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Abstract2

Model averaging partial regression coefficients has been criticized because coefficients3

conditioned on different covariates estimate regression parameters with different inter-4

pretations from model to model. This criticism ignores (or rejects) the long tradition of5

using a partial regression coefficient to estimate an effect parameter (or Average Causal6

Effect), which gives the direct generating or causal effect of an independent variable on7

the response variable. The regression parameter is a descriptor and its meaning is con-8

ditional on the covariates in the model. It makes no claims about causal or generating9

effects. By contrast, an effect parameter derives its meaning from a causal model and10

not from a set of covariates. A multiple regression model implicitly specifies a causal11

model with direct, causal paths from each predictor to the response. Consequently,12

the partial regression coefficient for any predictor has the same meaning across all sub-13

models if the goal is estimation of the causal effects that generated the response. In a14

recent article, Cade (2015) went beyond this “different parameter” criticism and sug-15

gested that, in the presence of any multicollinearity, averaging partial regression coef-16

ficients is invalid because they have no defined units. I argue that Cade’s interpreta-17

tion of the math is incorrect. While partial regression coefficients may be meaningfully18

averaged, model averaging may not be especially useful. To clarify this, I compare ef-19

fect estimates using a small Monte-Carlo simulation. The simulation results show that20

model-averaged (and ridge) estimates have increasingly better performance, relative21

to full model estimates, as multicollinearity increases, despite the full regression model22

correctly specifying the causal effect structure (that is, even when we know the truth, a23

method that averages over incorrectly specified models outperforms the correctly speci-24

fied model).25

Keywords multiple regression, average causal effect, causal model, conditional effect,26
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monte carlo simulation, ridge regression, model selection, multicollinearity.27

Introduction28

Model averaging is an alternative to model selection for either effect estimation or pre-29

diction (Draper, 1995; Hoeting et al., 1999; Burnham and Anderson, 2002). For effect30

estimation, model averaging is attractive because it recognizes that for data typical in31

biology, all measured predictors will have some non-zero association with the response32

variable independent of that shared with other predictors. Consequently, model av-33

eraging encourages the worthy goal of emphasizing effect estimation and not simply34

the identification of some “best” subset of predictors. Model-selection often follows an35

all-subsets regression, a practice that is criticized for mindless model building. Never-36

theless, averaging across all or a best subset of models shrinks regression coefficients37

toward zero, which has the effect of contracting error variance. Consequently, model-38

averaging can outperform model selection and even the full model under some condi-39

tions, where performance is measured by a summary of the long run frequency of error40

(Raftery et al., 1997; Hjort and Claeskens, 2003).41

Despite these features of model-averaging, model averaged partial regression coef-42

ficients have been criticized in the recent ecology literature because their computation43

requires averaging over a set of coefficients that are conditional on a specific set of co-44

variates (Cade, 2015; Banner and Higgs, 2017). That is, coefficients from different mod-45

els have different interpretations and cannot be meaningfully averaged. Cade (2015)46

took this criticism further, and specifically argued that in the presence of any multi-47

collinearity, averaging coefficients is invalid because an averaged coefficient has “no de-48

fined units.” Cade’s criticism is not the typical caution against the estimation of partial49

regression coefficients in the presence of high multicollinearity because of a high vari-50

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 4, 2017. ; https://doi.org/10.1101/133785doi: bioRxiv preprint 

https://doi.org/10.1101/133785
http://creativecommons.org/licenses/by-nc-nd/4.0/


ance inflation factor but an argument that model-averaged coefficients in the presence51

of any correlation among the predictors are, quite literally, meaningless. Cade’s critique52

is receiving much attention, as evidenced by the 108 Google Scholar citations in about53

two years.54

These critiques are noteworthy given that model averaging regression coefficidents55

has developed a rich literature in applied statistics over the last 20 years (Hoeting et al.,56

