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Abstract 

High-throughput sequencing is a revolutionary technology for the analysis of metagenomic 

samples. However, querying large volumes of reads against comprehensive DNA/RNA databases 

in a sensitive manner can be compute-intensive. Here, we present taxMaps, a highly efficient, 

sensitive and fully scalable taxonomic classification tool, capable of delivering classification 

accuracy comparable to that of BLASTn, but at up to 3 orders of magnitude less computational 

cost. taxMaps is freely available for academic and non-commercial research purposes at 

https://github.com/nygenome/taxmaps. 

 

Introduction 

Microbial communities of unknown composition can be collected from a wide array of locations. 

The examination of these microbial communities, known as metagenomics, has become 

increasingly prominent, with many recent studies focusing on the communities of the human 

body1-3 or from our environment – for example, hospitals4, subway stations5 or even ATM 

keypads6. High-throughput sequencing enables the unbiased profiling of these communities as 

well as the ability to investigate clinical samples containing pathogens that are unable to be 

cultured using traditional laboratory techniques. While the emergence of these technologies has 
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also resulted in more comprehensive databases, querying them in a sensitive manner has become 

computationally more expensive. 

 

Whether the goal is to estimate the relative abundance or to merely confirm the presence of 

particular organisms in a given sample, taxonomic classification of each sequence is an essential 

first step in many metagenomics experiments. Older strategies, either based on machine-learning 

techniques such as the Naïve Bayes Classifier (NBC)7 and PhymmBL8 or based on alignment 

tools such as BLAST9, like MEGAN10, are slow and do not scale well to the size of today’s 

experiments. More recently, a new class of faster taxonomic classifiers has emerged. Programs 

like Kraken11 and CLARK12 are based on alignment-free strategies where k-mers extracted from 

the read data are compared to a set of pre-classified k-mers in the database. While these programs 

can classify millions of reads in just a few minutes, their memory requirements are usually high. 

Centrifuge13 addresses the issue of memory consumption by the use of a FM-index14 that allows it 

to efficiently store and query thousands of bacterial genomes within the memory confines of a 

standard laptop. This indexing strategy was also employed on the protein homology based 

classifier Kaiju15. While these programs allow for taxonomic classification at an unprecedented 

speed, no significant improvements in classification accuracy have been reported over Megablast 

– the least sensitive BLAST program. 

 

Here we describe taxMaps, an ultra-sensitive, customizable and fully scalable taxonomic 

mapping tool for short-read data designed to deal with large DNA/RNA metagenomics data. 

taxMaps is designed to facilitate the taxonomic classification operation, featuring thorough 

preprocessing, the ability to prioritize mapping to multiple indexes, detailed mapping reports and 

interactive results visualization. Most importantly, by using a novel database compression 

algorithm that eliminates database redundancy, which improves querying performance and 

reduces the number of post-querying computations, and an optimal non-exact match mapping 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134023doi: bioRxiv preprint 

https://doi.org/10.1101/134023
http://creativecommons.org/licenses/by-nc-nd/4.0/


strategy, taxMaps delivers classification accuracy that approximates that of BLASTn but in 

orders of magnitude less time. 

 

Results 

Database compression 

To taxonomically classify short-read data in a comprehensive manner, millions of reads must be 

compared against DNA/RNA databases, which contain sequences from thousands to millions of 

organisms. This operation is compute-intensive, given that querying performance is highly 

dependent on database size and redundancy. This is particularly true when all best hits are to be 

exhaustively retrieved – something required to ensure maximum classification accuracy. With 

that in mind, we developed a compression algorithm that eliminates database redundancy by 

performing a Lowest Common Ancestor (LCA) pre-assignment and collapse for k-mers of length 

greater than a specified read length (Figure 1a). This allows for non-exact searches to be 

conducted in the same manner as they would against the original database, resulting in 

compression that, for the purpose of taxonomic classification, is lossless. Making use of this 

algorithm we built several databases, some including millions of sequences from more than a 

million different taxonomic entities (Supplementary Table 1). Compression ratios varied from 

1.08 to 4.67, with higher values obtained when using shorter k-mers and usually for databases 

containing many bacterial genomes, due to the presence of multiple highly homologous strains. 

