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Figure 8 A. The architecture of the DCNN. Convolutional layer 1 consists of 96 feature detectors of size 11 � 11, they take as input pixels

of the image and their activations create 96 features maps of size 55 � 55, architecture of all consecutive convolutional layers is analogous. Five
convolutional layers are followed by 3 fully-connected layers of sizes 4096, 4096 and 1000 respectively. B. The leftmost image is an example

input image. For each layer we have selected one interesting filter that depicts what is happening inside of the neural network and plotted: a) a

reconstruction of the original image from the activity of that neuron using the deconvolution (Zeiler and Fergus, 2014) technique (upper larger
image), (b) activations on the featuremap generated by that neuron (left sub-image) and (c) synthetic image that shows what input the neuron

would be most responsive to (right sub-image). Visualizations were made with Deep Visualization Toolbox (Yosinski et al., 2015). C. Specificity

of neural responses across frequency bands and time windows for each layer of DCNN. Size of a marker is the total activity mapped to this
layer and the intensity of the color is the specificity of the activity to the Brodmann areas constituting the ventral stream: BA17-18-19-37-20.

Low vs high gamma in object recognition1

We observed significant alignment to the DCNN in both low and2

high gamma bands. However, when directly contrasted the align-3

ment was stronger for low gamma signals. Furthermore, for high4

gamma this alignment was more restricted in time, surviving cor-5

rection only in the middle time window. Previous studies have6

shown that low and high gamma frequencies are functionally dif-7

ferent: while low gamma is more related to classic narrow-band8

gamma oscillations, high frequencies seem to reflect local spiking9

activity rather than oscillations (Manning et al., 2009; Ray and10

Maunsell, 2011), the distinction between low and high gamma11

activity has also implications from cognitive processing perspec-12

tive (Vidal et al., 2006; Wyart and Tallon-Baudry, 2008). In the13

current work we approached the data analysis from the machine14

learning point of view and remained agnostic with respect to the15

oscillatory nature of underlying signals. Importantly, we found16

that numerically the alignment to the DCNN was stronger and17

persisted for longer in low gamma frequencies. However, high18

gamma was more prominent when considering volume and speci-19

ficity to visual areas. These results match well with the idea that20

whereas high gamma signals reflect local spiking activity, low21

gamma signals are better suited for adjusting communication22

between brain areas (Fries, 2005, 2015).23

Two groups of areas in the visual system are mapped 1

to two groups of layers in the DCNN 2

We observed that the significant alignment depended on the fact 3

that there are two groups of layers in the DCNN: the convo- 4

lutional and fully connected layers. We found that these two 5

types of layers have similar activity patterns (i.e. representational 6

geometry) within the group but the patterns are less correlated 7

between the groups (Figure 2). As evidenced in the data, in 8

the lower visual areas (17,18) the gamma band activity patterns 9

resembled those of convolutional layers whereas in the higher 10

areas (37 and 20) gamma band activity patterns matched the 11

activity of fully connected layers. Area 19 showed similarities to 12

both types of DCNN layers. 13

Convolutional layers impose a certain structure on the net- 14

works connectivity – each layer consists of a number of visual 15

feature detectors, each dedicated to finding a certain pattern on 16

the source image. Each neuron of the subsequent layer in the 17

convolutional part of the network indicates whether the feature 18

detector associated with that neuron was able to find its specific 19

visual pattern (neuron is highly activated) on the image or not 20

(neuron is not activated). Fully connected layers on the other 21

hand, as the name suggests, connect every neuron of a layer to 22

every neuron in the subsequent layer, allowing for more flexibil- 23

ity in terms of connectedness between the neurons. The training 24

process determines which connections remain and which ones die 25

off. In simplified terms, convolutional layers can be thought of as 26

feature detectors, whereas fully connected layers are more flex- 27

ible: they do whatever needs to be done to satisfy the learning 28

objective. It is tempting to draw parallels to the roles of lower 29

11
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and higher visual areas in the brain: whereas neurons in lower1

