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Abstract. It is often observed that human culture, unlike most other animal cul-
ture, is cumulative: human technology and behavior is more complex than any indi-
vidual could invent in their own lifetime. Cumulative culture is often explained by
appeal to a combination of high-fidelity social learning and innovation, the “ratchet
effect.” What is often overlooked is that both human and other animal culture is10
supported by a more primary ratchet effect that retains and increases the prevalence
of adaptive behavior. This primary ratchet can arise without appeal to specialized
cognitive adaptations and is plausibly more widespread in animal societies. We use
a simple model to highlight how simple forms of contingent social learning can cre-
ate the primary ratchet effect, dramatically increasing the prevalence of adaptive,15
hard to invent behavior. We investigate some ways that demography may interact
with the primary ratchet to generate patterns of cultural variation. As the primary
ratchet may be common to many animal societies, its cognitive components and pop-
ulation dynamics provide a common foundation for the study of animal culture and
a necessary foundation for understanding the origins of human cumulative culture.20
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2 MCELREATH ET AL.

1. Introduction

Culture, defined as socially transmitted behavior, is common in animal societies.
Reports of animal culture span a variety of taxa, including mammals, birds, reptiles,25
fish, and insects (Mundinger 1980, Boyd and Richerson 1996). Next to humans,
chimpanzees (Pan troglodytes) are thought to have the most prolific repertoire of
cultural traditions in the animal kingdom (Whiten et al. 1999, Kühl et al. 2016,
Boesch et al. 2016). Orangutans (Pongo pygmaeus) also display an impressive array
of plausibly cultural traits (Van Schaik et al. 2003). Moreover, captive experiments30
indicate that many hundreds of species are capable of social learning and culturally
transmitted traditions (Laland and Hoppitt 2003).

But human culture remains unusual in at least one respect: it is highly cumulative.
Much human behavior is more complex than any individual could invent in their
lifetime (Boyd and Richerson 1996). It took many generations for relatively simple35
technologies like bows and baskets to culturally evolve. There is still no consensus
about which factors make cumulative behavior possible in humans but largely absent
in other animals (Dean et al. 2014). The culture of other animals, including the
other great apes, is thought instead to arise from simpler cognitive abilities. There is
some evidence that high-fidelity social learning, combined with specialized learning40
heuristics, can account for cumulative culture (Henrich and McElreath 2003, Henrich
and Tennie 2017). Whatever the specific causes, cumulative culture arises from what
many authors call the ratchet effect: imitation plus innovation allows the population
to preserve previous innovations and build complexity across generations (Tomasello
1999, Tennie et al. 2009).45

The image that arises from this literature is that human societies are so successful,
because of cumulative culture and the specialized individual cognition that makes
it possible, while the culture of other animals is largely non-cumulative and of less
adaptive consequence (Boyd and Richerson 1995, 1996, Henrich and McElreath 2003).
For example, a primary problem with non-cumulative forms of social learning is that50
they may bring no adaptive benefit at all, despite being easy to evolve (Rogers 1988).
Unfortunately, this has obscured the importance of non-cumulative culture.

Nonetheless, social transmission of behavior can be important, even in the absence
of cumulative culture. Species without cumulative culture regularly express behavior
that is socially transmitted and patterned by population dynamics. In these cases,55
the distribution of specific behaviors cannot be understood without appeal to cultural
evolution. And when the environment changes, predicting how an animal responds
will depend crucially upon how it learns. Furthermore, adaptive cultural traditions do
not require sophisticated, specialized cognition nor complex, cumulative culture. All
they require, in theory, are simple heuristics for the trial and retention of candidate60
behaviors. These mechanisms may underlie the spread and maintenance of adaptive
cultural traditions in many species, including humans.

