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Abstract 

Background 

Understanding the structure of a bacterial population is essential in order to understand bacterial evolution, or which 20 

genetic lineages cause disease, or the consequences of perturbations to the bacterial population.  Estimating the core 

genome, the genes common to all or nearly all strains of a species, is an essential component of such analyses.  The size 

and composition of the core genome varies by dataset, but our hypothesis was that variation between different 

collections of the same bacterial species should be minimal.  To test this, the genome sequences of 3,121 pneumococci 

recovered from healthy individuals in Reykjavik (Iceland), Southampton (United Kingdom), Boston (USA) and Maela 25 

(Thailand) were analysed.     

Results   

The analyses revealed a ‘supercore’ genome (genes shared by all 3,121 pneumococci) of only 303 genes, although 461 

additional core genes were shared by pneumococci from Reykjavik, Southampton and Boston.  Overall, the size and 

composition of the core genomes and pan-genomes among pneumococci recovered in Reykjavik, Southampton and 30 

Boston were very similar, but pneumococci from Maela were distinctly different.  Inspection of the pan-genome of 

Maela pneumococci revealed several >25 Kb sequence regions that were homologous to genomic regions found in 

other bacterial species.  

Conclusions 

Some subsets of the global pneumococcal population are highly heterogeneous and thus our hypothesis was rejected.  35 

This is an essential point of consideration before generalising the findings from a single dataset to the wider 

pneumococcal population. 
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Background 

Collectively, the complete set of genes possessed by members of a bacterial species is defined as the pan-genome [1].  45 

Understanding bacterial population structure requires knowledge of which genes in the pan-genome are found in all, or 

nearly all, strains of that species (core genes), and which are only found in some strains (accessory genes).  In any study, 

investigators characterise a subset of the whole population; if one wishes to generalise the findings, then it must be 

determined whether or not the single dataset is likely to be representative of the whole population. 
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  50 

We developed a Bayesian decision model for estimating the bacterial core genome for datasets comprised of 

incomplete (draft) genome sequences generated via next-generation sequencing methodologies [2].  In that study we 

included the estimation of core genomes for two different pneumococcal datasets, a diverse global historical dataset 

and a dataset of carriage genomes from Boston, Massachusetts, USA [3].  More recently, two additional genome 

datasets of carriage pneumococci recovered from healthy children in Southampton, United Kingdom, and from young 55 

children and their mothers living in the Maela refugee camp on the Thailand-Myanmar border were published [4-5].  

The genomes of pneumococci recovered from healthy young children recruited to our ongoing vaccine impact study in 

Iceland were also available, many of which have already been published [6-7].  Thus four well-sampled pneumococcal 

genome datasets from four different geographical locations were available for this study. 

 60 

The aim of our study was to test the hypothesis that the estimated core genome of any one dataset accurately 

represents the genes shared by pneumococci recovered in different geographical locations.  To achieve this we 

analysed four datasets of carriage pneumococci and: i) estimated and compared the four individual core genomes; ii) 

identified and characterised the shared ‘supercore’ genome; and iii) assessed the genes that comprise the pan-genome 

of each dataset, with an emphasis on the Maela dataset.  65 

 

Results 

Estimated core genome comparisons 

The study dataset was comprised of 3,121 genomes and each individual dataset represented a wide range of serotypes 

and clonal complexes (Table 1; Additional file 1).  The number of dataset-specific core genes calculated for 70 

pneumococci recovered in Reykjavik (n = 1,059), Southampton (n = 1,052) and Boston (n =1,029) were nearly identical, 

but there were only 394 estimated core genes among Maela pneumococci (Table 2).  For comparison, the number of 

core genes in a highly diverse global and historical dataset of 336 pneumococci recovered from both carriage and 

disease was estimated to be 851 genes using the same Bayesian model.  The percentage of genomes in each dataset 

that possessed each estimated core gene ranged from ≥99.7% to ≥99.9%, which was consistent with the values 75 

calculated for other bacterial species datasets [2].  The number of putative paralogues in any dataset was small and 

these were removed from further analyses.   

