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Abstract

This paper presents the development and evaluation of different versions of Neuro-Fuzzy
model for prediction of spike discharge patterns. We aim to predict the spike discharge vari-
ation using first spike latency and frequency-following interval. In order to study the spike
discharge dynamics, we analyzed the Cerebral Cortex data of the cat from [29]. Adaptive
Neuro-Fuzzy Inference Systems (ANFIS), Wang and Mendel (WM), Dynamic evolving neural-
fuzzy inference system (DENFIS), Hybrid neural Fuzzy Inference System (HyFIS), genetic for
lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS) and subtractive clus-
tering and fuzzy c-means (SBC) algorithms are applied for data. Among these algorithms,
ANFIS and GFS.LT.RS models have better performance. On the other hand, ANFIS and
GFS.LT.RS algorithms can be used to predict the spike discharge dynamics as a function of
first spike latency and frequency with a higher accuracy compared to other algorithms.

1 Introduction
Recording action potentials (spikes) from the neural cells makes it possible to investigate their
health, stability, and sensitivity[13]. Different characteristics of the electrical activity of neurons
can be considered in the study of neural coding. One important concept in this area is spike
discharge that is a type of transient waveforms present in the brain activity and includes a high
correlation with seizure occurrence [23].

Studies on movement indole illustrated that this process is related to the neuronal discharge
[14, 7]. For example, the study on activity of arm-related neurons and their relationship between
premotor cortical cell activity and direction of arm movement shows that the cells activity varies
in an orderly fashion with the direction of movement [4]. Also, detection of spike discharge in the
electroencephalogram is an important way of diagnosis of the disease [23]. Different algorithms like
neural networks, logistic regression, and neuro-fuzzy model can be applied for detection of epileptic
seizure [23, 19, 25]. There are many similarities between human and animal brain’s neural coding
and many studies used animal modeling for investigation the spike discharge ([21, 18, 22, 5]).
Johnsen et al. [13] analyzed twenty-six pairs of units recorded from twenty-four retinal ganglion
cells in the isolated goldfish retina and examined the cross-correlation histogram for the maintained
discharge of each pair of cells. Their results showed that it is unlikely that differences in latency
could be attributed to the unequal effectiveness of the stimuli for the two units. Batuev et al.
[3] investigated the postsynaptic response of motor cortex neurons of the cat in response to the
stimulation of different modalities and showed that it responds with a wide range of peripheral
inputs. The electrical changes in the cerebral cortex can correspond with the electric changes in
muscle and nerve [1]. The studies of the functional organization of the motor cortex show that
this cortical area is composed of modules consisting of columnar aggregates of neurons related to
different aspects of the same movement [16]. The current-flow and current-source-density analysis
of the direct cortical response in the somatosensory cortex of rats show that the activation and
magnitude of direct cortical response depend on stimulus strength and frequency [10].

In this paper, the variation of spike discharge as a function of first spike latency and the
frequency-following interval is analyzed. First spike latency is the time delay between stimulus
onset and first action potential [8]. Neuro-fuzzy model is a combination of artificial neural network
(ANN) and fuzzy logic approaches. It is a powerful tool for dealing with uncertainty and widely
used for analyzing electrical activity of neurons. It is widely used for analyzing the electrical
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activity of the neurons ([9, 11, 20, 24]). The ANFIS method was successfully applied for EEG
signals with a high accuracy of the results obtained [9]. A feature extraction method through the
time-series prediction based on ANFIS model for brain-computer interface applications has been
proposed by Hsu [11]. In this model, ANFISs is used for prediction of time-series for the left and
right motor imagery classification, respectively. It is shown that neuro-fuzzy is an accurate model
diagnosing epilepsy [24].

Different versions of the neuro-fuzzy model have been used to find the model with higher
accuracy. In all models, the spike discharge is considered as an output of the model, while first
spike latency and spike frequency are considered as inputs. Using neuro-fuzzy model as a predictor
of spike discharge, we are able to use insufficient crisp inputs to make an accurate decision about
spike discharge. We used first spike latency and frequency-following interval in the input layer
of the neuro-fuzzy system and output was the spike discharge. The structure of this paper is as
follows.

First, we discuss spike discharge, latency, and frequency. Section 2 provides a brief description
of ANFIS, WM, DENFIS, HyFIS and SBC algorithms and section 3 presents the performance of
different neuro-fuzzy algorithms for analysis of cat data.

2 Neuro-fuzzy model
Neuro-fuzzy model is a combination of artificial neural networks and fuzzy logic and it uses capa-
bilities of both models. It applies a neural networks structure and at the same time uses if-then
rules in fuzzy systems. It uses prior knowledge to compute membership function and different
learning algorithms of neural networks, including the back-propagation algorithm [27].

