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Abstract2

Model-averaged partial regression coefficients have been criticized for averaging over3

a set of models with coefficients that have different meanings from model to model.4

This criticism arises because statisticians since Fisher believe that the meaning of a5

coefficient in a regression model arises from probabilistic conditioning (P (Y |X)) and6

that coefficients are mere descriptors of conditional association (or “differences in condi-7

tional means”). Because this association parameter is conditional on a specific set of co-8

variates, the parameter for a predictor varies from model to model. The coefficients in9

many applied regression models, however, take their meaning from causal conditioning10

(P (Y |do(X))) and these coefficients estimate causal effect parameters (or simply, causal11

effects or Average Treatment Effects). Causal effect parameters are also differences in12

conditional expectations, but the event conditioned on is not the set of covariates in13

a regression model but a hypothetical intervention. Because an effect parameter for14

a predictor takes its meaning from causal and not probabilistic conditioning, it is the15

same from model to model, and an averaged coefficient has a straightforward interpre-16

tation as an estimate of a causal effect. But, because the effect parameter is the same17

from model to model, the estimates of the parameter will generally be biased. By con-18

trast, with probabilistic conditioning, the coefficients are consistent estimates of their19

parameter in every model. Confounding and omitted variable bias, which are central to20

explanatory modeling, are meaningless in regression modeling as mere description.21

Keywords multiple regression, causal effect, conditional effect, model selection.22
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Introduction23

Statistical models have multiple purposes, including description, prediction, and causal24

explanation (Mac Nally, 2000; Shmueli, 2010). This variation in purpose is a source25

of much confusion on the interpretation of regression coefficients both in the primary26

literature and textbooks. In much of the ecology literature, the purpose of the mod-27

eling is not explicitly stated and is difficult to infer because the language used is am-28

biguous. Ecologists often avoid using causal language even if the questions pursued are,29

ultimately, causal. Larry Wassermen’s comment that "there is always a causal interpre-30

tation lurking behind an association" (Wasserman, 1999) is often true in ecology. Here,31

I focus on statistical modeling for estimating parameters with causal meaning and the32

“interpretation” of these parameters. Interpretability of model coefficients is not a con-33

cern in purely predictive models used for prediction only and, consequently, researchers34

can exploit non-parametric and non-linear models for improved prediction (Breiman,35

2001). By contrast, if we are modeling a system that we hope to manage with manip-36

ulations of key variables, or if key variables are changing due to anthropogenic effects37

(warming, acidification, urbanization), or if we simply want to understand how a sys-38

tem works, then we want our predictive models to estimate parameters with causal39

meaning.40

Model simplification (or variable selection) using automated algorithms (stepwise41

or all-subsets regression) is a common modeling strategy in ecology. An alternative to42

variable selection is model averaging (Draper, 1995; Hoeting et al., 1999; Burnham and43

Anderson, 2002), in which the estimated parameter for Xj is44

θ̂ =
M∑

m=1

wm

θ(m)

0

 (1)
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where θ(m) is some parameter estimate from model m and wm is a weight based on45

some measure of model fit, generally penalized by the number of parameters in the46

model. The parameter averaged could be the predicted value for individual i or the co-47

efficient (bj) of predictor j (Xj). If the parameter being averaged is a coefficient and48

the predictor is not in model m, then θ(m) is assigned the value 0. Consequently, a49

model averaged coefficient is, under some conditions, a shrinkage estimate and can have50

lower variance, at the cost of some bias, than an estimate from the full model (Hoet-51

ing et al., 1999; Hansen, 2007) (in the ecology literature, there has been some tendency52

to only average over models that include the parameter, in which case, the averaged53

coefficient is not a shrinkage estimate. In addition, a prediction computed from these54

“conditional” averages would not equal a model-averaged prediction).55

Two extended criticisms of model-averaged coefficients have arisen in the recent56

ecology literature. Banner and Higgs (2017) echo the occasional comment from the57

statistics literature (Draper, 1999; Candolo et al., 2003; Raftery and Zheng, 2003; McEl-58

reath, 2018) that the coefficient b(m)
j from different models estimate different parame-59

ters with different meanings and, consequently, any interpretation of an averaged co-60

efficient is awkward at best. Cade (2015) introduced a novel criticism. Specifically, he61

argued that in the presence of any correlation (his “multicollinearity”) among the pre-62

dictors, averaging coefficients is invalid because the units for a coefficient differ among63

models and, consequently, an averaged coefficient has “no defined units.” Cade’s criti-64

cism is neither the different-parameter criticism of model-averaged coefficients nor the65

typical caution against the estimation of regression coefficients in the presence of high66

collinearity (which some in the literature have mistakenly believed). Even if we agree67

that a regression coefficient from different models can estimate the same parameter,68