 

Despite the differences observed in the number of estimated core genes, the distribution of Clusters of Orthologous 

Groups (COG) functional categories among the core genes in each of the four datasets were similar (Figure 1; Additional 80 

file 2).  In every case the largest proportion of estimated core genes were of unknown function (21.7-24.1%).  Other 

major COG groups included genes associated with translation, ribosomal structure and biogenesis (11.9-15.7%), amino 

acid transport and metabolism (7.1-8.6%) and transcription (6.7-7.9%).  
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The supercore genome and essential genes 85 

There were 303 estimated core genes shared by all four pneumococcal datasets and we defined these as the supercore 

genome (Figure 2A).  A further 461 genes were shared by the Reykjavik, Southampton and Boston pneumococci and 

thus there were 764 shared core genes in total between these three datasets (Additional file 3).  Examination of the 461 

genes common to the Reykjavik, Southampton and Boston datasets revealed that the distribution of COG functional 

categories broadly resembled that of the supercore genome (Figure 2B). 90 

 

Earlier work by van Opijnen and colleagues predicted that 397 genes in an acapsular derivative of the TIGR4 

pneumococcal genome were essential to fitness [8], but only 127 of these were amongst the supercore genes.  The 

majority of these genes were involved in basic cell functions such as DNA replication, ribosomal proteins, RNA 

transcription and central carbon metabolism (Additional file 3).  95 

 

Supercore genome phylogeny 

All 3,121 genomes were represented by a phylogenetic tree constructed using the 303 supercore gene sequences 

clustered with hierBAPS (Figure 3). The hierBAPS analysis revealed 19 monophyletic sequence clusters (SCs) that ranged 

in size from 36 to 263 genomes and were concordant with clonal complexes defined using MLST data.  Pneumococci 100 

representing three clonal complexes were found in all four locations (CC
predominant

 
serotype(s)

): CC156/162
9V,19F

 (SC5); 

CC180
3
 (SC10); and CC448

NT
 (SC19).  Pneumococci from other clonal complexes were identified in Reykjavik, 

Southampton and Boston, but not Maela: CC19919A,15B/C (SC1); CC43923F/B/A (SC2); CC3956C (SC3); CC4606A,10A,35F (SC6); 

CC6211A and CC10033F (SC8); CC43322F (SC11); CC138/1766B (SC13); and CC344NT (SC18).  All of these are widely-

distributed genetic lineages [9].   105 

 

Pneumococci representing multidrug-resistant clonal complexes CC236/271/32019F/A (SC12) and CC3156Bii (SC17) were 

found in all locations apart from Southampton; CC6314,15A (SC9) was found in all locations apart from Reykjavik.  

Conversely, pneumococci in CC1514,NT (SC14), CC420915B/C (SC15) and CC80223F (SC16) were only found in Maela, and 

pneumococci within CC558
35B

 (SC4) were only recovered in Boston.  110 

 

SC7 was an unusual collection of 79 pneumococci from all four locations, although the majority were from Maela (n = 

55) and Boston (n = 19).  Six different clonal complexes were represented among pneumococci from Maela, three of 

which also represented the pneumococci from Boston (CC33823F/A/B, CC17123F and CC138/17615B/C,23A/F). CC33823F/A/B also 

represented the pneumococci in this cluster from Southampton (n = 3) and Reykjavik (n = 2).   115 
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The hierBAPS analysis also identified 1,177 genomes that were represented by polyphyletic sequence clusters 

(uncoloured clusters, Figure 3).  More than half of the Maela genomes (55.1%) were part of these polyphyletic 

sequence clusters, in contrast to approximately 30% of the datasets from Reykjavik (30.1%), Southampton (30.5%) and 

Boston (27.8%). 120 

 

Pan-genome comparisons 

The pan-genomes of the Reykjavik, Southampton and Boston pneumococci were very similar in size (7,277-7,425 

genes), in contrast to the 15,751 genes in the Maela pneumococcal pan-genome (Table 2).  The dataset-specific pan-

genomes were calculated twice for each dataset, using ≥70% and ≥90% nucleotide sequence identity thresholds; 125 

however, there were minimal within-dataset differences in the total number of genes in the pan-genomes using either 

threshold (Figure 4A).  The total number of genes in the pan-genomes of the Reykjavik, Southampton and Boston 

datasets plateaued at 6,000-7,000 genes, whilst the Maela pan-genome continued to increase.  All four pan-genomes 

were open, i.e. the number of genes increased as more genomes were added to the analysis, which was a previously 

reported observation in pneumococcal pan-genome analyses [1].   130 

 

Overall, among the four datasets there were 37,754 genes in the combined pan-genome and these formed 10,836 gene 

clusters at a threshold of ≥70% nucleotide sequence identity.  3,119 of these gene clusters were identified among at 

least one pneumococcus from each of the four datasets (Figure 4B).  The number of unique gene clusters in the 

Reykjavik (n = 754), Southampton (n = 587) and Boston (n = 652) datasets were broadly similar, as compared to 3,668 135 

gene clusters unique to the Maela dataset.  The function of nearly half of the unique gene clusters in any dataset was 

unknown (Additional files 4 and 5). 