The different types of neuro-fuzzy systems used in this paper are as follow:

• Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

• Wang and Mendel (WM)

• Dynamic evolving neural-fuzzy inference system (DENFIS)

• Hybrid neural Fuzzy Inference System (HyFIS) [17]

• genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS) [2]

• subtractive clustering and fuzzy c-means (SBC) [32, 6]

Here we provide a short description each of them.
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) model is a well-known neuro-fuzzy system

that implements a Sugeno fuzzy system and uses a t-norm and differentiable membership function
[12, 26]. For a system with two rules, we can build the following neuro-fuzzy structure.

For given two inputs x0 and y0 and corresponding linguistic labels Ai and Bi, each neuron in
the first layer of neuro-fuzzy model transmit the crisp signal to the next layer (Algorithm 1).
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Algorithm 1 ANFIS model
This algorithm has two main stages, the forward and backward steps. The forward step has five
layers as follows:

• First layer maps the crisp inputs using bell-shaped membership function as follows:

Ai(u) = exp

[
−1

2

(
u− ai1
bi1

)2
]

and

Bi(u) = exp

[
−1

2

(
u− ai2
bi2

)2
]

where {ai1, ai2, bi1, bi2} is the parameters set.

• The second layer is responsible for fuzzification and each neuron in this layer determines
the fuzzy degree received crisp input.

α1 = A1(x0)×B1(y0) = A1(x0) ∧B1(y0)

and
α2 = A2(x0)×B2(y0) = A2(x0) ∧B2(y0)

• Neurons in the third layer correspond to fuzzy rules and receive inputs from fuzzification
neurons in the second layer. The outputs of layer 3 are as follow:

β1 =
α1

α1 + α2

and
β2 =

α2

α1 + α2

• Layer 4 or output membership layer combine all its inputs by using the fuzzy operation
union

β1z1 = β1(a1x0 + b1y0)

and
β2z2 = β2(a2x0 + b2y0)

• The last layer is responsible for Defuzzification.

o = β1z1 + β2z2

In the backward process, the errors are propagated backward and the parameters are updated
by gradient descent technique.

Wang and Mendel (WM) model is another type of neuro-fuzzy system that developed by Wang
and Mendel [31] that has high performance for regression tasks. First, it divides input and outputs
into the fuzzy region and assigns a membership function to each region. Then finds a rule for each
pair of input data. In the next step, a degree is assigned to each rule. After assigning degrees,
they are combined. The final rule is obtained after deleting redundant rules. Algorithm 2 provides
more details about WM algorithm.

Algorithm 2 Wang and Mendel (WM)
Division numerical input and output data spaces into fuzzy regions
Generate fuzzy IF-THEN rules covering the training data
Determining a degree for each rule
Eliminating redundant rules and obtaining a final rule base

Dynamic evolving neural-fuzzy inference system (DENFIS) is another fuzzy inference system
that developed by Kasabov et al. [15]. The output of the system is based on m-most activated
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fuzzy rules and evolving clustering method is applied to determine the cluster center (Algorithm
3).

Algorithm 3 Dynamic evolving neural-fuzzy inference system (DENFIS) model
Choose cluster center from training data
Determine the cluster centers using the evolving clustering method
partition the input space and to find optimal parameters on the consequent part
Update the parameters on the consequent part

Hybrid neural Fuzzy Inference System (HyFIS) has two general steps for learning [17]. In
the first step, the Wang and Mendel is used for knowledge acquisition. In the second step, the
input vector is propagated forward in the network and parameter updating is performed using
backpropagating the error using a gradient descending approach [28].

Algorithm 4 Hybrid neural Fuzzy Inference System (HyFIS)
Uses the techniques of Wang and Mendel to acquire the knowledge
Use gradient descent-based to learn parameters of the structure

GFS.LT.RS: GFS.LT.RS is proposed by R. Alcala et al. [2] that performs an evolutionary
lateral tuning of membership functions in constructing FRBS model to obtain higher accurate
linguistic models (algorithm 5).

Algorithm 5 genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS)
Uses the Wang and Mendel to to construct the population
Evaluate the chromosome using Mean square error
Minimize the number of rules

Subtractive clustering and fuzzy c-means (SBC) [32, 6] is checking each data point’s distance
from all other data points to find the cluster centers. More details about SBC algorithm is provided
in the Algorithm 6

Algorithm 6 Subtractive clustering and fuzzy c-means (SBC)
Use subtractive clustering method to obtain the cluster centeres (generating the rules)
Choose the highest potential as the cluster centere
Update the potential of each data point
Optimise the cluster centers using fuzzy c-means