Cade’s criticism is still potentially valid.69
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These criticisms of model-averaged coefficients have not been adequately addressed70

although there is some discussion in the statistics literature on the interpretation of the71

coefficients from a set of nested models. Berger et al. (2001) noted different potential72

interpretations but in the context of how to model the prior distribution and not in the73

context of a meaningless average. Consonni and Veronese (2008) also considered the74

meaning of the parameters in a sub-model and showed four different interpretations. In75

two of these (their interpretations M∗
A and M∗

B), the parameter for a regression coeffi-76

cient in a sub-model has the same meaning as that in the full model. Specifically, con-77

sider the full model Yi = β0+β1X1i+β2X2i+εi and the submodel Yi = β0+β1X1i+εi. β178

is the same parameter in both models if we consider the sub-model to be the full model79

with β2 = 0. This “zero effect” interpretation is effectively the interpretation given by80

Hoeting et al. (1999) in their response to Draper (1999).81

Here, I argue that model-averaging averages biased estimates of the same parameter82

and not consistent estimates of different parameters. Because the coefficients from dif-83

ferent models estimate the same parameter, the interpretation (or meaning) is straight-84

forward. While I am defending model-averaged coefficients as valid and meaningful85

constructs, I am specifically not defending model-averaging as the preferred estimator86

of model parameters.87

Probabilistic vs. causal conditioning88

A recent article on best practices involving regression-like models (Zuur and Ieno, 2016)89

used as an example the data of Roulin and Bersier (2007), who showed that – and90

entitled their paper – “nestling barn owls beg more intensely in the presence of their91

mother than in the presence of their father.” This title might simply be a description92

of the major result, that is, a difference in conditional means (on the set of covariates93

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 16, 2018. ; https://doi.org/10.1101/133785doi: bioRxiv preprint 

https://doi.org/10.1101/133785
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the study, including time of arrival, time spent in nestbox, and a food manipulation94

treatment). In the discussion, however, Roulin and Bersier (2007) state that “differen-95

tial begging to mother and father implies that offspring should be able to recognize the96

identity of each parent.” That is, the chick behavior is in direct response to the sex of97

the parent, or, put differently, the sex of the parent bringing food causally modifies the98

intensity of chick calling.99

This example serves to introduce the major argument of the present note: The

probability density of the response variable in descriptive and explanatory models are

conditioned on different events and consequently, the coefficients of descriptive and

explanatory models estimate different parameters (Robins et al., 2000; Pearl, 2009a;

Shalizi, 2017; Hitchcock, 2018). In descriptive modeling, the probability density of the

response is

P(Y = y|X = x) (2)

where X is a set of variables that has been observed and included as covariates the sta-

tistical model. Shalizi (2017) refers to Equation 2 as probabilistic conditioning. By con-

trast, in explanatory modeling, the probability density of the response is

P(Y = y|do(X = x)) (3)

where the do operator specifies a real or hypothetical intervention that moves a specific100

set of X variable to the value x but leaves other X unchanged (Pearl, 2009b; Shalizi,101

2017; Hitchcock, 2018). “Other X” is undefined; these could be other measured vari-102

ables or unmeasured variables. It doesn’t matter, because this distribution is not con-103

ditional on these other variables (Definition 2 and Equation 5 in Pearl, 1995). Shalizi104

(2017) refers to Equation 3 as causal conditioning.105
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Because of this difference in conditioning, the regression coefficients in descriptive

and explanatory models estimate different parameters. A regression coefficient in de-

scriptive modeling estimates the parameter

αj.k = E(Y |Xj = xj + 1, Xk = xk)− E(Y |Xj = xj, Xk = xk) (4)

while a regression coefficient in explanatory modeling estimates the parameter

βj = E(Y |do(Xj = x+ 1))− E(Y |do(Xj = x)) (Pearl, 1995, 2009a) (5)