 

Potential influence of nontypable pneumococci or non-pneumococcal Streptococcus spp. 

genomes 140 

Nontypable pneumococci comprised 16.6% (n = 512) of the original Maela dataset, as compared to ≤6.6% of each of the 

three other datasets, and nontypable pneumococci are recognised as being a diverse group [10].  To test whether the 

inclusion of a large proportion of nontypable pneumococci were strongly influencing the findings, the nontypable 

pneumococci were excluded from the full Maela dataset, a random sample of 1,000 genomes was selected from the 

remaining genomes and the core genome and pan-genome were recalculated.  Exclusion of the nontypable genomes 145 

had a minor effect on the size of the Maela pan-genome (decreased from 15,751 to 14,537 genes) and the estimated 

core genome (increased from 394 to 441 genes). 

 

Another possible explanation for the observed differences was that the Maela dataset contained genomes from non-

pneumococcal Streptococcus spp.  To investigate this possibility, a phylogenetic tree was constructed based upon the 150 
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53 rMLST loci sequences extracted from the 3,121 pneumococcal genomes plus 1,000 genomes of 65 different non-

pneumococcal Streptococcus spp. (Additional file 6) [11].  All 3,121 pneumococcal genomes clustered together, 

separate from the non-pneumococcal Streptococcus spp. (Additional file 7); therefore, the observed differences among 

the Maela dataset were unlikely to be explained by the inclusion of non-pneumococcal genomes. 

 155 

Large unique gene regions in the Maela pan-genome 

Although the Maela dataset was comprised of bona fide pneumococci, the large number of accessory genes unique to 

the Maela dataset suggested that genomic regions that were non-pneumococcal in origin might be influencing the 

results.  Gene names and genomic positions for the 3,668 gene clusters unique to the Maela pan-genome were 

extracted and manually inspected to identify large (>25 Kb) genomic regions.  14 regions that ranged from 25.2 to 66.1 160 

Kb were revealed, most of which were identified in multiple Maela genomes (Table 3).  The nucleotide sequences of 

these 14 regions were extracted and used to query GenBank and the dataset of 1,000 non-pneumococcal Streptococcus 

spp. genomes to identify possible matches.   

 

Four different examples of Tn1549-like integrative and conjugative elements (ICEs), three of which included Tn916 with 165 

tet(M), which mediates tetracycline resistance, were identified in 21 genomes (Table 3; Figure 5).  The nearest matches 

to these variable Tn1549-like regions were predominately from non-pneumococcal Streptococcus spp., but a nearly 

identical match to the Tn1549 region in one pneumococcal genome was from Filofactor alocis ATCC35896, a gram-

positive anaerobe implicated in periodontal disease [12].  Tn916 was also found on its own in one Maela genome and it 

was identical to a Tn916 in the Staphylococcus aureus 2395 USA500 genome.  TnGBS2, another type of ICE, was found 170 

in a single Maela genome.  TnGBS2 uses a DDE transposase instead of a phage-like integrase for mobility and is found in 

oral Streptococcus spp. such as S. mitis and S. oralis [13].   

 

No significant matches were identified in either GenBank or the Streptococcus spp. genomes for four different 

prophage sequences (28.9-39.5 Kb) and an unknown transposon fragment.  The four prophage sequences were 175 

compared to our database of pneumococcal prophage sequences assembled from another collection of diverse 

pneumococcal genomes.  Two of the Maela sequences were of two different, putatively full length novel prophages 

that did not match to any previously reported prophages, but were related to one cluster E prophage from our recent 

study [14].  These were submitted to GenBank (accession numbers pending).  The two other putative prophage 

sequences were of incomplete prophages with no close matches in our database. 180 

 