visual areas (17 and 18) have smaller receptive fields and code for2

simpler features, neurons in higher visual areas (like 37 and parts3

of area 20) have larger receptive fields and their activity explic-4

itly represents objects (Grill-Spector and Malach, 2004; DiCarlo5

et al., 2012). On the other hand, while in neuroscience one makes6

the broad differences between lower and higher visual cortex7

(Grill-Spector and Malach, 2004) and sensory and association8

cortices (Zeki, 1993), this distinction is not so sharply defined as9

the one between convolutional and fully connected layers. Our10

hope is that the present work contributes to understanding the11

functional differences between lower and higher visual areas.12

Feedforward and feedback computations in object13

recognition14

Visual object recognition in the brain involves both feedforward15

and feedback computations (DiCarlo et al., 2012; Kriegeskorte,16

2015). What do our results reveal about the nature of feedfor-17

ward and feedback compoments in visual object recognition? We18

observed that the DCNN corresponds to the biological processing19

hierarchy even in the latest analysed time-window (Figure 4). In20

a directly relevant previous work Cichy and colleagues compared21

DCNN representations to millisecond resolved MEG data from22

humans (Cichy et al., 2016b). There was a positive correlation23

between the layer number of the DCNN and the peak latency of24

the correlation time course between the respective DCNN layer25

and MEG signals. In other words, deeper layers of the DCNN26

predicted later brain signals. As evidenced on Figure 3 in (Cichy27

et al., 2016b), the correlation between DCNN and MEG activity28

peaked between ca 100 and 160 ms for all layers, but significant29

correlation persisted well beyond that time-window. In our work30

too the alignment in low gamma was strong and significant even31

in the latest time-window 250-450 ms, but it was significantly32

smaller than in the earliest time-window 50-250 ms. In particu-33

lar, the alignment was the strongest for low gamma signals in the34

earliest time-window compared to all other frequency-and-time35

combinations.36

Limitations37

The present work relies on data pooled over the recordings38

from 100 subjects. Hence, the correspondence we found between39

responses at different frequency bands and layers of DCNN is40

distributed over many subjects. While it is expected that single41

subjects show similar mappings (see also Figure 6), the variability42

in number and location of recording electrodes in individual sub-43

jects makes it difficult a full single-subject analysis with this type44

of data. We also note that the mapping between electrode loca-45

tions and Brodmann areas is approximate and the exact mapping46

would require individual anatomical reconstructions and more47

refined atlases. Also, it is known that some spectral compo-48

nents are affected by the visual evoked potentials (VEPs). In the49

present experiment we could not disentangle the effect of VEPs50

from the other spectral responses as we only had one repetition51

per image. However, we consider the effect of VEPs to be of lit-52

tle concern for the present results as it is known that VEPs have53

a bigger effect on low frequency components, whereas our main54

results were in the low gamma band. Finally, it can be noted that 1

the DCNN still explains only a small part of the variability of 2

the neural responses. Hence, although it has been demonstrated 3

that the DCNNs are better than other models in explaining visual 4

responses of the brain (Yamins et al., 2014; Khaligh-Razavi and 5

Kriegeskorte, 2014) the DCNNs cannot be seen as the ultimate 6

model of biological visual processing (Rajalingham et al., 2018). 7

Future work 8

Intracranial recordings are both precisely localized in space and 9

time, thus allowing us to explore phenomena not observable with 10

fMRI. In this work we investigated the correlation of DCNN 11

activity with five broad frequency bands and three time windows. 12

Our next steps will include the analysis of the activity on a more 13

granular temporal and spectral scale. Replacing representation 14

similarity analysis with a predictive model (such as regularized 15

linear regression) will allow us to explore which visual features 16

elicited the highest responses in the visual cortex. In this study 17

we have investigated the alignment of visual areas with one of 18

the most known and basic DCNN architectures – AlexNet. The 19

important step forward would be to compare the alignment with 20

other networks trained on visual recognition task and investigate 21

which architectures preserve the alignment and which do not. 22

That would provide an insight into which functional properties 23

of DCNN architecture are compatible with functional properties 24

of human visual system. 25

26

Conclusion 27

In the present work we studied which frequency components 28

match the increasing complexity of representations of an artificial 29

neural network. As expected by previous work in neuroscience, 30

we observed that gamma frequencies, especially low gamma sig- 31

nals, are aligned with the layers of the DCNN. This means that 32

the DCNN matches visual object recognition not only in space 33

and time, but also in frequency. 34
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