α is a conditional association while β is a causal effect (often referred to as the "aver-106

age causal effect"). αj.k is often defined as a “difference in conditional means” but βj107

is also a difference in conditional means. Their meaning differs because the event con-108

ditioned on differs. This event is the observation of specific X variables for αj.k and a109

hypothetical intervention for βj. Or, as Judea Pearl puts it, α is conditioned on "see-110

ing" while β is conditioned on "doing" (Pearl and Mackenzie, 2018). Importantly, the111

definition (or interpretation) of βj is not conditional on other X, even if these are mea-112

sured and included in a regression model.113

Both α and β are estimated with the coefficients of linear models (or models that114

are linear in their parameters), including classical linear models, generalized linear115

models, and hierarchical models. A difference between descriptive and explanatory116

modeling though is how we think about the model that generated the data (the “gener-117

ating” or “true” model) (Table 1). In explanatory modeling, the true model is a model118

of the processes that actually generated the data. In a descriptive modeling, the true119

model is a model of the processes that could generate the data if the modeled variables120

were the only variables generating the data.121
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This difference in the generating model has consequences on inference (Hernán,122

2018). When the parameters take their meaning from probabilistic conditioning (i.e.123

descriptive modeling), the generating model differs among the nested regression mod-124

els. By contrast, when the parameters take their meaning from causal conditioning, the125

generating model is the same among nested regression models (because it is a model126

of the actual generating processes) but any parameters that are missing from the re-127

gression model are swept into the error term of the generating model (since these aren’t128

estimated by the regression model). The result is an error term that is correlated with129

the X variables in the generating model but in the computation of the coefficients, the130

error variance due to the missing parameter is passed to the other coefficients. The131

consequence on estimation is an incorrect residual (it is not correlated with the other132

X) and biased estimates of the causal parameters. In descriptive modeling, model av-133

eraging averages consistent estimates of different parameters. In explanatory modeling,134

model-averaging averages biased estimates of the same parameter.135

In an explanatory generating model, the bias due to the omitted X variables is of-136

ten called omitted variable bias. The missing X variables are missing confounders –137

where a variable is a confounder of Xj if it is both correlated with Xj and has a causal138

effect on the response through some path that is independent of Xj. In explanatory139

models, a modeled coefficient is a consistent estimate of the causal parameter βj only140

Table 1: Generating models for a set of nested regression models differ between prob-
abilistic and causal conditioning. Superscripts indicate different parameters among
models
Nested Models Generating Model

(1) Y = b0 + b1X1 + b2X2 + e Prob: Y = α
(1)
0 + α

(1)
1 X1 + α

(1)
2 X2 + ε(1)

Causal: Y = β0 + β1X1 + β2X2 + ε(1)

(2) Y = b0 + b1X1 + e Prob: Y = α
(2)
0 + α

(2)
1 X1 + ε(2)

Causal: Y = β0 + β1X1 + ε(3),
ε(3) = β2X2 + ε(1)
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if the statistical model correctly identifies the causal structure and does not exclude141

confounding variables, or if the statistical model uses well-known methods to block con-142

founders (Pearl, 2009a). This occurs only when the parameters of the causal generating143

model coincide (have the same value) with the parameters of the probabilistic gener-144

ating model (that is, β1 = α1 and β2 = α2, etc.). By contrast, a modeled coefficient145

in descriptive models is not a biased estimate of αj if X with direct causal effects on Y146

are omitted from the statistical model. In fact, omitted variable bias and confounding147

are irrelevant or meaningless in the context of descriptive modeling, an important point148

that doesn’t seem to be greatly appreciated (but see, for example, Gelman and Hill,149

2007; Hernán, 2018). The recognition of this distinction in ecology is unknown, but I150

have had reviewers of two different manuscripts (this manuscript and (Walker, 2014))151

explain to me that omitted variable bias is not really bias because OLS is an unbiased152

estimator. More generally, few textbooks recognize the existence of both probabilistic153

and causal conditioning, and most confuse them, using something like Equation 4 to154

define a coefficient but then using causal vocabulary (“how each X influences Y ”, “the155

change in Y given a one unit change in X”, “how the X generated Y ”) to describe the156

meaning of the coefficients. Morgan and Winship (2007) give a short summary of this157

confusion. See also Gelman and Hill (2007). Robins et al. (2000), Shalizi (2017), and158