46 genomes from multiple genetic lineages possessed a 31.0 Kb region that contained a number of genes involved in 

carbohydrate metabolism, including PTS lactose and ascorbate transporters, and genes that constituted the pentose 

and glucuronate interconversion pathway, which is an alternative to glycolysis [15].  A GenBank search revealed a 

nearly identical hit to S. pneumoniae 70585 (ST2895), a disease-causing pneumococcus from Bangladesh. 185 
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Discussion 

The relative ease with which bacterial genomes can be sequenced using next-generation sequencing technologies has 

resulted in a paradigm shift in our understanding of bacterial populations.  MLST was developed nearly twenty years 

ago and it quickly became a powerful tool for defining bacterial lineages.  The explosion of MLST data fundamentally 190 

informed our understanding of bacterial population structure, recombination, evolution, epidemiology, pathogenesis, 

and the consequences of perturbing bacterial populations.  Genomics now provides the data with which one can 

address hypotheses with a much higher resolution than ever before.  Genomics has not abrogated the relevance of 

MLST, but in fact genome sequence-based clustering (at least in the case of pneumococci) is highly concordant to 

clustering based on MLST data.  This is helpful, since the MLST nomenclature is even more valuable with the overlay of 195 

genome-wide information, and as a result it is becoming clear that the diversity within some bacterial populations may 

be even more nuanced than previously appreciated. 

 

Our study has clearly shown that geographically-distinct datasets of carried pneumococci from Reykjavik, Southampton 

and Boston were similar in terms of the size and composition of their estimated core genomes and overall pan-200 

genomes.  In contrast, the dataset from Maela was distinctive in terms of the large size of its pan-genome and small 

estimated core genome, as well as the overall diversity of its CC and serotype distributions.  Maela is a refugee camp of 

only ~50,000 inhabitants and the movement of people in and out of the camp is restricted; therefore, our expectation 

was that there would be a similar bottleneck in the flow of pneumococci in and out of the camp, leading to a 

comparatively less diverse pneumococcal population.  This was not observed: the diversity of pneumococci circulating 205 

in the Maela refugee camp was greater than that in any of the cities of Reykjavik, Southampton and Boston.  There 

were twice as many serotypes and more than double the number of CCs among the carriage pneumococci in Maela as 

there were in Reykjavik, which was the least diverse of the four datasets based on those criteria.     

 

There were approximately five times as many unique gene clusters in the Maela pan-genome as there were in the other 210 

datasets.  The large regions that were identified were predominately from other Streptococcus spp., but in two cases 

the best matches were to non-streptococcal bacteria. It seems likely that there are other genomic regions of interest to 

be found in the list of ~3,700 genes unique to the Thailand pan-genome, thus a more in-depth study of these regions 

and any other large regions identified in the pan-genomes of the other three datasets should be performed in future 

work.  Altogether, these findings raise an important point: the global pneumococcal population is likely to be more 215 

heterogeneous than currently appreciated, particular among those pneumococci from geographical regions that have 

never or rarely been sampled to date.  Moreover, our findings suggest that caution should be exercised when inferring 

broader biological conclusions about the pneumococcus based on a dataset from a narrow population sampling. 
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The majority of epidemiological studies that have been conducted in developed countries have shown that the 220 

pneumococcal serotypes and STs that circulate in carriage and disease are broadly similar across different populations 

[9].  In contrast, recent epidemiological studies in places like Bolivia, Kenya, Malaysia and Nepal, which characterised 

pneumococci only by traditional MLST, demonstrated that whilst the most prevalent serotypes tend to be the same as 

those in the developed world, the diversity of STs/CCs was greater [16-19].   Importantly, safe and effective 

pneumococcal conjugate vaccines (PCVs) are now used in many countries, but they significantly disrupt the 225 

pneumococcal population structure and this can have unpredictable consequences [3, 20-21].  Therefore, characterising 

the pre- and post-PCV pneumococcal population structure is essential in order to identify the changes that occur.  

Whilst traditional MLST is still highly useful in that regard and will remain the genotyping method of choice in many 

parts of the world for some time, genomics provides a higher discriminatory level of resolution to such analyses and 

should be employed wherever possible.   230 

 

Conclusions 

The availability of thousands of bacterial genomes means that meta-analyses of large datasets can now be undertaken 

in order to more precisely delineate bacterial population structure and the composition of the bacterial population in 

terms of the pan-genome, core and accessory genomes.  More studies like this one will need to be carried out in order 235 

to better understand the heterogeneity of the global pneumococcal population in particular and bacterial populations 

more generally.   