In this paper, we describe the distinction between the primary ratchet effect and the
better known secondary ratchet effect. We define the primary ratchet as the selective
retention of simple, socially transmitted behavior that achieves desired effects and65
the resort to innovation when no working solution is available. This kind of cultural
process is most often described as non-cumulative. There is experimental evidence
for strategies of this general type in both human children (Carr et al. 2015) and
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THE PRIMARY RATCHET EFFECT IN ANIMAL CULTURE 3

chimpanzees (Davis et al. 2016). The primary ratchet effect is potentially common
to many animals, as it is supported by simple, sequentially structured contingent70
learning. It allows the spread of solutions to adaptive challenges and can generate
diverse patterns of cultural behavior. While the primary ratchet allows simple cultural
behaviors to accumulate in terms of their frequency and diversity, the secondary
ratchet goes one step further, acting on the traits themselves and allowing cultural
behaviors to accumulate enhanced complexity over time.75

Even human culture depends upon some of the same cognitive building blocks
and population dynamics as the primary ratchet. Many aspects of human culture
are simple and possible to invent through individual learning, yet distinct forms are
maintained through social learning. Prominent examples include precision throwing
and handshaking. Adults use a version of the primary ratchet in laboratory social80
learning experiments (McElreath et al. 2005), in which social information influences
exploration of behavior, but reinforcement learning influences retention and choice.
Moreover, the primary ratchet and the cultural accumulation that it generates are
relevant to understanding the evolutionary origins of human cumulative culture, which
likely arose first from the accumulation of simple traditions before more complex85
modifications could evolve (Pradhan et al. 2012). In order to understand why non-
human animals do not display more cumulative culture, we need a proper origin story
for cumulative culture that does not overlook the adaptive benefits of non-cumulative
culture.

We present a simple model that demonstrates how contingent learning and the pri-90
mary ratchet generate non-cumulative culture. This model integrates both individual
cognition and population dynamics, demonstrating how the ratchet can produce ben-
efits for both individuals and populations. This general model has been analyzed
before, first by Boyd and Richerson (1996) and more extensively by Enquist et al.
(2007). We expand the model’s scope to include overlapping generations and subpop-95
ulations linked by migration. We explore some of the finite population dynamics and
patterns of cultural diversity that such a simple mechanism may generate, showing
that some of the demographic properties of cumulative culture, such as a relationship
with population density and connectivity (defined here as the extent to which popu-
lations are connected through migration) (Shennan 2001, Henrich 2004, Powell et al.100
2010, Kline and Boyd 2010, Baldini 2015), are also found in the primary ratchet.
However, while demographic and social factors are likely to be important to under-
standing both ratchet effects, the details could entail important subtle differences.

Our ultimate aim, not yet achieved in this short paper, is to generate theoretical
predictions linking models of animal cognition to observational studies of animal105
culture. This program of research offers a way to link the studies of human and
animal culture by exploring the dynamic properties of simple, socially transmitted
behavior and highlighting potential homologies across taxonomic groups.

2. Contingent learning and the primary ratchet

In this section, we present a model that illustrates how contingent learning can110
make hard-to-invent behaviors prevalent. In the sections to follow, we incorporate
additional demographic factors. We consider a family of learning heuristics, contin-
gent learning, whereby individuals sample behavior from other individuals, attempt
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4 MCELREATH ET AL.

to achieve a result using the sampled behavior, and then retain the behavior when
some desired outcome is achieved. When the sampled behavior is not retained, the115
individual instead attempts to innovate a new behavior.

2.1. Model definition and solution. Assume a large population of organisms ca-
pable of only simple, unbiased social learning. Individuals may maintain or reject
socially-acquired behavior, based upon subsequent individual experience. Genera-
tions are discrete and, for the moment, non-overlapping. Juvenile individuals first120
learn socially from a random adult, acquiring a candidate behavior from the previous
generation. They then try out the behavior and, contingent on cues of its success,
either retain the behavior or attempt to innovate a new behavior. Some behavior is
adaptive under current conditions, meaning it succeeds at some specific task, such as
extracting food, and produces a cue that encourages an individual to retain it. All125
other behavior is non-adaptive and produces such a cue less often. Conditions change
each generation with probability u, rendering all previous behavior non-adaptive,
which provides an evolutionary incentive to invest in innovation.