Surprisingly, databases compressed at shorter k-mers, despite better compression ratios, require 

more RAM to be loaded. This may be due to a higher probability of homology between short k-

mers, compared to longer ones, which leads to more pronounced sequence fragmentation.  
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Figure 1 | Database compression and classification accuracy and performance on simulated metagenomics 

paired-end datasets. (a) Visual representation of the taxMaps database compression algorithm. Each sequence is 

represented as an array of k-mers (circles), colored according to their taxon (colored squares). Identical k-mers are 

linked by a dashed line. During compression, the first instance of every k-mer is reclassified to the Lowest Common 

Ancestor of all instances of that k-mer in the database while the remaining (grey circles) are disregarded. New 

sequences, composed of k-mers that share the same taxonomic classification, are assembled on-the-fly as the algorithm 

transverses the database. A graph representation of the database is also shown. (b) Classification sensitivity and 

precision as function of average sequence divergence and read length at the genus and class ranks. (c) Wall clock time 

required for the classification of six different datasets, each consisting of 10M read-pairs of 125 bp of length, 

depending on average sequence divergence. The arrows on the right indicate the database loading time for each 

program.  

 

Classification accuracy and performance on simulated metagenomes 

We compared taxMaps to BLAST (in its two variants Megablast and the more sensitive 

BLASTn) and Kraken. In this benchmarking exercise, we used NCBI’s nt database16 as reference 

for all four methods to ensure that differences in classification accuracy and speed can only be 

attributed to algorithmic differences between classifiers and not to reference database differences. 
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Given that classification accuracy strongly depends on factors such as sequence quality, distance 

to the closest available sequences in the database, and read length, we have generated 55 

simulated paired-end read sets of increasing length (from 75 bp to 300 bp) and divergence (from 

0% to 20%) from the reference sequences of more than 4000 different taxonomic units 

(Supplementary Figure 1).  

 

Classification accuracy results at the genus and class ranks for paired-end reads of length 125bp 

and 300bp are shown in Figure 1b. It is possible to observe that, while incapable of matching 

BLASTn accuracy for the most divergent read sets, taxMaps clearly outperforms Megablast and 

Kraken in both sensitivity and precision. This is particularly striking when sequence divergence is 

greater than 6%. For instance, on a highly divergent 300bp paired-end dataset (average edit 

distance = 16%), taxMaps sensitivity and precision at the genus level are 0.951 and 0.995, 

respectively. On the same dataset, Megablast and Kraken are incapable of classifying more than 

half of the reads, with sensitivity values of 0.470 and 0.303, at a precision of 0.971 and 0.961, 

respectively. These results are particularly relevant when choosing the right classifier for 

metagenomics samples containing organisms that are likely not represented in any database or in 

situations where the error-rate is high. This trend was observed for all tested read lengths, at 

virtually all taxonomic ranks for both paired-end and single-end classification (Supplementary 

Figures 2, 3). Regarding computational performance, Kraken is the fastest method, being capable 

of classifying 10M 125bp read-pairs in less than 5 minutes, followed by taxMaps that, depending 

on the average sequence divergence, takes between 31 and 131 minutes to execute the same task 

(Figure 1c). Nevertheless, this range is comparable to other NGS pipelines (e.g. mapping and 

variant calling) and 1-2 orders of magnitude faster than Megablast and up to 3 orders faster than 

BLASTn, on datasets of low sequence divergence to the closest match in the database 

(Supplementary Figure 4). Interestingly, while for taxMaps the computational cost is positively 

associated with the average sequence divergence to the reference database, the inverse is true for 
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Megablast, probably because for extreme edit distance values, fewer reads have a seed hit in the 

database and therefore, no extension operation is performed.   

 

Mock communities 

To test whether results observed on simulated data would hold when classifying real sequencing 

data, all four classifiers were tested on two datasets, Hiseq and Miseq11, containing reads from 9 

and 10 different bacterial species, respectively. All methods relied on the same database, 

consisting of complete bacterial, archaea and viral genomes – refseq_complete_genomes (see 

Supplementary Table 1). In this exercise, we also included BLASTx and Kaiju, which rely on 

protein homology for taxonomic classification. For those, the reference database consisted of all 

protein sequences annotated on the same set of genomes. For all BLAST methods in this analysis, 

database search hits were filtered using similar criteria to those used in 10. This reduced the 

number of false-positive classifications originating from small partial alignments, at the cost of 

some sensitivity (Supplementary Figure 5). As in the results observed for simulated data, 

BLASTn is the most sensitive method at all the taxonomic ranks considered, with the exception 

of genus-level classification in the Miseq dataset, where taxMaps is marginally more sensitive 

(Figure 2a). However, it is the least precise of all four nucleotide homology based methods on the 