 

Methods 

Pneumococcal carriage datasets selected for analyses 240 

Icelandic pneumococci (n = 987) were recovered from the nasopharynx of healthy children 1-6 years old attending day 

care centres located in the greater capital area of Reykjavik, Kopavogur and Hafnarfjordur from 2009-2014 [6-7].  

Pneumococci from Boston, Massachusetts, USA (n = 616) were recovered from the nasopharynx of healthy children <7 

years old who were attending primary care facilities in and around Boston from 2001-2007 [3].  Pneumococci from the 

United Kingdom (n = 518) were isolated from the nasopharynx of children ≤4 years old attending the Southampton 245 

General Hospital outpatient department from 2006-2011 [4].   Nasopharyngeal pneumococci (n = 3,085) from Maela, a 

refugee camp close to the border of Thailand and Myanmar, were collected from a cohort of 528 infants and 242 of 

their mothers from 2007-2010 as part of a longitudinal carriage study [5].   All of the pneumococcal genomes were 

sequenced on the Illumina platform and assembled at the Sanger Institute. 

 250 

Children in Reykjavik, Southampton and Boston were vaccinated with the 7-, 10- or 13-valent pneumococcal conjugate 

vaccine (PCV) at some point before and/or after the time pneumococci were collected in each of the original studies.  

PCV10 was introduced into Iceland in 2011; PCV7 was used in the UK from 2006-2009 and PCV13 thereafter; and PCV7 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 6, 2017. ; https://doi.org/10.1101/133991doi: bioRxiv preprint 

https://doi.org/10.1101/133991
http://creativecommons.org/licenses/by/4.0/


9 

 

was introduced in the USA in 2000 and was replaced by PCV13 in 2010 [3-4, 22].  No PCV was used in Thailand at the 

time pneumococci were collected in Maela. 255 

 

1000 genomes from the original Maela dataset were randomly selected (using R) for inclusion in this study, to avoid 

bias due to the large size of the Maela dataset and to select a dataset similar in size to that of Reykjavik [23].  Metadata 

for the Southampton, Boston and Maela genome datasets were manually extracted from the original publications.  

Complete lists of the pneumococcal genomes included in this study, with accession numbers and available metadata 260 

are listed in Additional file 1 and all assembled genomes are available for download from PubMLST [9]. 

 

Sequence types (STs), clonal complexes (CCs) and serotypes 

Multilocus sequence type (MLST) data were auto-extracted from each genome using BIGSdb and STs were clustered 

into CCs using Phyloviz [24-25].  seqSerotyper.R was used to assign serotypes based upon the nucleotide sequence of 265 

the capsular locus [26]. 

 

Core genome analyses 

Prokka was used to predict and annotate the coding sequences (CDS), hereafter referred to as ‘genes’ for simplicity, in 

each genome [27].  Gene annotation was based upon a bespoke pneumococcal sequence database compiled for this 270 

study, which used the gene annotation data from all available pneumococcal genomes in GenBank [28].  The resulting 

annotation files in gff format were input into Roary and clustered using sequence identity thresholds of ≥70% and ≥90% 

(the lower threshold to account for large nucleotide differences between the same gene in a population, e.g. nucleotide 

similarity of pbp2x may differ by ≥25% between penicillin-susceptible and -resistant pneumococci) [29].  Core genomes 

were calculated for each dataset using our Bayesian method [2]. Putative paralogues were removed and the resulting 275 

core genes were extracted and aligned using MAFFT [30].  A Venn diagram was created to depict the number of core 

genes in each of the four datasets.   

 

Four dataset-specific sets of core gene sequences were created by extracting one sequence for every core gene in each 

dataset.  The four sets of core genes were then compared and clustered in cd-hit using a similarity threshold of ≥90% 280 

and the ‘supercore’ genome (core genes that were present in every dataset) was determined [31].  COG functional 

groups were assigned to each gene using eggNOG [32]. 

 

Sequence alignments for the supercore genes were concatenated to create a supercore genome alignment that was 

used to create a phylogenetic tree using FastTreeMP [33].  The tree was reconstructed to account for recombination 285 

using ClonalFrameML [34].  Sequence clusters were delineated using hierBAPS and depicted on the final phylogenetic 

tree using iTOL [35-36].  
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Pneumococcal essential genes 

A recently published study used Tn-seq to identify pneumococcal genes likely to be essential for survival [8].  The 290 

relevant amino acid sequences for these 397 putatively essential genes were extracted from the TIGR4 genome and cd-

hit was used to compare the amino acid sequences of the essential genes and the supercore genes at a sequence 

identity threshold of ≥70%. 