A naive individual will encounter an adaptive role model with probability Qt. When
this occurs, the individual will either retain the adaptive behavior with probability130
1 − e or mistakenly reject it with probability e. When rejected, individuals will
innovate with a probability of success s. One can think of the e parameter as an
error rate in social learning, or the opposite of transmission fidelity f = 1− e. Naive
individuals encounter non-adaptive role models with probability 1−Qt. In this case,
there is a chance d that an individual correctly rejects the non-adaptive behavior and135
decides instead to innovate with probability of success, s.

With these assumptions, we can write an expression for the frequency, or prevalence,
of adaptive behavior in the population at time t+ 1:

qt+1 = Qt

(
(1− e) + es

)
+ (1−Qt)ds (1)

Qt, the probability of sampling adaptive behavior, is defined as:
Qt = (1− ut)qt (2)

In this expression, ut = 1 when the environment has just changed between t and t+1.140
Otherwise ut = 0 when the environment has remained the same. This recursion can
be solved explicitly for the frequency of successful behavior T generations after the
most recent change in the environment:

qT =
ds
(
1− (1− e(1− s)− ds)T+1

)
ds+ e(1− s)

(3)

As T → ∞, qT reaches a steady state frequency of adaptive behavior q̂ at:

q̂ =
ds

ds+ e(1− s)
(4)

Therefore this is also the maximum prevalence of adaptive behavior that the pop-145
ulation can attain. If learning dynamics are much faster than ecological dynamics,
then this expression will provide a good approximation of the expected prevalence of
adaptive behavior. More generally, since the environment changes in a proportion u
of the generations, the expected frequency of successful behavior will be lower than
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THE PRIMARY RATCHET EFFECT IN ANIMAL CULTURE 5

q̂. It is found by taking the expectation of (1) with respect to time t and solving for150
the expected value q̄. This yields:

q̄ =
ds

(1− u)
(
ds+ e(1− s)

)
+ u

(5)

2.2. The prevalence of adaptive behavior. With these results, we can address
the basic issue of how contingent learning, and the primary ratchet it generates, can
dramatically increase the prevalence of adaptive behavior, even when the innovation
rate s is very small. First, consider the prevalence of adaptive behavior in the absence155
of social learning. In that case, all naive individuals attempt to innovate, resulting
in a frequency of adaptive behavior equal to s, the innovation rate. Unbiased, non-
contingent social learning will result in the same prevalence, as has been shown in
many previous models (Rogers 1988, Boyd and Richerson 1995). The prevalence, q̄,
arising from the primary ratchet will exceed s as long as:160

u <
(d− e)(1− s)

1− ds− e(1− s)
(6)

When adaptive and non-adaptive behaviors are always recognized correctly, d = 1
and e = 0, and then the condition above is always satisfied. For sufficiently large d
and small e, it is trivially satisfied.

q̄ can be many times larger than s, provided individuals are good at diagnosing
successful techniques. Figure 1, left, shows values of q̄ as a function of the innovation165
rate s and rate of environmental change u. For small values of s especially, the preva-
lence q̄ can be several multiples of the innovation rate, even when the environment
changes very quickly.

The prevalence q̄ will be even larger, if we allow a simple and plausible modification
of Qt, the probability of sampling adaptive behavior. Suppose non-adaptive behavior170
in a relevant foraging context is just the absence of a solution—individuals who fail
to successfully innovate simply do not perform a behavior. This is reasonable for
tasks like termite fishing. In this case, it makes little sense that naive individuals
would try out the absence of a solution. Suppose instead that each naive individual
samples n potential “teachers” from a local group. If any one of them displays a175
successful technique, it can be learned. The only change to the model required here
is to redefine Qt:

Qt = 1−
(
1− (1− ut)qt︸ ︷︷ ︸

Z

)n (7)

This expression states the probability of sampling at least one teacher with adaptive
behavior, out of n teachers. The term labeled Z is the probability any of the n teachers
does not have adaptive behavior. Exponentiating by n yields the probably that none180
have adaptive behavior. Finally, subtracting from 1 yields the probability that any
of the teachers has adaptive behavior.