Hiseq dataset. This discrepancy can be explained by the fact that, on simulated datasets, all reads 

originate from sequences that are already present in the database, therefore reducing the 

probability of incorrect classification, while for real sequencing data that is not necessarily the 

case. Apart from the potential lack of complete genomes in the database, there may be other 

sequencing artifacts that were not captured in our simulation. After BLASTn, taxMaps is the 

second most sensitive method at all taxonomic ranks. In fact, for both the Hiseq and Miseq 

datasets, taxMaps correctly assigns more reads to the right genus (sensitivity of 0.914 and 0.904, 

respectively) than any of the remaining programs (Megablast, Kraken, Kaiju and BLASTx) 

assign to the right kingdom. 
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Figure 2 | Taxonomic classification accuracy on two mock metagenomics communities. (a) Classification 

sensitivity and precision at six major taxonomic ranks for two real datasets. For visualization purposes, genus-level 

accuracy values for Kaiju and BLASTx on the MiSeq dataset (sensitivity = 0.741 and 0.537, precision = 0.953 and 

0.970, respectively) have been omitted. (b) The corresponding breakdown per species of the percentage of correct, 

incorrect and unclassified reads at the genus level.  

 

For the Hiseq dataset, with the default parameter Maximum Edit Distance, e = 0.2, taxMaps was 

slightly less precise at the genus level (0.991) than Kraken (0.993) and Megablast (0.994). It is, 

however, possible to find values of e (e <= 0.12), where taxMaps is simultaneously more precise 

and more sensitive than these two methods. On the Miseq dataset, running taxMaps with e = 0.12 

drops the genus level sensitivity to that of Kraken but with approximately 60% fewer incorrect 

classifications (Supplementary Figure 6). Regarding the two protein homology based classifiers, 

they were the least sensitive and least precise on both datasets at virtually all ranks considered. 

This result is rather surprising given that protein homology is usually higher than nucleotide 
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homology. One factor that may contribute to this observation is that some reads originate from 

non-coding regions of the genomes.  

 

While in aggregate BLASTn was the most sensitive method, when further breaking down the 

results by species (Figure 2b), taxMaps has the highest number of correctly classified reads at the 

genus level in 5 out of 9 species in the Hiseq dataset and in 8 out of 10 species in the Miseq 

dataset (two of which tie with Kraken). For the remaining species, BLASTn obtained the most 

correct classifications. Interestingly, a few species (Xanthomonas axonopodis, Pelosinus 

fermentans and Proteus vulgaris), which are divergent from the species in the database, explain 

most of the differences in overall sensitivity between methods. In those cases, classification 

performance of taxMaps and BLASTn was significantly higher than that of Kraken and 

Megablast, being comparable or superior to the protein homology based methods Kaiju and 

BLASTx, traditionally expected to perform well in that situation. 

 

We also decided to explore, for these two datasets, the taxMaps feature that allows the use and 

prioritization of multiple databases/indexes. For that, we used the refseq_complete_genomes 

database with a strict value for Maximum Edit Distance (e = 0.1) followed by either the blast_nt, 

refseq_microbial or combined_ncbi databases, with e = 0.2 (Supplementary Figure 7). While the 

combination including the blast_nt database led to accuracy values similar to those of 

refseq_complete_genomes with e=0.2, the use of refseq_microbial and combined_ncbi raised the 

genus level sensitivity to values over 0.975 in the Hiseq and 0.92 in the Miseq datasets, at 

precision values above 0.991 and 0.989, respectively.   

 

Human microbiome and environmental samples 

While the two mock communities allow for comparisons of classifier accuracy based on real data, 

they represent a relatively simple classification task, given that most species are well represented 
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in the database used. To assess classifier behavior in a more realistic scenario, we considered 3 

human microbiome and 4 environmental metagenomics samples (Supplementary Table 2) as 

input for Kraken, taxMaps and Kaiju. In this case, due to the large number of reads per sample, 

we did not consider the slower BLAST methods as they would not represent a practical 

classification solution. When using the refseq_complete_genomes database, Kaiju classified the 

largest number of reads on all samples, followed by taxMaps and then Kraken, with the sole 

exception of the Bioreactor Sediment sample, where Kraken classified more reads than taxMaps 