 

Pan-genome analyses 295 

The nucleotide gene sequences for each of the dataset-specific pan-genomes were clustered in cd-hit using a similarity 

threshold of ≥70% and an alignment threshold of ≥90%.   The numbers of shared and unique genes in the pan-genome 

of each dataset were represented by a Venn diagram constructed using a custom script.   

 

Genome sequence quality and sampling strategy of the Maela dataset 300 

The strikingly different results for the Maela pneumococci (see Results) prompted further analyses.  All of the genomes 

for the Maela dataset were downloaded from the ENA and assembled using Velvet.  Genome sequence assemblies 

were assessed for total genome length and number of contigs, and ribosomal MLST (rMLST) loci were tagged to assign 

the bacterial species [11].  Among the Maela genome assemblies, 80 of the 3,085 genomes from the original dataset 

failed the initial quality control and were discarded.  A subsequent examination of the sequence assembly metrics for 305 

the 1,000 randomly-selected genomes included in the current study revealed that one genome was poorly assembled 

(~1,600 contigs).  To test whether this genome significantly skewed the Roary pan-genome analyses, it was replaced by 

another genome of the same ST, serotype and rMLST type and the analyses were repeated.  The results were 

unaffected: the core-genome increased by 4 genes and the pan-genome decreased by 64 genes (data not shown).   

 310 

We compared the distribution of contigs assembled for all genome sequences and noted that there were differences 

between datasets: the Reykjavik genomes were assembled with the fewest number of contigs (range 9-219, mode = 33 

contigs); Southampton (range 52-248, mode = 87 contigs) and Boston (range 50-246, mode = 88 contigs) were very 

similar; and the genomes in the Maela dataset were comprised from the largest number of contigs (range 83-1687, 

mode = 202 contigs), although the distributions of contigs overlapped (Additional file 8). 315 

 

To check whether the random sampling strategy had somehow biased the Maela dataset to be more diverse, a further 

1,000 genomes from the remaining ~2000 genomes were sampled in the same manner.  The overall number of STs and 

serotypes for this sample were nearly identical to the original sample dataset (data not shown) suggesting that the 

observed epidemiological diversity was similar to that of the other Maela genomes not included here.   320 
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Additionally, 1,000 genomes from 65 non-pneumococcal Streptococcus species were selected for comparative analyses 

to ensure that only pneumococci were included in this study (Additional file 6).  BIGSdb was used to extract the rMLST 

gene sequences from the 1,000 Streptococcus genomes and 3,121 pneumococcal genomes: these sequences were 

aligned, concatenated and used to construct a phylogenetic tree [24, 30, 33].  ClonalFrameML was used to reconstruct 325 

the tree and annotation was performed with iTOL. 

 

The 3,668 gene clusters unique to the Maela pan-genome were manually inspected using the gene identifier numbers 

assigned by Prokka and the gene frequency information provided by the Roary output.  The nucleotide sequence for 

each unique region was extracted using Artemis and both GenBank and the set of 1,000 non-pneumococcal genomes 330 

were queried to find homologous regions of sequence [11, 37].  Putative transposons were annotated using the 

CONJscan module [38].  Homologous regions were compared using diagrams created with EasyFig [39]. 
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Table 1. Summary of the pneumococcal genome datasets analysed in this study. 

Location Genomes (n) 
Years of 
isolation 

STsa 
(n) 

CCsa 
(n) 

Serotypes 
(n) 

PCV statusa 
Source of 

data 

Reykjavik 987 2009-2014 99 48 31 Pre- and post-PCV10 
[6,7], VICE 

study 

Southampton 518 2006-2011 128 45 43 Post- PCV7/13 [4] 

Boston 616 2001-2007 139 63 31 Post-PCV7/13 [3] 

Maela 1000 2007-2010 211 115 61 PCV naive [5] 

a. ST = multilocus sequence type; CC = clonal complex; PCV = pneumococcal conjugate vaccine and 7, 10 and 13 

refers to vaccine valency. 

