measure layers conv4 and fc8 are omit-34

ted: layer conv4 is considered to be the transition between the35

layers with low and high complexity features, while layer fc836

directly represents class probabilities and does not carry visual37

representations of the stimuli (if only on very abstract level).38
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Figure 3 Overall relative statistics of brain responses across fre-

quency bands and time windows. The left panel shows the alignment

between visual brain areas and DCNN layers (see Equation 6). The
color indicates the correlation value (ρ) while the size of the marker

shows the logarithm (so that not significant results are still visible
on the plot) of inverse of the statistical significance of the correla-

tion, dotted circle indicates p = 0.0003(3) – the Bonferroni-corrected

significance threshold level of 0.005. The right panel shows whether
activity in a region of interest is specific to visual areas (see Equation

4): intensive red means that most of the activity in that band and

time window happened in visual areas, size of the marker indicates
total volume (Equation 2) of activity in all areas. The maximal size of

a marker is defined by the biggest marker on the figure.

Finally, the alignment between the activity in the visual areas 1

and activity in DCNN is estimated as Spearman’s rank correla- 2

tion between the vector of electrode assignments to visual areas 3

and the vector of electrode assignments to DCNN layers: 4

ρ = Spearman

(Brodmann areas with sig-
nificantly correlating probes
ordered by the hierarchy of
the ventral stream: BA17,
BA18, BA19, BA37, BA20

,

DCNN layers where
significantly correlating
probes are mapped,
ordered by the hierarchy
of DCNN architecture

)
.

(6)
We note that although the hierarchy of the ventral stream is usu- 5

ally not defined through the progression of Brodmann areas, such 6

ordering nevertheless provides a reasonable approximation of the 7

real hierarchy (Lerner et al., 2001; Grill-Spector and Malach, 8

2004). As both the ventral stream and the hierarchy of layers 9

in DCNN have an increasing complexity of visual representa- 10

tions, the relative ranking within the biological system should 11

coincide with the ranking within the artificial system. Based on 12

the recent suggestion that significance levels should be shifted 13

to 0.005 (Dienes et al., 2017) and after Bonferroni-correcting for 14

15 time-frequency windows we accepted alignment as significant 15

when it passed p < 0.0003(3). 16

Results 17

Increasing complexity of visual representations is 18

captured by activity in gamma band 19

We tested the hypothesis that gamma activity carries increas- 20

ingly complex features along the ventral stream. To that end we 21

assessed the alignment of neural activity in different frequency 22

bands and time windows to the activity of layers of a DCNN. 23
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Figure 4 Mapping of activity in visual areas to activations of layers of DCNN across five frequency bands and three time windows. The
alignment score is computed as Spearman’s rank correlation between electrode assignment to Brodmann areas and electrode assignment to

DCNN layers (Equation 6). The numbers on the left of each subplot show the number of significantly correlating probes in each area out of the

total number of responsive probes in that area.