Hitchcock (2018) are very accessible accounts of the difference between probabilistic159

and causal conditioning and the association vs. causal parameters.160

While the formal recognition of probabilistic vs. causal conditioning is fairly recent,161

the general idea goes back to the beginning of multiple regression, by George Yule,162

who used least squares multiple regression to estimate the causal effects of the chang-163

ing demographics of pauperism of 19th century Britain (Yule, 1899; Freedman, 1999;164

Hepple, 2001) (partial regression coefficients were first developed as part of a “system165
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of correlations” by Yule’s mentor and colleague Karl Pearson three years earlier). Im-166

portantly, Yule’s conception of cause was effectively that encoded by the do-operator167

(many statisticians at the time essentially equated causation with correlation, see for168

example Niles, 1922). The concept of causal parameters was formalized in the seminal169

work of Sewell Wright (1921, 1934) in his method of path analysis. Wright did not de-170

velop path analysis to discover causal relationships but to quantify causal effects from a171

pre-specified causal hypothesis in the form of paths (arrows) connecting causes (causal172

variables) to effects (response variables) (see below). Wright used partial regression co-173

efficients as the effect (path) coefficients. In contrast to these causal interpretations of174

a regression coefficient, the “difference in conditional means” concept of a regression co-175

efficient began to emerge only following Fisher (1922), who seems to have been the first176

to think of regression as a function for a probabilistic conditional expectation (Aldrich,177

2005). Pearl and Mackenzie (2018) present a very readable history of the conflict be-178

tween probabilistic and causal conditioning.179

The argument that model-averaged coefficients are meaningless because the coef-180

ficients from different models are conditioned on different covariates and, therefore,181

estimates different parameters, is true only if one is descriptive modeling. But, if one182

is model-averaging the coefficients, then the goal of the modeling is probably causal,183

even if the authors have been inculcated by the norms of their research community that184

their coefficients have an association interpretation only (Wasserman, 1999; Hernán,185

2018). And if the goal is causal (explanatory inference), then coefficients from differ-186

ent models are estimating the same parameter – the casual parameter – and averaged187

coefficients are meaningful.188
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Regression coefficients from different models have the189

same units190

In his influential 2015 criticism of model-averaged regression coefficients, Cade (2015)191

developed a unique argument against model averaging. Specifically, Cade argued that192

model averaging is invalid if there is any correlation among predictors because model-193

averaged coefficients “have no defined units in the presence of multicollinearity.” This194

was not a caution of estimation in the presence of high collinearity (the focus of other195

collinearity papers) but an argument that all model-averaged coefficients from any ob-196

servational study are uninterpretable regardless of the magnitude of correlation among197

the predictors. It is therefore imperative that we understand what Cade means by “no198

defined units.” This might mean that 1) the units of bj.k differ among models, or 2) a199

unit difference in Xj differs among models (Table 2). The first interpretation is simply200

false; a regression coefficient bj.k has the units of the simple regression coefficient of Y201

on Xj regardless of the other predictors in the model and there is nothing in the units202

of a regression coefficient that contains information that the value of the coefficient is203

conditional on some set of covariates (Supplement 1). Cade clarifies the second inter-204

pretation using the Frisch-Waugh decomposition of b = (X>X)−1(X>y)205

bj.k =
COV(X̃j.k, Y )

VAR(X̃j.k)
(6)

where X̃j.k is the component of the variation of Xj not shared with the other X, which206

is simply the vector of residuals of the regression of Xj on the set of covariates Xm.207

Because the unshared variance (X̃j.k) shrinks and swells from model to model, I inter-208

pret Cade as stating (Table 2) that the units of Xj itself shrinks and swells from model209

to model. And, consequently, a unit difference in Xj shrinks and swells from model to210
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Table 2: Two interpretation of statements in Cade (2015)
Statement Interpretation

1. “Their AIC model averaging of regression coefficients
acts as if they are just numbers without any units
attached to them”

the units of bj.k differ
among models

2. “It is impossible to interpret the model-averaged re-
gression coefficients (Tables 2–5) in terms of a ∆y/∆Xi

because we do not know what units should apply to the
denominator because it no longer refers to any specific
covariance structure among the predictor variables”