 495 

 

 

 

Table 2. Summary of the estimated core genome and pan-genome for each pneumococcal genome dataset. 

Location 
% of genomes 

that possess each 
core gene 

Putative 
paralogues (n) 

Genes within 
estimated core 

genome (n) 

Genes within 
pan-genome 

(n) 

Reykjavik ≥99.9 8 1,059 7,301 
Southampton ≥99.7 6 1,052 7,277 

Boston ≥99.8 7 1,029 7,425 

Maela ≥99.9 5 394 15,751 

 500 
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Table 3. Large genomic regions that were unique to the Maela dataset. 

Representative 
genome 

Length 
of 

region 
(bp) 

No. of 
Maela 

genomes 
with region 

GenBank 
best match  
(% identity) 

Streptococcus spp.  
best match  
(% identity) 

Fragment type 

SMRU1398 66142 7 
S. agalactiae ILRI112 

(98.0) 

S. dysgalactiae 66090 
(96.4) 

Tn1549 and Tn916 
with tet(M) 

SMRU1170 
59943 
(1 gap) 

2 
Filofactor alocis 

ATCC35896 (99.0) 

S. dysgalactiae 65857 
(89.8) 

Tn1549 and Tn916 
with tet(M) 

SMRU1457 51873 10 No significant match 
S. dysgalactiae 65857 

(97.4) 

Tn1549 and Tn916 
with tet(M) 

SMRU2268 41961 2 
S. anginosus C238 

(93.0) 

S. constellatus 63991 
(90.7) 

Tn1549 no Tn916 

SMRU1351 39520 11 No significant match No significant match Prophage 

SMRU2725 38392 19 No significant match No significant match 
Unknown 

transposon 
fragment 

SMRU392 34256 1 No significant match No significant match Prophage 

SMRU158 
32902 

(2 gaps) 
1 

Streptococcus sp. 
VT162 (94.0) 

S. oralis 63998 (95.6) 

Unknown 
transposon 
fragment 

SMRU1017 32098 2 No significant match No significant match 
Partial prophage 

sequence 

SMRU128 30967 46 
S. pneumoniae 

70585 (99.0) 
S. suis 66662 (87.6) 

Pentose and 
glucoronate 

interconversion 
region 

SMRU148 30628 1 No significant match 
S. oralis ATCC42996 

(94.9) 
TnGBS2 

SMRU1266 28998 1 No significant match No significant match 
Partial prophage 

sequence 

SMRU1770 
26625 

(3 gaps) 
3 

Streptococcus sp. 
VT162 (85.0) 

S. pseudopneumoniae 

110329 (98.5) 

Unknown 
transposon 
fragment 

SMRU602 25230 1 
Staphylococcus 

aureus 2395 USA500 

(99.8) 

S. dysgalactiae 66058 
(99.0) 

Tn916 with tet(M) 

Note: the best overall significant matches are highlighted in bold. 
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Reykjavik (n = 1,059) Southampton (n = 1,052) Boston (n = 1,029) Maela (n = 394)

Function unknown

Secondary metabolites biosynthesis, transport and catabolism

Inorganic ion transport and metabolism

Lipid metabolism

Coenzyme metabolism

Nucleotide transport and metabolism

Amino acid transport and metabolism

Carbohydrate transport and metabolism

Energy production and conversion

Posttranslational modification, protein turnover, chaperones

Intracellular trafficking, secretion, and vesicular transport

Cell motility and secretion

Cell envelope biogenesis, outer membrane

Signal transduction mechanisms

Defense mechanisms

Cell division and chromosome partitioning

DNA replication, recombination and repair

Transcription

Translation, ribosomal structure and biogenesis
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Supercore genome (n = 303) Southampton, Boston and Reykjavik only (n = 461)

Function unknown

Secondary metabolites biosynthesis, transport and catabolism

Inorganic ion transport and metabolism

Lipid metabolism

Coenzyme metabolism

Nucleotide transport and metabolism

Amino acid transport and metabolism

Carbohydrate transport and metabolism

Energy production and conversion

Posttranslational modification, protein turnover, chaperones

Intracellular trafficking, secretion, and vesicular transport

Cell motility and secretion

Cell envelope biogenesis, outer membrane

Signal transduction mechanisms

Defense mechanisms

Cell division and chromosome partitioning

DNA replication, recombination and repair

Transcription

Translation, ribosomal structure and biogenesis

%
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