In particular, we used RSA to compare the representational1

geometry of different DCNN layers and the activity patterns of2

different frequency bands of single electrodes (see Figure 1). We3

consistently found that signals in low gamma (31− 70 Hz) fre-4

quencies across all time windows and high gamma (71− 150 Hz)5

frequencies in 150− 350 ms window are aligned with the DCNN6

in a specific way: increase of the complexity of features along the7

layers of the DCNN was matched by the transformation in the8

representational geometry of responses to the stimuli along the9

ventral stream. In other words, the lower and higher layers of10

the DCNN explained gamma band signals from earlier and later11

visual areas, respectively.12

Figure 2 illustrates assignment of neural activity in low13

gamma band (panel A) and high gamma band (panel B) to Brod-14

mann areas and layers of DCNN. As one can see most of the15

activity was assigned to visual areas (areas 17, 18, 19, 37, 20).16

Focusing on visual areas (panels C, D) revealed a diagonal trend17

that illustrated the alignment between ventral stream and layers18

of DCNN. Our findings across all subjects, time windows and19

frequency bands are presented in table 2 and summarized on the20

left panel of figure 3. The results in table 2 show the comparison21

of alignment between DCNN and brain areas with both random22

and pre-trained networks. We can see that training a network to23

classify natural images drastically increases the alignment score24

ρ and its significance. We note that the alignment in the gamma25

bands is also present at the single-subject level as can be seen in26

Figure 6.27

Apart from the alignment we looked at the total amount of28

correlation and its specificity to visual areas. On the right panel29

of Figure 3 we can see that the volume of significantly correlating30

activity was highest in the high gamma range. Remarkably, 97%31

of that activity was located in visual areas, which is confirmed32

by figure 2 where we see that in the gamma range only a few33

electrodes were assigned to Brodmann areas that are not part of34

the ventral stream.35

Alignment with

layers of randomly
initialized AlexNet

Alignment with

layers of AlexNet

trained on ImageNet

Band Window ρ p-value ρ p-value

θ 50-250 ms 0.0632 0.71 0.2257 0.00231575 *
θ 150-350 ms -0.1013 0.59 0.1396 0.08848501
θ 250-450 ms 0.1396 0.59 0.0695 0.78400416

α 50-250 ms -0.2411 0.32 0.3366 0.00103551 *
α 150-350 ms 0.0000 1.00 0.2720 0.13199463
α 250-450 ms – – – –

β 50-250 ms – – 0.4166 0.00397929
β 150-350 ms – – 0.3808 0.16141286
β 250-450 ms – – – –

γ 50-250 ms 0.1594 0.62 0.5979 0.00004623 ***
γ 150-350 ms -0.1688 0.34 0.5332 0.00000059 ***
γ 250-450 ms -0.1132 0.56 0.5217 0.00001624 ***

Γ 50-250 ms 0.0869 0.42 0.2259 0.00222940 *
Γ 150-350 ms -0.0053 0.96 0.3200 0.00000051 ***
Γ 250-450 ms -0.1361 0.33 0.2688 0.00047999 *

Table 2 Alignment ρ score and significance for all 15 regions of

interest. * indicates the alignments that pass p-value threshold of
0.05 Bonferroni-corrected to 0.003(3) and *** the ones that pass
0.005 (Dienes et al., 2017) Bonferroni-corrected to 0.0003(3). Note
how the values differ between random (control) network and a net-

work trained on natural images. Visual representation of alignment
and significance is given on the left pane of Figure 3.

Activity in other frequency bands 1

To test the specificity of gamma frequency in visual object recog- 2

nition, we assessed the alignment between the DCNN and other 3

frequencies. The detailed mapping results for all frequency bands 4
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Figure 5 Area-specific analysis of volume of neural activity and complexity of visual features represented by that activity. Size of the marker

shows the sum of correlation coefficients between the area and DCNN for each particular band and time window. Color codes the ratio of
complex visual features to simple visual features, i.e. the comparison between the activity that correlates with the higher layers (conv5, fc6,

fc7) of DCNN to the lower layers (conv1, conv2, conv3). Intensive red means that the activity was correlating more with the activity of higher
layers of DCNN, while the intensive blue indicates the dominance of correlation with the lower areas. If the color is close to white then the

activations of both lower and higher layers of DCNN were correlating with the brain responses in approximately equal proportion.

and time windows are are presented in figures 3 and 4. We can1

see that weaker alignment (that does not survive the Bonferroni2

correction) is present in early time window in theta and alpha3

frequency range. No alignment is observed in the beta band.4

To investigate the involvement of each frequency band more5

closely we analyzed each visual area separately. Figure 5 shows6

the volume of activity in each area (size of the marker on the7

figure) and whether that activity was more correlated with the8

complex visual features (red color) or simple features (blue color).9

In our findings the role of the earliest area (17) was minimal, how-10

ever that might be explained by a very low number of electrodes11

in that area in our dataset (less that 1%). One can see from figure12

5 that activity in theta frequency in time windows 50− 250 ms13

and 150− 350 ms had large volume and is correlated with the14

higher layers of DCNN in higher visual areas (19, 37, 20) of the15

ventral stream. This hints at the role of theta activity in visual16

object recognition. In general, in areas 37 and 20 all frequency17

bands carried information about high level features in the early18

time windows. This implies that already at early stages of pro-19

cessing the information about complex features was present in20

those areas.21

Gamma activity is more specific to convolutional22

layers, while the activity in lower frequency bands is23

more specific to fully connected layers24

We analysed volume and specificity of brain activity that corre-25

lates with each layer of DCNN separately to see if any bands or26

Patient HT_18MAR13G, 71-150 Hz in 50-250 ms Patient PM_17JAN12G, 71-150 Hz in 50-250 ms