(Figure 3a). While this suggests that Kaiju may be more sensitive than taxMaps and Kraken on 

these datasets, the ground truth for these samples is unknown and therefore it is impossible to 

assess the classification accuracy of each method. To address this problem, we developed a novel 

rank-level metric called Classification Concordance that, for a given taxonomic rank, can be 

defined as the percentage of read-pairs where the independent classification of both mates is 

concordant at that particular rank (see Methods for details). On the simulated dataset described 

previously, this metric shows a high correlation with classification precision at all ranks 

individually, and in aggregate (rho=0.992) (Supplementary Figure 8). Therefore, it has the 

potential to be used as proxy for classification accuracy. In Figure 3b it is possible to observe that 

both taxMaps and Kraken show significantly higher classification concordance than Kaiju on all 

datasets except for the Bioreactor Sediment sample where Kraken classification concordance is 

only slightly higher than that of Kaiju. This is the sample where, against the general trend, 

Kraken classified more reads than taxMaps. The lower classification concordance of Kaiju 

compared to taxMaps and Kraken is particularly striking on the human microbiome samples and 

the River Plume sample, where classification concordance at the phylum level for this classifier is 

lower than that of taxMaps and Kraken at the genus level. These results suggest that, while Kaiju 

may classify more reads, it likely does so with much lower precision than taxMaps and Kraken.  
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Figure 3 | Percentage of classified reads and classification concordance for 7 real metagenomics datasets. (a) 

Percentage of classified reads-pairs for 3 human microbiome and 4 environmental samples. (b) Classification 

concordance between paired mates, as proxy of precision, for 6 major taxonomic ranks.    

 

Finally, we wanted to investigate how the use of more comprehensive databases in taxMaps 

would affect the percentage of classified reads and whether there would be a negative effect in 

classification concordance. We ran taxMaps using blast_nt, refseq_microbial and combined_ncbi 

databases (Supplementary Table 1) and for all samples the use of these more comprehensive 

databases resulted in a higher percentage of classified reads. This was particularly clear when 

using refseq_microbial and combined_ncbi. Surprisingly, the use of this last database, comprising 

374GB of sequence, didn’t have a negative effect on classification concordance compared to 

refseq_complete_genomes, suggesting that taxMaps precision was not affected by the significant 

increase in the number of sequences in the database. By using very large databases, taxMaps can 

classify more human microbiome reads than Kaiju and, taking classification concordance as 
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proxy, potentially at much higher precision. As such, taxMaps is particularly appropriate for 

microbiome studies where maximum classification accuracy at lower taxonomic ranks is desired.  

 

Conclusions 

As genomic databases become more comprehensive, so grows the challenge of how to efficiently 

utilize such resources to accurately classify the large number of reads generated by high-

throughput sequencing technologies. While other recently published methods rely on alignment-

free strategies to improve the computational performance of this task, taxMaps’ approach can be 

considered as an intermediate between that and the more sensitive alignments of BLASTn. By 

relying on a novel database compression algorithm, taxMaps can conduct very sensitive searches 

on very large databases while maintaining good performance. Our results using simulated 

datasets show that the sensitivity and precision of taxMaps approximate that of BLASTn, and are 

superior to those of Kraken and Megablast, especially as read sequences diverge from the 

corresponding database reference. These results were further confirmed on the two mock 

community datasets, where taxMaps delivered the highest number of correct classifications for 

the majority of the species included. Regarding real metagenomics samples (human microbiome 

and environmental), when using the same database, both taxMaps and Kraken classified 

significantly fewer reads than Kaiju. While in a previous benchmark15, the number of classified 

reads has been interpreted as proxy for sensitivity, the ground truth for those datasets is unknown, 

making it impossible to assess whether classifications are correct or not. To circumvent this 

limitation, we have developed a novel rank-level metric called Classification Concordance that 

shows very strong correlation with classification precision. Based on that metric, our results 

suggest that both Kraken and taxMaps are significantly more precise than Kaiju. Moreover, we 

show that taxMaps concordance is not affected when using more comprehensive databases that, 
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in the case of the human microbiome samples, led to a significant increase in the number of 

classified reads.  

 

In summary, our results show that taxMaps offers class-leading accuracy and comprehensiveness 

while balancing performance, making it uniquely suitable for unbiased contamination detection in 

large-scale sequencing operations, microbiome studies comprising a large number of samples, 

and applications where the analysis turnaround time is a critical factor, such as pathogen 

identification from clinical or environmental samples. 