1999; Burnham and Anderson, 2002; Hjort and Claeskens, 2003; Hansen, 2007; Liang57

et al., 2011; Zhang et al., 2014; Zigler and Dominici, 2014) with only limited attention58

to the meaning of the parameter estimated by a model averaged coefficient (Draper,59

1999; Candolo et al., 2003; Raftery and Zheng, 2003). Berger et al. (2001) noted the60

issue not in the context of a meaningless average but in the context of modeling the61

prior distribution. Consonni and Veronese (2008) also considered the meaning of the62

parameters in a submodel and showed four different interpretations. In two of these63

(their interpretations M∗
A and M∗

B), the parameter for a regression coefficient in a sub-64

model has the same meaning as that in the full model. Specifically, consider the full65

model Yi = β0 + β1X1i + β2X2i + εi and the submodel Yi = β0 + β1X1i + εi. β1 is66

the same parameter in both models if we consider the submodel to be the full model67

with β2 = 0. This “zero effect” interpretation is effectively that given by Hoeting et al.68

(1999) in their response to Draper (1999).69

Here, I offer a defense of model averaging partial regression coefficients that is re-70

lated to this zero effect interpretation of the parameters: the coefficients bj.m from dif-71

ferent submodels m can be meaningfully averaged because they estimate an effect pa-72

rameter (βj) common to all models, where an effect parameter (or Average Causal Ef-73

fect) is the direct causal or generating effect of Xj on Y (Angrist and Pischke, 2008;74

Pearl, 2009). In short, while a partial regression coefficient is a conditional statistic,75
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it can be used to estimate two different parameters, a regression parameter (a condi-76

tional “effect” that functions as a descriptor) and an effect parameter (a causal effect77

that states how something was generated). If a researcher wishes to describe a sta-78

tistical relationship conditional on a specific set of covariates, then model averaging79

would indeed be averaging different things and an averaged value would have an awk-80

ward (or not especially useful) interpretation. Often, however, researchers use multiple81

regression to explicitly (or more commonly implicitly) estimate the causal effects that82

generated the data. Importantly, an effect parameter derives its meaning from a pre-83

specified causal hypothesis and this meaning is independent of the set of variables in84

the full model (Pearl, 2009). Consequently, averaging estimates of these parameters is85

perfectly meaningful.86

I begin my paper with a motivating example. I then extend Grace and Bollen (2005)87

by employing well-known, formal definitions of two different (effect and regression) pa-88

rameters in order to address the criticism that model averaging regression coefficients89

averages over different things. I use path models to clarify these concepts. I then ad-90

dress Cade’s specific criticism that averaging partial regression coefficients is invalid be-91

cause these coefficients have different units. Finally, after arguing that averaging partial92

regression is meaningful, I address the question, “is it useful?”, with a simulation. The93

goal of the simulation is not meant to be an exhaustive exploration of model averaging94

but simply to show that under conditions of low to moderate power, model averaged95

regression coefficients outperform estimates from the full model even when the full re-96

gression model correctly identifies the causal structure.97
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A motivating example: the causal effect of parental sex98

on offspring calling in owls99

A recent article on best practices involving regression-like models (Zuur and Ieno, 2016)100

used as an example the data of Roulin and Bersier (2007), who showed that – and101

entitled their paper – “nestling barn owls beg more intensely in the presence of their102

mother than in the presence of their father.” This title might simply be a description of103

the major result, that is, a difference in conditional means (on the set of covariates in104

the study, including time of arrival, time spent in nestbox, a food manipulation treat-105

ment, and all interactions with parental sex). In the discussion, however, Roulin and106