Figure 6 Single subject results from two different subjects. The
numbers show the sum of correlations normalized by the number of

probes in an area. On the left plot we see how a probe in Brodmann
area 18 is mapped to the layers 0, 1, and 3 DCNN, while the activity in
Brodmann area 19, which is located further along the ventral stream,
is mapped to the higher layers of DCNN: 6, 7, 8. Similar trend is seen

on the right plot. The numbers on the left of each subplot show the
number of significantly correlating probes in each area out of the total

number of responsive probes in that area.

time windows are specific to particular level of hierarchy of visual 1

processing in DCNN. Figure 7 presents a visual summary of this 2

analysis. In the “Methods” section we have defined total volume 3

of visual activity in layers L. We used this measure to quantify 4

the activity in low and high gamma bands. We noticed that while 5

the fraction of gamma activity that is mapped to convolutional 6

layers is high (
V̄ γ,Γ{conv1...conv5}
V̄ all bands
{conv1...conv5}

= 0.71), this fraction diminished in 7

fully connected layers fc6 and fc7 (
V̄ γ,Γ{fc6,fc7}
V̄ all bands
{fc6,fc7}

= 0.39). Note that 8

fc8 was excluded as it represents class label probabilities and 9

8
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Figure 7 Specificity of neural responses across frequency bands and time windows for each layer of DCNN. Size of a marker is the total
activity mapped to this layer and the intensity of the color is the specificity of the activity to visual areas.