There is no longer a steady state solution for q̄, for general n. But solutions can be
derived for specific values of n or otherwise solved numerically. The right hand plot
in Figure 1 shows the values of q̄ computed using Expression 7 above with n = 2.185
The addition of one more teacher has a dramatic effect on the prevalence of successful
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Figure 1. Prevalence of adaptive behavior under the primary ratchet
of contingent social learning, as a function of the rate of environmental
change u and the innovation rate of adaptive behavior s. Left: The
basic model, with only a single “teacher.” Even at high rates of en-
vironment change, the prevalence of adaptive behavior is many times
greater than its innovation rate. Right: The general model, with n = 2
“teachers.” Prevalence is high, even for very low values of s. d = 1 and
e = 1/10.

behavior. Now even for very low values of s, the prevalence of successful behavior is
over 0.8.

2.3. Evolutionary dynamics. To be a credible candidate for animal social learning,
a strategy like contingent social learning should increase the relative fitness of an190
individual. This is true whether we expect genetic transmission of the strategy or
other learning mechanisms to bootstrap the strategy. Our interest is in the behavioral
consequences of the primary ratchet. But if it is unlikely to evolve, a reader should be
skeptical of its relevance. Boyd and Richerson (1996) have previously shown that a
similar strategy readily replaces pure innovation and non-contingent social learning.195
Here we sketch a proof for our model that reaches the same conclusion.

Suppose an individual who possesses adaptive behavior receives an average fitness
increment of b. Also suppose that the marginal cost of innovation is c. Then assuming
weak selection, relative to the cultural time scale, the expected marginal fitness of an
individual who only attempts to innovate and never learns socially, is sb − c. This200
is the same expected marginal fitness as a non-contingent social learner, because the
fitness of these two simple strategies must be equal at steady state (Rogers 1988). A
contingent learner, in contrast, will have marginal fitness:

Qt(1− e)b+Qte(sb− c) + (1−Qt)d(sb− c)− k (8)
where k is the cost of evaluating the efficacy of sampled behavior. This expression is
just a sum of all the ways for an individual to acquire adaptive behavior, along with205
the costs of acquiring it in each case. A contingent learner will have higher relative
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THE PRIMARY RATCHET EFFECT IN ANIMAL CULTURE 7

fitness than a pure innovator or non-contingent social learner, provided:

Qt >
(sb− c)(1− d) + k

c(d− e) + b(1− e(1− s)− ds)
(9)

This looks complex, but indicates only that the chance of acquiring adaptive behavior
by social learning, Qt, must exceed a ratio of the marginal cost of evaluating behavior
to the marginal benefit. As long as d is large and the cost of evaluation k is small,210
this condition can be easily satisfied. This is easier to see if we allow d = 1 and e = 0,
simplifying the condition to:

Qt >
k

b(1− s) + c
(10)

Thus, contingent learning is often superior, provided the cost of evaluation k is small,
b and c are large, and s is small.

An interesting feature of condition 9 above is that contingent learning, and therefore215
the primary ratchet effect, can be evolutionarily stable under a wider set of conditions
than it can invade a population. This is because the term Qt will be lower before
the primary ratchet effect has increased the prevalence of successful behavior in the
population. Once the primary ratchet effect is present, Qt increases and reinforces
the evolutionary advantage of contingent learning. Therefore, as Boyd and Richerson220
(1996) have emphasized, this type of strategy can be stable under environmental or
demographic conditions for which it could not have originally arisen.

2.4. Overlapping generations. A conceptual problem with the preceding model is
that the parameters d, e, and s integrate the entire lifespan of an individual. There-
fore, they are difficult to understand, because presumably more than one learning225
attempt is possible within a single lifetime—if an individual fails to acquire adaptive
behavior in its first year, it can try again in its second. As a consequence, some
individuals will require more or fewer attempts to innovate or otherwise socially learn
a solution. For example, an individual may initially fail to sample an adaptive be-
havior, then fail to innovate, and then finally succeed in acquiring adaptive behavior230
from another individual. In such a case, the model begins to appear internally in-
consistent, because the lifetime probability of acquiring adaptive behavior by social
learning must be a function of the probability of successful innovation. How can we
make sense of the compression of time?