Bersier (2007) state that “differential begging to mother and father implies that off-107

spring should be able to recognize the identity of each parent.” That is, the chick be-108

havior is in direct response to the sex of the parent, or, put differently, the sex of the109

parent bringing food causally modifies the intensity of chick calling.110

This example serves to introduce the major argument of the present note: the pa-111

rameters estimated by the coefficients of a linear model used for causal inference are112

fundamentally different from the parameters estimated by the coefficients of a linear113

model used for describing differences in conditional means. A partial regression coeffi-114

cient bj.m is a difference in conditional means – it is the difference in the mean response115

between two groups that vary in xj by one unit but have the same values for all other116

covariates (Xm). The partial regression coefficient bj.m estimates two parameters. The117

first is the familiar regression (conditional effect) parameter, a descriptive parameter118

describing the population difference in conditional means119

θj.m = E(Y |Xj = xj + 1, Xm = xm)− E(Y |Xj = xj, Xm = xm) (1)
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The second is the effect parameter, or Average Causal Effect, which is the direct, gener-120

ating or causal effect of Xj on Y , and variously defined as121

βj = E(Yxj=x+1 − Yxj=x) (Rubin, 1974) (2)

βj = E(Y |do(Xj = x+ 1))− E(Y |do(Xj = x)) (Pearl, 1995, 2009) (3)

Equation 2 is the counterfactual definition of a causal effect while equation 3 is an in-122

terventional definition of a causal effect. The counterfactual definition is what would123

happen if we could measure individuals under two conditions but only Xj has changed.124

The do operator represents what would happen in a hypothetical intervention that125

modifies Xj but leaves all other variables unchanged (Pearl, 2009). In both definitions,126

the meaning of βj is not conditional on other X (Definition 2 and Equation 5 in Pearl,127

1995). In the formal language of graphical causal models, an effect coefficient’s mean-128

ing is derived from a pre-specified causal hypothesis of a potential effect in the form of129

a directed path from Xj to Y . The absence of an arrow is a hypothesis of no causal ef-130

fect. By contrast, the presence of an arrow allows for empirical estimates that are close131

to, or effectively, zero, and in this way an effect parameter is similar to the “null effect”132

interpretation of the parameters of the full model described above (Hoeting et al., 1999;133

Consonni and Veronese, 2008).134

The concept of effect coefficients goes back to beginning of multiple regression, by135

George Yule, who developed least squares multiple regression in order to estimate the136

causal effects of the changing demographics of pauperism of 19th century Britain (Yule,137

1899)(partial regression coefficients were first published by Yule’s mentor and colleague138

Karl Pearson three years earlier). Importantly, Yule’s conception of cause was effec-139

tively that encoded by the do-operator (many others at the time essentially equated140

causation with correlation, see for example Niles, 1922). The concept of graphical causal141
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models was first developed by the seminal work of Sewell Wright (1921, 1934) in his142

method of path analysis. Wright did not develop path analysis to discover causal re-143

lationships but to quantify causal effects from a pre-specified causal hypothesis in the144

form of paths (arrows) connecting causes (causal variables) to effects (response vari-145

ables) (see below). Wright used partial regression coefficients as the effect (path) co-146

efficients. By contrast to these causal uses of regression coefficients, the “difference in147

conditional means” concept of a regression coefficient began to emerge only following148

Fisher (1922).149

A reasonable concern is, how does an effect parameter, which represents the ef-150

fect of hypothetical differences in Xj with all other X unchanged, apply to observa-151

tional data, where a change in the value of Xj is always associated with changes in152

other predictor variables? The answer is, the formal definitions clarify the assump-153

tions needed to use a partial regression coefficient as an estimate of an effect parame-154

ter. More specifically, a partial regression coefficient bj.m is a consistent estimate of the155

effect parameter βj if the regression model correctly identifies the causal structure and156

does not exclude confounding variables. A confounder of the effect of Xj on Y is any157

variable that both causally effect Y by a path independent of that through Xj and is158

correlated with Xj. A partial regression coefficient is a biased estimate of βj if the re-159

gression model excludes confounders for Xj – a bias known as omitted variable bias.160