 

Methods 

Database creation 

Data from the RefSeq Genomes and BLAST nt databases were retrieved through the NCBI FTP 

server and organized in various databases (see Supplementary Table 1). For each database, 

duplicate sequence entries were removed and all ambiguous nucleotides converted to N 

characters. Then, for every distinct k-mer, we computed the LCA between all taxonomic IDs of 

the sequences containing it, derived from the NCBI Taxonomy database16. K-mers were 

assembled on-the-fly, through extension, into sequences that share the same LCA. This not only 

eliminates most of the database sequence redundancy, consequently improving mapping 

performance, but it also significantly reduces the number of post-mapping computations to be 

performed. This is particularly true for samples containing DNA or RNA from organisms that are 

highly represented in the databases (e.g. E. coli) or for which the repeat content is particularly 

high. The newly assembled sequences were then indexed (FM-index) using GEM17. While the 

overall strategy is similar to the one employed in Kraken database creation, the fact that this 

operation is performed on k-mers of length equal or greater than a target read length allows for 

non-exact searches to be conducted in the same manner as they would against the original 
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database. Thus, this compression is lossless for the purpose of taxonomic classification. The re-

assembly of the sequences and use of the FM-index result in a reduction of the memory footprint, 

allowing for very large databases to be merged and simultaneously queried.  

 

Classification algorithm 

Reads are mapped in single-end mode to an indexed database using GEM mapper17, which 

guarantees that all optimal alignments are retrieved, up to the user defined Maximum Edit 

Distance (-e, default = 0.2) parameter. Each read is then taxonomically classified as the LCA of 

all database sequences returned. For paired-end classification, reads are classified independently. 

If the classification of the two ends is discordant, meaning that they are different and the root-to-

leaf (RTL) path of one end is not fully included in the RTL path of the other end, the pair is 

classified as the LCA of both single-end classifications. If the RTL path of one end is contained 

in the RTL path of the other end, the pair is then classified as the lower taxon of the longest RTL 

path. In situations where no database match was found for one of the two reads, the pair is 

classified solely on one read. taxMaps also has a stricter paired-end classification scheme where 

both ends are required to have database hits. In that scheme, the pair is always classified as the 

LCA of both single-end classifications, even when one RTL path is contained in the other, 

ensuring maximum precision at the expense of a higher rank classification. 

 

Implementation 

taxMaps is fully implemented in Python and works as a transparent pipeline-generating script 

upon user-defined parameters. It reads data in FASTQ format but can also extract unmapped 

reads from BAM files through Samtools18. Processing steps such as adapter removal, low quality 

end trimming and low complexity filtering are carried out using Cutadapt19 and PRINSEQ lite20. 

Users can specify multiple indexes to be queried and define, on an index-specific basis, the 

maximum edit distance and number of threads used by GEM17. Apart from that, taxMaps offers 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134023doi: bioRxiv preprint 

https://doi.org/10.1101/134023
http://creativecommons.org/licenses/by-nc-nd/4.0/


one single-end and two paired-end classification modes (described above). Summary results are 

given as tables and an interactive report is generated using Krona21. Compressed indexes can be 

downloaded from ftp://ftp.nygenome.org/taxmaps. 

 

Simulated metagenomics datasets 

To build the simulated datasets, we first selected taxa for which the RTL path included all the 

major taxonomic ranks and had at least one contiguous sequence longer than 100kb in NCBI’s nt 

database16 and then, for each of the 4089 selected taxa (Supplementary Figure 1), we randomly 

extracted a single 100kb sequence chunk. From these sequences, 55 simulated datasets, each 

consisting of 10 million read-pairs, were generated using a version of wgsim forked from 

SAMTools18 (https://github.com/lh3/wgsim), by combining five different read lengths (75bp, 

125bp, 150bp, 250bp and 300bp) with eleven edit distances (0.0, 0.02, 0.06, 0.08, 0.10, 0.12, 

0.14, 0.16, 0.18 and 0.20) and the following additional parameters: fragment length of 550bp, 

indel fraction of 0.15 and a maximum fraction of ambiguous bases allowed of 0.003. Interleaved 

FASTQ files were converted to FASTA files for BLASTn and Megablast since these programs 

were not designed to handle the FASTQ format. Each read ID contains the taxonomic identifier 

of the sequence from which it was simulated as well as the read length and edit distance of the 

dataset. All datasets are available at ftp://ftp.nygenome.org/taxmaps. 