does not carry information about visual features of the objects.1

On the other hand the activity in lower frequency bands (theta,2

alpha, beta) showed the opposite trend – fraction of volume in3

convolutional layers was 0.29, while in fully connected it growed4

to 0.61. This observation highlighted the fact that visual features5

extracted by convolutional filters of DCNN carry the signal that6

is more similar to the signal carried by gamma frequency bands,7

while the fully connected layers that do not directly correspond8

to intuitive visual features, carry information that has more in9

common with the activity in the lower frequency bands.10

Discussion11

The recent advances in artificial intelligence research have been12

breathtaking. Not only do the deep neural networks match13

human performance in visual object recognition, they also pro-14

vide the best model for how biological object recognition happens15

(Kriegeskorte, 2015; Yamins and DiCarlo, 2016). Previous work16

has established a correspondence between hierarchy of the DCNN17

and the fMRI responses measured across the human visual areas18

(Güçlü and van Gerven, 2015; Eickenberg et al., 2016; Seibert et19

al., 2016; Cichy et al., 2016b). Further research has shown that20

the activity of the DCNN matches the biological neural hierar-21

chy in time as well (Cichy et al., 2016b; Seeliger et al., 2017).22

Studying intracranial recordings allowed us to extend previous23

findings by assessing the alignment between the DCNN and corti-24

cal signals at different frequency bands. As there is a quantifiable25

increase of the complexity of features along the layers of the26

DCNN, any signal that is aligned to the DCNN has to carry sim-27

ilarly increasingly complex features built-up during visual object28

recognition. We observed that the lower layers of the DCNN29

explained gamma band signals from earlier visual areas, while30

higher layers of the DCNN, responsive for more complex features,31

matched with the gamma band signals from higher visual areas.32

Correspondence between layers of DCNN and visual hierarchy of33

human brain was present not only at the extremes, but also at the34

intermediate layers of the hierarchy. Hence, one can conclude that35

gamma band carries increasingly complex features required for36

object recognition along the ventral visual pathway. This finding37

confirms previous work that has given a central role for gamma38

band activity in visual object recognition (Singer and Gray, 1995;39

Singer, 1999; Fisch et al., 2009) and feedforward communication40

(Van Kerkoerle et al., 2014; Bastos et al., 2015; Michalareas et 1

al., 2016). However, importantly, our results show that gamma 2

activity reflects not only object recognition per se but also the 3

feature transformations that are computed on the way towards 4

explicit object representations. Our work demonstrates that the 5

correlation between the DCNN and the biological counterpart is 6

specific not only in space and time, but also in frequency. 7

Feedforward and feedback computations in object 8

recognition 9

Visual object recognition in the brain involves both feedforward 10

and feedback computations (DiCarlo et al., 2012; Kriegeskorte, 11

2015). What do our results reveal about the nature of feedfor- 12

ward and feedback compoments in visual object recognition? We 13

observed that the DCNN corresponds to the biological processing 14

hierarchy even in the latest analysed time-window (Figure 3). In 15

a directly relevant previous work Cichy and colleagues compared 16

DCNN representations to millisecond resolved MEG data from 17

humans (Cichy et al., 2016b). There was a positive correlation 18

between the layer number of the DCNN and the peak latency of 19

the correlation time course between the respective DCNN layer 20

and MEG signals. In other words, deeper layers of the DCNN 21

predicted later brain signals. As evidenced on Figure 3 in (Cichy 22

et al., 2016b), the correlation between DCNN and MEG activity 23

peaked between ca 100 and 160 ms for all layers, but significant 24

correlation persisted well beyond that time-window. However, in 25

the work of (Cichy et al., 2016b) the correlation decreased over 26

time, while in our data we evidenced no such clear drop in the 27

later time windows: even between 250-450 ms the alignment in 28

low gamma was strong and significant. 29

How could this late alignment be interpreted? In particular, 30

feedforward object recognition is thought to be finished in ca 31

200-250 milliseconds after stimulus onset (DiCarlo et al., 2012). 32

Hence, one could think that the correspondence between the 33

DCNN, which is a feedforward network and biological visual 34

object recognition should be confined to early time windows. 35

However, although the DCNN is a purely feedforward network 36

it is important to notice that the alignment between electro- 37

physiological signals and the DCNN does not imply that the 38

respective signals have to reflect feedforward computations. Such 39

9
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alignment only means that the progressive changes in representa-1