Yule (1899) explicitly recognized and discussed the consequence of omitted confounders161

in the first multiple regression analysis.162

In contrast to effect coefficients, a partial regression coefficient bj.m is not a biased163

estimate of θj.m if other X that both contribute to Y and are correlated to Xj are omit-164

ted from the regression model, because here bj.m is estimating a parameter conditional165

on the same m. Consequently, omitted variable bias and confounding are irrelevant or166
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meaningless in the context of regression as mere description. Not surprisingly then,167

omitted variable bias and confounding are introductory textbook concepts in disciplines168

that commonly use regression for causal modeling, including econometrics and epidemi-169

ology, but not disciplines where explicit causal modeling is uncommon, including biol-170

ogy generally, and ecology and evolution, specifically (but see Shipley, 2002; Pugesek171

et al., 2003).172

Path models clarify the difference between βj and θj.m173

ParentSex ArrivalT ime

log(NCalls) U

β1 β2

r12

βu

ParentSex UArrivalT ime

log(NCalls) U

β1 β2

r12

βu

Model A Model B

Figure 1:

To highlight the difference between the parameters, θj.m and βj, I use the Roulin174

and Bersier (2007) example and show two generative models of log(NCalls) (Figure 1).175

The effect coefficients β1 and β2 are the direct, causal effect of ParentSex and ArrivalT ime176

on Y . In Model A, ArrivalT ime is measured and included in the regression model. In177

Model B, ArrivalT ime is unmeasured and designated UArrivalT ime. Both models also178

include U , which represents all un-modeled factors, other than ArrivalT ime, that con-179

tribute to the variance in Y . The generating models also include a correlation r12 be-180

tween ParentSex and ArrivalT ime. An important assumption of these models is that181

the unmeasured factor U is not correlated with either of the Xj as indicated by a lack182

of a double-headed arrow (otherwise it would be a confounding variable – see below).183

In Model A, the partial regression coefficients b1.2 (the coefficient of X1 conditioned184
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on X2) and b2.1 are unbiased estimates of the parameters θ1.2 and θ2.1. Because the re-185

gression model includes all confounders, the regression coefficients are also unbiased es-186

timates of the generating parameters β1 and β2. In Model A, then, the parameters θj.m187

and βj coincide, in the sense that both have the same value. This coincidence occurs188

only under very limited conditions.189

Model B is the same generating model as Model A, but the regression model omits190

ArrivalT ime. The effect parameter β1 has precisely the same meaning in Model B as191

it did in Model A, but the regression coefficient b1 is a biased estimate of β1 because192

of the omitted variable. This bias is r12β2. By contrast, the regression parameter θ1 in193

Model B has a different meaning than θ1.2 in Model A, and differs from the latter by194

r12β2, but the regression coefficient b1 is an unbiased estimate of θ1. In Model B, then,195

the parameters θ1 and β1 do not coincide.196

Note that the missing confounder ArrivalT ime in Model B does not bias the esti-197

mate of θ1 but does bias the estimate of β1 (again, by r12β2). Consequently, if the goal198

is mere description, omitted confounders are not a concern. But if the goal is causal199

modeling, missing confounders are (or should be) a major concern. Omitted confounders200

result in standard errors of effect coefficients that are (often far) too small, which re-201

sults in inflated confidence in effect magnitudes and even signs (Walker, 2014).202

Importantly, while the meaning and/or value of the regression parameter θj.m dif-203

fers among the models, the meaning and value of the effect parameter βj is constant204

among the models. Because the meaning of the βj is invariable across generating mod-205

els, estimates of βj have the same meaning – they are estimates of βj– across regression206

models, regardless of the set of covariates specified in the model. And because partial207

regression coefficients as estimates of βj have the same meaning across regression mod-208

els, partial regression coefficients from different models can be meaningfully averaged.209
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Partial regression coefficients from different models have210

the same units211

In addition to the “different meanings” criticism, Cade (2015) argues that model av-212