 

We ran taxMaps, Kraken, BLASTn, and Megablast on each of the 55 simulated datasets using the 

NCBI’s nt database as reference for all methods. For BLASTn, the number of read pairs analyzed 

was reduced to 100,000 by random sampling due to time constraints. Given that BLASTn and 

Megablast are not taxonomic classifiers per se, the LCA of all best hits for each read was 

determined. For paired-end classification, the criteria used in taxMaps was applied. To estimate 

sensitivity and precision, classifications were split into 4 distinct categories: 1) correct, if the 

correct taxon is included in the RTL path of the assigned taxon; 2) concordant, if the assigned 
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taxon is different from the correct taxon but it is included in the RTL path of the correct taxon; 3) 

incorrect, if the assigned taxon is not included in the RTL path of the correct taxon nor the correct 

taxon is included in the RTL path of the assigned taxon; and 4) unclassified, if no taxon was 

assigned. Rank-level sensitivity is then given by the number of correct classifications at a 

particular rank over the total number of possible classifications, while rank-level precision 

corresponds to the number of correct classifications at a particular rank over the number of 

correct and incorrect classifications at that same rank. Paired-end rank-level sensitivity and 

precision of each program was calculated at eight major taxonomic ranks (species, genus, family, 

order, class, phylum, kingdom, and root), for each edit distance and read length combination 

(Supplementary Figure 2). Similarly, single-end rank-level sensitivity and precision data were 

also collected for each program from output in single-end mode (Supplementary Figure 3). 

 

In addition to the sensitivity and precision metrics, wall clock time data was collected for each 

program on all paired-end datasets (Supplementary Figure 4). taxMaps, Megablast and BLASTn 

were run on a computer cluster running CentOS 7.1 on either Intel Xeon E5-2697 2.60GHz CPUs 

or Intel Xeon CPU E5-2680 2.80GHz CPUs. Due to the high memory requirements, Kraken was 

run on a large-memory shared host running CentOS 6.5 on Intel Xeon CPU E7- 8830 2.13GHz 

CPUs. All programs were run using 16 CPUs per job, except for BLASTn, which was run on 8 

CPUs given the long-term commitment required of these resources. The wall clock time reported 

for BLASTn was then extrapolated to match the number of reads classified and numbers of CPUs 

used by the other programs. 

 

Mock community datasets 

To assess the classification accuracy on real data, we used two mock community single-end 

datasets, Hiseq and Miseq, from a previously published benchmark11. Each dataset was originally 

composed of 10,000 single-end reads from 10 different bacterial species. After adapter clipping 
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using Cutadapt19, removal of sequences shorter than 31bp and the complete removal of 

Streptococcus pneumoniae from the Hiseq dataset due to the presence of chimeric reads that were 

likely artifacts, there were 8850 and 9953 reads left on the Hiseq and Miseq datasets, respectively. 

For each dataset, apart from running taxMaps, Kraken, Megablast and BLASTn, we additionally 

ran the protein homology based classifiers Kaiju and BLASTx. BLASTx classification followed 

the same criteria as BLASTn and Megablast. Moreover, a filtering strategy was implemented, for 

all BLAST programs, using the criteria (minimum bit score, win-score, and top-percent) 

described by the authors of MEGAN10. We selected a win-score of 100 for all programs and 

minimum bit score cutoffs of 60 for BLASTn and Megablast and 35 for BLASTx. Two values, 

5% and 10%, were explored for the top-percent cutoff for BLASTn and Megablast 

(Supplementary Figure 5). All methods used the refseq_complete_genomes database, with the 

exception of Kaiju and BLASTx that used the correspondent set of annotated proteins. 

 

Real metagenomics samples 

We downloaded 7 Illumina datasets of real metagenomics samples from the Sequence Read 

Archive (SRA)22. Their description and corresponding accession numbers can be found in 

Supplementary Table 2. On all datasets, adapter sequences were clipped and low quality end 

bases trimmed (Q<20). Reads were classified with paired-end and single-end modes using 

taxMaps, Kraken and Kaiju. Due to the high computational requirements, BLAST methods were 

not considered in this benchmark. For each dataset, apart from determining the number of 

classified reads by each method, we computed a novel rank-level metric called Classification 

Concordance. This metric is defined as the percentage of read-pairs for which the independent 

classification of both ends is either the same or concordant at that particular rank, as long as one 

of the ends has been classified at that rank or below. For instance, if one end is classified as 

Escherichia coli and the other as Enterobacteriaceae, the classification for that read-pair is 

considered to be concordant at the species level and at all ranks above. If the second end had been 
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classified as Proteus vulgaris instead, the classification would be concordant at the family level 

and at all ranks above. To assess whether classification concordance could be used as a proxy for 

precision, we calculated the Spearman’s rank correlation r between the two metrics on the 

simulated datasets, for all methods and at all ranks with the exception of “root”.  
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