We can begin to unravel this issue by allowing overlapping generations. This means235
that individuals may live and reproduce for multiple time periods, attempting to
acquire or making use of successful behavior in each. Many different contingent
learning strategies become possible, with the addition of overlapping generations.
For simplicity, we keep the same contingent learning strategy as before, but allow
individuals to apply it in each time step. This allows the model to make an important240
point that is hard to see in the previous model: even quite noisy individual processes
in each time step can ratchet up a very high prevalence of adaptive behavior.

Assume that 1 − µ is the probability an individual survives from one time period
to the next. Population size is regulated such that the number of births each time
period equals the number of deaths. These assumptions yield a new recursion for the245
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Figure 2. Prevalence of adaptive behavior when generations overlap.
Left: Steady state prevalence is now higher than before, for all combi-
nations of s and u, even here with only a single teacher (n = 1). Here
shown for d = 1, e = 1/10, and µ = 0.01. Right: Prevalence is insensi-
tive to the error rate of acquiring adaptive behavior, e. Here shown for
u = 0.1, d = 1, and µ = 0.01.

prevalence of adaptive behavior:
qt+1 = (1− µ)

(
Qt + (1−Qt)(Qt(1− e+ es) + (1−Qt)ds)

)
+ µ

(
Qt(1− e+ es) + (1−Qt)ds

)
= Qt

(
(1− ds)(1 + (1−Qt)(1− µ))− e(1− s)(1−Qt(1− µ))

)
+ ds (11)

This is very similar to the recursion in the non-overlapping generations model, with
the exception that individuals are conservative about adaptive behavior and do not
reevaluate it in each time step, until it stops working after a change in the envi-
ronment. This assumption reflects the notion that e is the chance of unsuccessfully250
applying a technique. Once an individual has successfully learned a technique, the
probability e does not apply again in each time step. For example, an individual
learning for the first time how to fish for termites might have trouble imitating a
successful technique and end up rejecting what it has seen. This happens e of the
time. But once an individual acquires a successful technique, it will only attempt to255
learn again if the environment changes and renders the technique non-adaptive. As
the mortality rate µ approaches 1, this model reduces to the previous model with
non-overlapping generations.

Expression 11 can be solved for a steady state q̄, but because qt+1 is quadratic
in qt, the solution is complicated yielding no direct insight. However, the steady260
state with overlapping generations will be larger than without, due to the additional
accumulation within individual lifetimes. This is most easily seen with a plot similar
to those in the previous sections (Figure 2, left). Even computing q̄ under only a single
“teacher” (n = 1), the prevalence of adaptive behavior exceeds 0.9 for all combinations
of s and u shown. Higher mortality, µ, reduces the prevalence of adaptive behavior,265
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THE PRIMARY RATCHET EFFECT IN ANIMAL CULTURE 9

because as µ approaches 1, this model reduces to the model with non-overlapping
generations.

An interesting consequence of overlapping generations and longer individual lifes-
pans is that low-fidelity social learning may not have much impact on the prevalence
of adaptive behavior. Figure 2, right, displays q̄ again, but now as a function of the270
error rate in acquiring successful behavior, e, and the innovation rate s. The rate of
environmental change is set at u = 0.1, a rather high rate of change, as environments
only stay stable for 10 time steps on average. Nevertheless, prevalence remains above
0.8 for even very high individual error rates.