tional geometry along the processing hierarchy are similar to the2

DCNN. In other words, it is possible that the activity patterns3

observed are a result of recurrent computations, but their out-4

come representational geometry resembles that of the DCNN.5

Therefore, the present results together with previous findings6

(Cichy et al., 2016b) demonstrate that the DCNN is a good model7

not only for feedforward object recognition, but also for the later8

phases, which most likely include feedback computations. This9

fits with the predictive coding framework where the feedback10

activity is not an unspecific modulatory signal but rather has to11

signal specific contents from higher to lower levels of the process-12

ing hierarchy (Bastos et al., 2012). Hence, within this theoretical13

framework, a specific representational geometry is expected even14

from a feedback channel.15

Low vs high gamma in object recognition16

We observed significant alignment to the DCNN in both low17

and high gamma bands. However, for high gamma this align-18

ment was more restricted in time, surviving correction only in19

the middle time window. Previous studies have shown that low20

and high gamma frequencies are functionally different: while low21

gamma is more related to classic narrow-band gamma oscilla-22

tions, high frequencies seem to reflect local spiking activity rather23

than oscillations (Manning et al., 2009; Ray and Maunsell, 2011),24

the distinction between low and high gamma activity has also25

implications from cognitive processing perspective (Vidal et al.,26

2006; Wyart and Tallon-Baudry, 2008). In the current work we27

approached the data analysis from the machine learning point of28

view and remained agnostic with respect to the oscillatory nature29

of underlying signals. Importantly, we found that numerically the30

alignment to the DCNN was stronger and persisted for longer in31

low gamma frequencies. However, high gamma was more promi-32

nent when considering volume and specificity to visual areas. The33

most striking difference between the low and high gamma with34

regard to specificity was in the earliest time window 50-250 ms35

where the correlation between the DCNN and high gamma was36

almost exclusive to visual areas.37

Limitations38

The present work relies on data pooled over the recordings39

from 100 subjects. Hence, the correspondence we found between40

responses at different frequency bands and layers of DCNN is41

distributed over many subjects. While it is expected that single42

subjects show similar mappings (see also Figure 6), the variability43

in number and location of recording electrodes in individual sub-44

jects makes it difficult a full single-subject analysis with this type45

of data. We also note that the mapping between electrode loca-46

tions and Brodmann areas is approximate and the exact mapping47

would require individual anatomical reconstructions and more48

refined atlases.49

Future work50

Intracranial recordings are both precisely localized in space and51

time, thus allowing us to explore phenomena not observable with52

fMRI. In this work we investigated the correlation of DCNN 1

activity with five broad frequency bands and three time windows. 2

Our next steps will include the analysis of the activity on a more 3

granular temporal and spectral scale. Replacing representation 4

similarity analysis with a predictive model (such as regularized 5

linear regression) will allow us to explore which visual features 6

elicited the highest responses in the visual cortex. 7

Acknowledgements 8

IK, RV and JA thank the financial support from the Estonian 9

Research Council through the personal research grants PUT438 10

and PUT1476. This work was supported by the Estonian Centre 11

of Excellence in IT (EXCITE), funded by the European Regional 12

Development Fund. 13

References 14

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston 15

KJ (2012) Canonical microcircuits for predictive coding. Neu- 16

ron 76:695–711. 17

Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R, Dow- 18

dall JR, De Weerd P, Kennedy H, Fries P (2015) Visual areas exert 19

feedforward and feedback influences through distinct frequency 20

channels. Neuron 85:390–401. 21

Brodmann K (1909) Vergleichende Lokalisationslehre der Groshirn- 22

rinde Barth. 23

Cichy RM, Khosla A, Pantazis D, Torralba A, Oliva A (2016a) 24

Deep neural networks predict hierarchical spatio-temporal corti- 25

cal dynamics of human visual object recognition. arXiv preprint 26

arXiv:1601.02970 . 27

Cichy RM, Khosla A, Pantazis D, Torralba A, Oliva A (2016b) 28

Comparison of deep neural networks to spatio-temporal cortical 29

dynamics of human visual object recognition reveals hierarchical 30

correspondence. Scientific reports 6. 31

Daubechies I (1990) The wavelet transform, time-frequency local- 32

ization and signal analysis. IEEE transactions on information 33

theory 36:961–1005. 34

Delorme A, Makeig S (2004) Eeglab: an open source toolbox for anal- 35

ysis of single-trial eeg dynamics including independent component 36

analysis. Journal of neuroscience methods 134:9–21. 37

DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve 38

visual object recognition? Neuron 73:415–434. 39

Dienes Z, Field A et al. (2017) Redefine statistical significance. Nature 40

Human Behaviour . 41

Eickenberg M, Gramfort A, Varoquaux G, Thirion B (2016) Seeing it 42

all: Convolutional network layers map the function of the human 43

visual system. NeuroImage . 44

Fisch L, Privman E, Ramot M, Harel M, Nir Y, Kipervasser S, 45

Andelman F, Neufeld MY, Kramer U, Fried I et al. (2009) Neu- 46

ral ignition: enhanced activation linked to perceptual awareness in 47

human ventral stream visual cortex. Neuron 64:562–574. 48

Gaillard R, Dehaene S, Adam C, Clémenceau S, Hasboun D, Baulac 49

M, Cohen L, Naccache L (2009) Converging intracranial markers 50

of conscious access. PLoS biology 7:e1000061. 51

Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statisti- 52

cal maps in functional neuroimaging using the false discovery rate. 53

Neuroimage 15:870–878. 54

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/133694doi: bioRxiv preprint 

https://doi.org/10.1101/133694
http://creativecommons.org/licenses/by/4.0/


Grill-Spector K, Malach R (2004) The human visual cortex. Annu.1

Rev. Neurosci. 27:649–677.2
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