3 computational results
To verify the effectiveness of the neuro-fuzzy algorithms we carried out a number of numerical
experiments with the cortex of the somatosensory/motor system of the Cat data set on a PC with
Processor Intel(R) Core(TM) i5-3470S CPU 2.90 GHz and 8 GB RAM running under Windows
XP. The cortex of the somatosensory/motor system of the Cat data is publicly available from
[29]. This data is based on recording neurons of extracellularly in post cruciate cerebral cortex of
cats. It is neuronal responsiveness of each of the four paws to strong cortical surface stimulation
to understand facilitatory and inhibitory modulation of wide-field neurons by small-field neurons.
Two groups of data from the Cerebral Cortex of the Cat data sets are considered for evaluation
of the algorithms: Contralateral Forepaw (CF) Cortex (Chloralose) and Contralateral Hindpaw
(CH) Cortex (Chloralose). The Contralateral Forepaw (CF) Cortex (Chloralose) is based on the
measurements of 4,272 neurons, but Contralateral Hindpaw (CH) Cortex (Chloralose) contains data
of 991 neurons. Various versions of neuro-fuzzy algorithms from R package are used to evaluate
the algorithms’ error for each data. The R Project for Statistical Computing is an environment
for statistical computing and graphics that contains comprehensive libraries of machine learning
and statistical analysis applications that are available on [30].

4

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133967doi: bioRxiv preprint 

https://doi.org/10.1101/133967
http://creativecommons.org/licenses/by/4.0/


3.1 Results of Forepaw (CF) Cortex (Chloralose) analysis
The Ipsilateral and Contralateral data from Forepaw Cortex data are considered for analysis. The
results of application of neuro-fuzzy algorithm to the Ipsilateral Forepaw Cortex data are presented
on the Figures 3.1-3.1. The first spike latency and ipsilateral forepaw frequency following interval
(msec) are used as inputs, while mean spikes per discharge is used as output of the model. Each
figure contains the actual spikes per discharge value that is computed using neuro-fuzzy algorithm.
Also, some statistics about the analysis is illustrated in each figure. The results show that the
smallest Root Mean Square Error (RMSE) is obtained by HYFIS algorithm (RMSE=1.34) and
the biggest RMSE is obtained by WM model (RMSE=2.72).

Figure 1: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using ANFIS algorithm

Figure 2: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using Denfis algorithm

Figures 3.1 - 3.1 present the results of application for neuro-fuzzy algorithm for the Contralateral
Forepaw Cortex data. Again the 1st spike latency and ipsilateral forepaw frequency following
interval (msec) are used as inputs and mean spikes per discharge is used as output of the model.
The results demonstrate that the smallest Root Mean Square Error (RMSE) is obtained using
HYFIS algorithm (RMSE=0.93) and the biggest RMSE is obtained by WM model (RMSE=4.27).

3.2 Results of Hindpaw Cortex (Chloralose) data analysis
The Hindpaw Cortex is divided into two parts: the Contralateral Forepaw Cortex and Ipsilateral
Hindpaw Cortex. Then different neuro-fuzzy algorithms have been applied to them. Figures 3.1-3.1
present the results of application of neuro-fuzzy algorithm for the Contralateral Forepaw Cortex
data. The best RMSE is obtained using GFS LT RS (RMSE=2.06), the smallest Root Mean
Square Error (RMSE) is obtained using HYFIS algorithm (RMSE=0.93), and the biggest RMSE
is btained by WM model (RMSE=4.27).
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Figure 3: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using GFS LT RS algorithm

Figure 4: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using HYFIS algorithm

Figure 5: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using WM algorithm

Results of application of the algorithms to the Ipsilateral Hindpaw Cortex data are presented
in figures 3.2-3.2. The WM algorithm provides better accuracy compared with other algorithm
(RMSE=2.73)
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Figure 6: Spike Discharge prediction for cat Contralateral Forepaw Cortex using ANFIS algorithm

Figure 7: Spike Discharge prediction for cat Contralateral Forepaw Cortex using Denfis algorithm

Figure 8: Spike Discharge prediction for cat Contralateral Forepaw Cortex using GFS LT RS
algorithm
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Figure 9: Spike Discharge prediction for cat Contralateral Forepaw Cortex using HYFIS algorithm

Figure 10: Spike Discharge prediction for cat Contralateral Forepaw Cortex using WM algorithm

Figure 11: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using ANFIS algorithm
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Figure 12: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using Denfis algorithm

Figure 13: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using SBC algorithm

Figure 14: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using GFS LT RS
algorithm
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Figure 15: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using WM algorithm

Figure 16: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using ANFIS algorithm

Figure 17: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using Denfis algorithm
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Figure 18: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using SBC algorithm

Figure 19: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using GFS LT RS algo-
rithm

Figure 20: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using WM algorithm
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4 Conclusion
In this section we presented the development and evaluation of different versions of adaptive neuro-
fuzzy model including Adaptive Neuro-Fuzzy Inference Systems, Wang and Mendel, Dynamic
evolving neural-fuzzy inference system, Hybrid neural Fuzzy Inference System, genetic for lateral
tuning and rule selection of linguistic fuzzy system and subtractive clustering and fuzzy c-means
algorithms for prediction of Spike discharge. Results reveal that Spike discharge can be predicted
using the neuro-fuzzy model where first spike latency and frequency-following interval are the
inputs and spike discharge is the output of the model.
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