3. Finite population analysis275

The results in the previous section address the basic logic and dynamics of the pri-
mary ratchet. Contingent strategies that attempt to socially learn available solutions
and innovate only when necessary can be individually adaptive and generate a very
high prevalence of adaptive behavior. The prevalence values shown in the previous
section should not be taken too literally. They are averages, and do not account for280
the transition periods between environmental changes. They also depend upon a very
stylized set of models. But the qualitative results arise from specific mechanisms in
the model that depend upon only statistical properties of cognitive strategies. Con-
tingent learning and the primary ratchet can have a substantial impact on animal
culture.285

In this section we expand the scope of the analysis to individual-based simulations of
subdivided populations. The purpose of creating finite groups is to study the influence
of group size on the accumulation of socially-transmitted behavior. As mentioned in
the introduction, group size and connectivity are thought to influence both behavioral
complexity and diversity. We show that the primary ratchet may bear some of the290
same relationships with demographic structure that are seen in models of cumulative
culture. We also investigate patterns of diversity within and between subpopulations,
in order to explore patterns that are relevant to studies of animal culture, where many
alternative and recognizably distinct solutions to the same problem may be found.

3.1. Simulation design. The simulation tracks the behavior of each individual in295
G geographically separated groups, through the sequence of learning, mortality and
aging, environmental stochasticity, and migration. We focus on a single domain of
behavior for which there can be many recognizably distinct adaptive variants. For
example, imagine a challenging resource extraction problem such as cracking open a
hard fruit or nut—different approaches are possible, and animal cultures sometimes300
show that local groups vary in which technique is habitually used. The simulation
keeps track of “adaptive” variants of behavior—following our example, those that
result in successful extraction of the resource—with unique positive integers. All
non-adaptive behaviors are coded with zeros, which means that they cannot be dis-
tinguished, being absences of solutions.305

Learning. Learning works in the simulation model exactly as described in the
overlapping generations model in the previous section. However, each successful in-
novation event generates a new, unique behavioral variant that is tracked by a unique
identifier. This allows us to track the diffusion of particular innovations and assess
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10 MCELREATH ET AL.

diversity among solutions. Some of the diversity may be purely stylistic and non-310
functional. While the functional aspects of a technique may not be very diverse, the
addition of non-function steps and postures can make the possible behavior space
very large.

Mortality and fertility. Groups are regulated by density-dependent mortality, which
limits their size around a soft upper limit. Specifically we assume a constant birth315
rate β and an individual death rate µ = µ0+exp(KNj)−1 in group j with population
size Nj. K is a parameter that determines how mortality scales with density. This
ensures that mortality rises exponentially with local density, stabilizing around an
expected population size N̂j = log(β−µ0+1)/K. Each time step, the model updates
the age of surviving individuals by one year.320

Environmental stochasticity. Each time step, there is a probability u of experiencing
environmental change. When environmental change occurs, all solutions in the entire
population are rendered non-adaptive.

Migration. Groups are also linked by migration, with each individual having a
chance m of migrating to another random group each time step.325

3.2. Simulation results. To evaluate the simulation model, we first conducted a
broad sweep of parameters, varying s, d, e, m, κ, and u over wide ranges. We used
this opportunity to assure ourselves that we understood the results, on the basis of
the underlying analytical model. We provide our simulation code as a supplemental,
so that readers can validate and explore the model themselves.330

Here, instead of presenting the full sensitivity analysis, we focus on relevant aspects
of the simulation that cannot be addressed directly by the analytical model. First, we
consider the relative influences of group size N and migration rate m, a proxy measure
of connectivity, as prior work suggests that larger and better connected populations
are better able to take advantage of the secondary ratchet effect of cumulative culture.335
We show here that the primary ratchet effect also benefits from larger groups and high
migration rates. Second, we consider how rate of environmental change interacts with
the demographic effect of migration. Third, we explore the influence of migration rate
m as a function of the innovation rate s, to demonstrate how much of the interesting
behavior of the model avails only at very low values of s, where the analogy to340
cumulative culture is strongest.

In addition to the prevalence of adaptive behavior, we also consider behavioral
diversity, as measured by the Shannon diversity index (Shannon 1948). Shannon
diversity is the information entropy of the distribution of behavior in the population.
We decompose diversity into total diversity and the proportion of diversity between345
groups, as both are useful ways of quantifying patterns of cultural variation.