eraging is invalid if there is any correlation among predictors because model-averaged213

coefficients “have no defined units in the presence of multicollinearity.” It is therefore214

imperative that we explore what Cade means by “No defined units.” This might mean215

that 1) the units of bj.m differ among submodels, or 2) a unit difference in Xj differs216

among submodels (Table 1). The first interpretation is simply false; a partial regression217

coefficient bj.m has the units of the simple regression coefficient of Y on Xj regardless of218

the other predictors in the model (Supplement 1). Cade clarifies the second interpreta-219

tion using the Frisch-Waugh decomposition of b = (X>X)−1(X>y)220

bj.m =
COV(X̃j.m, Y )

VAR(X̃j.m)
(4)

where X̃j.m is the component of the variation of Xj not shared with the other X, which221

is simply the vector of residuals of the regression of Xj on the set of covariates Xm.222

Because the unshared variance (X̃j.m) shrinks and swells from model to model, I inter-223

pret Cade as stating (Table 1) that the units of Xj itself shrinks and swells from model224

to model. And, consequently, a unit difference in Xj shrinks and swells from model to225

model. This conclusion is a misunderstanding of the math; the magnitude of a unit or226

unit difference is defined by the actual units and not the variance of X̃j.m. The units227

of the residuals of weight on height are full kilograms, not partial kilograms. In the228

owl example, if ArrivalT ime is measured in hours, a one unit difference is one hour229

regardless if we are referring to the raw measures or the residuals of ArrivalT ime on230

ParentSex. One hour (or one kilogram or one degree Celsius) does not shrink or swell231
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Table 1: Two interpretation of statements in Cade (2015)
Statement Interpretation

1. “Their AIC model averaging of regression coefficients
acts as if they are just numbers without any units
attached to them”

the units of bj.m differ
among models

2. “It is impossible to interpret the model-averaged re-
gression coefficients (Tables 2–5) in terms of a ∆y/∆Xi

because we do not know what units should apply to the
denominator because it no longer refers to any specific
covariance structure among the predictor variables”

3. “Multicollinearity implies that the scaling of units
in the denominators of the regression coefficients may
change across models such that neither the parameters
nor their estimates have common scales”

a unit difference in Xj

differs among models

4. “the model averaging of regression coefficients ends
up being done across estimates (βi = ∆y/∆Xi) without
common denominators and is nonsensical because a
unit change in the predictor variable (∆Xi) is not the
same across all models.”

among models due to differences in the magnitude of VAR(X̃j.m).232

Model-averaged coefficients outperform full-model co-233

efficients when power is low to moderate234

Even though partial regression coefficients as estimates of effect coefficients can be235

meaningfully averaged, the averaged coefficients may not be very useful, compared to236

the coefficients computed from the full model. Here, I show that, despite averaging over237

incorrectly specified models, model-averaged coefficients can outperform the full-model238

coefficients for estimating effect parameters even when the full regression model cor-239

rectly identifies the generating model. I use a Monte Carlo simulation experiment to240

measure the total (root mean square) error in the estimates relative to the known, gen-241

erating parameters. Freckleton (2010) used a similar simulation to show how full model242

and model-averaged estimates perform with increased multicollinearity and showed that243
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the error variance of the full model estimates increases more rapidly than that of the244

model-averaged estimates but that the model-averaged estimates were increasingly bi-245

ased with increased multicollinearity. Here I extend these results by combining both246

forms of error into one measure. Because I am specifically comparing the relative per-247

formance of the estimators at different levels of multicollinearity, I also compare ridge248

regression estimates. The simulation is not meant to be a comprehensive comparison of249

model averaging estimators but simply a pedagogical case study of why model average250

estimators should be considered as reasonable alternatives to the full model.251

Data simulating the owl call data (Roulin and Bersier, 2007) were generated with252

NCalls ∼ Poisson(µi) (5)

log(µi) = β0 + β1ParentSexi + β2ArrivalT imei (6)