3. “Multicollinearity implies that the scaling of units
in the denominators of the regression coefficients may
change across models such that neither the parameters
nor their estimates have common scales”

a unit difference in Xj

differs among models

4. “the model averaging of regression coefficients ends
up being done across estimates (βi = ∆y/∆Xi) without
common denominators and is nonsensical because a
unit change in the predictor variable (∆Xi) is not the
same across all models.”

model. If it is invalid to average coefficients computed from Equation 6 because of vari-211

ation in the denominator, then we should not average coefficients from the same model212

applied to different samples, as these denominators will also differ from sample to sam-213

ple. But this is moot, because the magnitude of a unit or unit difference is defined by214

the actual units and not the variance of X̃j.k. The units of the residuals of weight on215

height are full kilograms, not partial kilograms. In the owl example, if ArrivalT ime is216

measured in hours, a one unit difference is one hour regardless if we are referring to the217

raw measures or the residuals of ArrivalT ime on ParentSex. One hour (or one kilo-218

gram or one degree Celsius) does not shrink or swell among models due to differences219

in the magnitude of VAR(X̃j.k).220
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Conclusion221

I have argued that, if one is explanatory modeling, including predictive modeling where222

we hope to use the model to make informative interventions in the system, a model-223

averaged coefficient from nested regression models has a straightforward interpretation224

as an estimate of a causal effect parameter (equation 5). While this estimate is condi-225

tional on the other covariates in the model, its interpretation or "meaning" is not. Its226

interpretation takes its meaning from "causal conditioning" and not "probabilistic con-227

ditioning."228

Averaging coefficients that potentially estimate different parameters is not unique229

to model-averaging of coefficients from nested regression models. Meta-analysis aver-230

ages effects from different studies and these effects are commonly estimated with differ-231

ent sets of covariates. This averaging is justified because the coefficients are estimating232

causal parameters that derive their meaning from causal and not probabilistic condi-233

tioning. More problematically, meta-analysis averages effects across samples with dif-234

ferent distributions of measured confounders. Because of this, Pearl Pearl (2012); Pearl235

and Bareinboim (2014) criticizes meta-analysis for averaging apples and oranges. But236

Pearl is not arguing that averaged effects from a meta-analysis fail to have a straight-237

forward interpretation, only that we need more better tools for combining estimates.238

Regardless, this more insidious issue of meta-analysis is not relevant to model-averaged239

coefficients of nested regression models because the same sample is used for all esti-240

mates.241

Some reviewers of earlier versions of the manuscript have been very negative not242

because they offered a critique of the argument that regression models estimate causal243

effect parameters but because of 1) issues related to how to model the prior if Bayesian244

model averaging or how to compute a weight if frequentist model averaging, 2) issues245
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related to reliable estimates of standard errors, 3) issues with generalized linear mod-246

els in which a prediction computed as the average of predictions on the response scale247

is not equal to a back-transformed prediction computed from averaged coefficients on248

the link scale. These are interesting critiques but not relevant to my argument, only to249

model-averaging more generally. Two other very visceral criticisms on the manuscript250

are 1) model-averaging encourages mindless modeling, and 2) why average over mod-251

els we know to be wrong (that is, we know they have missing confounders). Mindless252

modeling is not a property of an estimator but of a researcher, and no strategy is im-253

mune to mindless-modeling. Model-averaging is a tool, like OLS regression, or penal-254

ized regression (including ridge regression), hierarchical regression, Bayesian regression,255

or structural equation modeling, all of which can and are used quite mindlessly. Using256

extensive prior knowledge to filter out thousands of small and trivial effects from a sys-257

tem, a careful researcher will construct a causal model with one or a few, focal predic-258

tor variables and all variables that are important confounders of the focal effects. The259

goal is, given this causal model, what can we infer about the effects? The researcher260

then chooses a tool to estimate these effects. But why choose model-averaging, since we261

know this averages over models that we know to be wrong? One answer is that model-262

averaged estimates of the generating parameters can have lower MSE than full model263

estimates as a result of smaller error variance and despite biased estimates (Freckleton,264

2010). But here (or elsewhere), I am not advocating that model-averaging is the opti-265

mal tool for estimating causal effects, only that it is a tool that generates coefficients266

with straightforward interpretations.267
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