In the results, each plotted point is the mean of the final 2000 time steps from each
of 10 separate 5000 time step simulations. This duration of simulation was sufficient
in all cases to reach steady state. We initialized each simulation at the expected
steady state from the analytical version of the model, so convergence to actual steady350
state was very rapid. In the supplemental, we provide the code needed to reproduce
each figure.
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Figure 3. Prevalence of adaptive behavior (left), total behavioral di-
versity (middle), and proportion of diversity between groups (right) as
functions of group size (N , horizontal) and migration rate (m, separate
trend lines). Note inverse scale of horizontal axis, resulting in more lin-
ear relationships in plot. Other parameters set to: s = 0.001, u = 0.01,
µ = 0.01, β = 0.1, n = 1.

Group size and connectivity. Both larger and better connected groups achieve higher
frequencies of adaptive behavior (Figure 3, left). The smallest groups have the low-
est average prevalence of adaptive behavior, for all levels of migration. Migration355
similarly increases the prevalence of adaptive behavior. The highest migration rate
shown, m = 0.1, effectively unifies subpopulations and almost entirely cancels any
disadvantage of smaller groups.

Note that a migration rate of m = 0.1 is very high. The point of these simulations is
not to show “realistic” results, but rather to push the system around and understand360
its forces. The lower migration rate of m = 0.001 may be more representative of great
ape communities. In this case, smaller local groups suffer quite a lot from the finite
population effects.

Note that these results are for a single teacher, n = 1. Increasing the number
of teachers increases prevalence, as expected. But it does not disrupt the general365
influence of group size and connectivity.

A consequence of higher prevalence of adaptive behavior is also increased behav-
ioral diversity in the population. Total behavioral diversity (Figure 3, middle) in the
population declines both with smaller groups and lower migration rate. However, the
effect is reversed when we consider between-group diversity (Figure 3, right). The370
proportion of diversity between groups is greatest when groups are small and migra-
tion is low. These results are as anticipated. It is notable how high the proportion of
diversity between groups can be, for reasonable migration rates, such as m = 0.001
or even m = 0.01 (1% migration per time step). Half or more of the cultural diver-
sity in the population can exist between groups. This result does not require any375
explicit conformity, just contingent social learning within groups and the action of
the primary ratchet effect.
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Figure 4. Prevalence of adaptive behavior (left), total behavioral di-
versity (middle), and proportion of diversity between groups (right) as
functions of migration rate (m, horizontal) and rate of environmental
change (u, separate trend lines). Other parameters set to: s = 0.001,
N̂ = 10, µ = 0.01, β = 0.1, n = 1.

Migration and environmental change. When the environment changes rapidly, inno-
vation dynamics are more important, and this makes migration and group connectiv-
ity even more important as well. Figure 4 shows again prevalence of adaptive behavior380
(left), total diversity (middle), and diversity between groups (right) as functions of
migration rate (m) and the rate of environmental change (u). For the very high rate
of change, u = 0.1 (10 time steps on average between changes in the environment),
prevalence and total diversity are suppressed, and migration has only a small effect
on either. But for other values of u, even small amounts of migration have noticeable385
impacts of increasing prevalence and decreasing total diversity.

Innovation rate and migration. Finally, we consider variation in innovation rate, s.
Figure 5 shows simulation results of varying s in combination with migration rate, m.
Note that prevalence of adaptive behavior (left) increases sharply with increases in
innovation rate, up to a plateau around q = 0.8 where migration rate has only a very390
small impact. When innovation rates are below about s = 0.01, however, population
connectivity matters a great deal. This is because when s is very small, and groups
are well connected, groups can share innovations before the environment changes.

4. Discussion

Simple, contingent social learning generates a cultural ratchet effect under a wide395
variety of demographic conditions. Especially, when innovation rates are very low,
the process of contingent learning leads to culturally-transmitted traditions within
groups and cultural variation among groups. This result is important, because when
s is small, successful techniques are difficult for individuals to invent within their
lifespans. However, the primary ratchet effect can quickly spread and retain rare400
innovations. This produces relationships with demography that are quite similar to
those found in models of cumulative culture.
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Figure 5. Prevalence of adaptive behavior (left), total behavioral di-
versity (middle), and proportion of diversity between groups (right)
as functions of innovation rate (s, horizontal) and migration rate (m,
separate trend lines). Other parameters set to: u = 0.01, N̂ = 10,
µ = 0.01, β = 0.1, n = 1.