ParentSexi = Zi (7)

ArrivalT imei ∼ N(βzZi, 1) (8)

Zi = 0 or 1 (9)

NCalls are sampled for n = 27 nests, once for each parent. There is no nest effect in253

the generation of the data (nor is one modeled in the regression). Exp(β0) is the ex-254

pected number of calls (175) during the mother’s visit. Exp(β1) was set to one of four255

values 0.99, 0.98, 0.97, and 0.96, which is equivalent to standardized effects (Cohen’s d)256

of -0.13, -0.27, -0.40, and -0.53. The expected reductions in calls during the father’s vis-257

its holding ArrivalT ime constant are 1.75, 3.50, 5.25, and 7.00. Exp(β2) was set to 0.9.258

Z is the common cause of ParentSex and ArrivalT ime, which creates a correlation259

(collinearity) between the two effects. Z and ParentalSex are equal numerically (fe-260

male=0, male= 1) but are not conceptually equivalent. Z is the sex determining factor261
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while ParentalSex is the phenotypic feature that allows a chick to identify the parent262

as dad or mom. The expected correlation between ParentSex and ArrivalT ime is set263

(using the parameter βz) to one of four values: 0.2, 0.4, 0.6, and 0.8. Each iteration,264

the empirical correlation is checked and only used if it is within 0.02 of the expected265

correlation. 5000 iterations were run for each combination of β1 (controlling effect size266

and power) and βz (controlling collinearity). The power to reject a null direct effect267

(β1 = 0) at a type I error rate of 5% was computed using the 5000 runs for each com-268

bination of the causal parameters β1 and βz. The performance (the ability to estimate269

β1) of model averaged, full model, and ridge estimates were quantified using the long-270

run error RMSE =
√∑

(b1−β1)2
5000

, which accounts for both error variance and bias. For271

the model-averaged estimates, b1 is the model-averaged coefficient.272

The entire simulation was implemented in R (R Core Team, 2015) and the script is273

available in Supplement 1. In each run, the generating coefficients were estimated us-274

ing the full model, model averaging, and ridge regression. Model-averaged coefficients275

were computed using AICc weights and over all models using the dredge and model.avg276

function in the MuMIn package. Coefficients of predictors excluded from a model were277

assigned a value of zero (using the row of the coefficient table with the label "full").278

For the ridge regression, I used the cv.glmnet function (setting alpha=0) in the glmnet279

package (Friedman et al., 2010) and used the default 10-fold cross-validation to com-280

pute the optimal tuning parameter.281

The performance of the three methods are shown in (Figure 2, where the X-axis282

is the effect parameter of ParentSex standardized by the average expected variance283

to generalize the results. More specifically, β′1 = β1/σ, where σ is the square root of284

(Exp(β0)/2 + Exp(β0 + β1)/2). Again, these standardized effects are -0.13, -0.27, -0.40,285

and -0.53. While -0.13 is a “small” standardized effect, this is a common value in ecol-286
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ogy, where an estimated average standardized effect size is 0.18-0.19 (Møller and Jen-287

nions, 2002). The label for each panel shows the mean correlation (over the 5000 runs)288

between ParentSex and ArrivalT ime (again, all of the correlations within a batch of289

5000 runs were within 0.02 of the expected correlation). Power for the four standard-290

ized effects ranged from 0.06 - 0.08, 0.09 - 0.16, 0.13 - 0.30, and 0.20 - 0.47 (within each291

effect size, power decreased with increased r12).292

The simulation shows increased RMSE for all estimators as collinearity increases293

and the qualitative pattern of relative performance among models remains about the294

same as collinearity increases (Figure 2). Quantitatively, the full model RMSE increases295