In many cases, the effect of the primary ratchet can be distinguished from individual
learning, because it generates frequencies of adaptive behavior that are much higher
than their underlying innovation rates. Tennie et al. (2009) argue for example that405
much ape behavior exists in a “zone of latent solutions” that individuals can reinvent,
given materials and motivation. Overall prevalence and diversity between groups
may still owe a lot to cultural transmission. Thus, it may be possible to identify
cultural transmission in the wild based on prevalence data, without requiring direct
observational evidence which can be extremely difficult to obtain. This depends upon410
having some sense of the underlying innovation rate. Limited available evidence
suggests that innovation rates are quite low in nature (Perry et al. 2017, Reader et al.
2016). Another option is to exploit age structure and attend to which age classes
innovate as well as the prevalence of behavior in all age classes.

The difficulty in obtaining direct evidence of socially transmitted culture in the415
wild has led some to rely on the “exclusion approach,” whereby cultural processes are
inferred by excluding ecological and genetic explanations. This approach emphasizes
cultural differences, or high diversity, between groups when environmental, ecological,
and genetic differences are minimal. However, our modeling results show that the
primary ratchet can generate both high and low levels of behavioral diversity between420
groups. Thus, cultural similarities between groups should not be interpreted as a
lack of evidence for culture, as implied by the exclusion approach. Our results show
that, regardless of how behavioral diversity is partitioned among groups, when the
prevalence of adaptive behavior far exceeds its innovation rate, cultural transmission
is involved.425

We additionally found that high-fidelity social learning (e), was not required for
the primary ratchet to function. In Figure 2 we showed how overlapping generations
and extended lifespans make the error rate of individual transmission events poorly
representative of the population process. Even when transmission error was as high
as 50%, the primary ratchet could raise the prevalence of adaptive behavior over 80%.430
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This casts doubt on our ability to extrapolate about animal culture from short-term,
individual captive experiments, such as those cited by Henrich and Tennie (2017),
in which animals display low-fidelity social learning. Notably, there is substantial
evidence that social learning in humans can be highly error prone, as well, and many
anthropologists suspect that the stability of human cultural traditions has less to do435
with the accuracy of imitation than is traditionally believed (Sperber 1996).

While this model considers only a single domain of behavior, such as solutions to
foraging a particular resource, it is relevant to understanding the accumulation of
cultural solutions in a number of domains. Both the empirical analysis of cumulative
culture by Kline and Boyd (2010) and the model of cumulative culture by Baldini440
(2015) actually assume discrete, non-cumulative items and consider how the accumu-
lation of tools or solutions in a number of domains is related to demography. With
respect to our model, as long as all domains are independent, then the expected accu-
mulation will be the number of domains D times the expected prevalence q̄. This is
very similar to the results of Baldini (2015), but here in the absence of payoff-biased445
social learning. It is likely, however, that different domains are not independent, with
both positive and negative externalities flowing among them.

The age and mortality structure we assume is very simple—mortality is constant
across ages and unconditional on behavior. This may generate odd artifacts, like a
long tail of ancient individuals. In this circumstance, an adaptive heuristic could use450
teacher age to great benefit.

There are many processes omitted from our model that could generate additional
cultural dynamics. Adaptive social learning biases like conformity and payoff-bias
(Boyd and Richerson 1985, Henrich and McElreath 2003) can further ratchet up the
prevalence of adaptive behavior, even in the absence of cumulative complexity. Our455
point is not to exclude these processes from consideration. Rather, our point is that
appeal to such strategies is not necessary for cultural evolution to produce group
benefits and be empirically distinguishable from individual learning or the simplest,
non-adaptive forms of social learning.

Supplemental Materials460

See the repository at:
https://github.com/rmcelreath/contingent_learning_finite_pop_sims.
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