71% (averaged over the four levels of β1 as the correlation increases from 0.2 to 0.8. By296

contrast, the model averaged and ridge RMSE increase 40% and 37%. Model averag-297

ing outperforms the full model when power is relatively low despite the full model cor-298

rectly specifying the generating model. When collinearity is high, power is relatively299

low at all tested effect sizes of β′1 and, consequently, model averaging outperforms the300

full model at all levels of β′1. Ridge regression outperforms model averaging over much301

of the space except at the lowest power.302

Conclusion303

Banner and Higgs (2017) prefer the descriptive use and language of multiple regres-304

sion, especially in observational studies that do not give “careful attention to principles305

and methods of causal modeling,” an opinion of which I’m sympathetic (Walker, 2014).306

In their abstract, Banner and Higgs (2017) state that the “use of model averaging im-307

plicitly assumes the same parameter exists across models so that averaging is sensi-308

ble. While this assumption may initially seem tenable, regression coefficients associated309

with particular explanatory variables may not hold equivalent interpretations across310
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Figure 2: Error as a function of increased collinearity. Root mean square error
in the estimate of β1 (the effect parameter of ParentSex) over the 5000 runs for each
combination of β1 and the correlation r between ParentSex and ArrivalT ime. The
effect parameter is standardized and presented as Cohen’s d. Key to methods: MA =
model average, OLS = full model, Ridge = ridge regression.

all of the models in which they appear, making explanatory inference about covariates311

challenging.” This statement fails to recognize that an effect parameter βj is distinct312

from a regression (difference in conditional means) parameter θj.m and the former but313

not the latter has the same meaning across models, because an effect parameter takes314

its meaning from a specified causal hypothesis and not the combination of variables315

in a regression model (Pearl, 2009) (Figure 1). As emphasized by Pearl (2009), the316

two parameters only coincide if the regression model correctly specifies the generating317

model.318

Cade (2015) explicitly rejects simulation experiments similar to that above, arguing319

that “the statistical performance suggested by distributions of their simulated model-320

averaged estimates is of questionable merit” because model averaging is “nonsensical”321

because the averaged coefficients have no defined units. Even if we ignore what Cade322

means by “units” and agree that model averaging averages over coefficients with differ-323

ent meanings, I find the conclusion surprising; if a method has pretty good empirical324
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results relative to other estimators, I’d be inclined to use it, even if it’s not entirely in-325

tellectually satisfying (Breiman, 2001). But averaging partial regression coefficients is326

intellectually satisfying if causal modeling because both a unit difference in Xj and the327

parameter estimated by bj.m is the same among models.328

Both Cade (2015) and Banner and Higgs (2017) consider model averaging the pre-329

dicted outcome to be sensible, because the estimated parameter is the same among330

models. This computation is also uncontroversial in the applied statistics literature.331

But if Cade’s interpretation of partial regression coefficients is correct (that these con-332

tain partial units of Xj), how do we generate a prediction with sensible units, as this333

computation requires postmultiplication of the model matrix, which includes full units334

of X, by the vector of coefficients, which have partial units of X? Cade’s interpretation335

implies that all model-averaging is meaningless and the rich literature developed over336

the last twenty years should simply be rejected. More generally, if we accept the “aver-337

aging over coefficients with different meanings” criticism, then we must throw out addi-338

tional tools in our kit. For example, meta-analysis requires averaging effects over mul-339

tiple studies, many of which have been conditioned on different sets of covariates. And340

the measured effects from randomized experiments that are conditioned on covariates341

would no longer be estimates of average causal effects but could only be interpreted as342

conditional treatment effects that are irrelevant to the larger population.343

Given the long and rich history of model averaging within several applied fields, in-344

cluding economics and epidemiology, its application to a diverse array of problems, and345

its relationship to other well known methods, model averaging as a method probably346

does not need defending. Here, I am advocating neither naive multiple regression for347

causal modeling nor model averaging as the best choice among many for estimating ef-348

fect parameters, but simply defending model-averaged regression coefficients as a mean-349
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ingful choice.350
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