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Abstract11

In the sensory systems, most neurons’ firing rates are tuned to at least one aspect of the stimulus.12

Other neurons are untuned, meaning that their firing rates appear not to depend on the stimulus.13

Previous work on information coding in neural populations has ignored the untuned neurons, based on14

the tacit assumption that they are unimportant. Using theoretical calculations and analyses of in vivo15

neural data, I show that untuned neurons can contribute significantly to the population code. Ignoring16

untuned neurons can lead to severe underestimates of the amount of stimulus information encoded,17

and in some cases population codes can be made more informative by replacing tuned neurons with18

untuned ones.19

Introduction20

When you look at a picture, signals from your eyes travel along the optic nerve to your brain, where21

they evoke activity in neurons in the thalamus and visual cortex. As sensory systems neuroscientists,22

we ask how these patterns of stimulus-evoked brain activity reflect the outside world – in this case,23

the picture at which you are looking. Other related work asks how patterns of activity in different24

parts of the brain reflect motor commands sent to the muscles. Answers to these questions are25

important both for basic science, and for brain-machine interface technologies that either decode26
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brain activity to control prosthetic limbs or other devices [1, 2, 3], or stimulate the brain to alleviate27

sensory deficits [4, 5].28

For decades, researchers have addressed these information coding questions by recording neural29

activity patterns in animals while they are being presented with different stimuli, or performing30

different motor tasks. That work revealed that many neurons in the relevant brain areas show firing31

rates that depend systematically on the stimulus presented to the individual, or on the motor task.32

This neural “tuning” underlies the ability of these neural circuits to encode information about the33

stimulus and/or behavior. At the same time, many neurons appear to be untuned, thus showing little34

or no systematic variation in their firing rates as the stimulus (or behavior) is changed [6]. These35

untuned neurons are typically ignored in studies of neural information coding because it is presumed36

that they do not contribute [7]. Instead, data collection and analysis are typically restricted to the37

tuned neurons (for example, consider the selection criteria used by [8, 9]).38

Recently, researchers have begun to question that assumption: analyses of neural data in the39

prefrontal cortex [10] and auditory cortex (Insanally et al., 2017 cosyne abstract) show that even40

neurons with no obvious stimulus tuning can nevertheless contribute to the population code. These41

findings are intriguing, because they suggest that – by virtue of our ignoring the untuned neurons42

– our understanding of neural population coding might be incomplete. At the same time, several43

deep questions remain unanswered: Are the impacts of the putatively untuned neurons on population44

coding due to weak tuning that is nevertheless below the threshold the experimenters set for calling45

neurons tuned (vs untuned)? And why are there untuned neurons in the brain? Do mixed populations46

of tuned and untuned neurons have a functional advantage over populations containing only tuned47

neurons?48

To answer these questions, I used theoretical calculations, and then verified the predictions from49

those calculations by analyzing 2-photon imaging data collected in the visual cortices of mice that were50

shown drifting grating stimuli [11]. For the theoretical calculations, I used a common mathematical51

model of the neural population responses to sensory stimulation [12, 13, 14, 15, 16, 17, 18, 9, 19, 20,52

21, 18, 22]. This model describes key features of sensory neural responses: the stimulus tuning (or lack53

thereof) of individual neurons; the trial-by-trial deviations (or “noise”) in the neural responses [9, 23,54

24, 25, 26, 27]; and the potential for that noise to be correlated between neurons [28, 29, 9, 30, 31, 28,55

32, 33, 34, 35, 36, 37]. For different conditions – for example, including vs. excluding untuned neurons56

– I computed the amount of information about the stimulus that is encoded in the population firing57

patterns. By comparing the information across conditions, I characterized the impact that untuned58

neurons can have on the neural population code.59

Because the untuned neurons in the theoretical model really have no stimulus tuning, these calcu-60

lations enabled me to demonstrate conclusively that strictly untuned neurons really can contribute to61

population coding: I provide a geometrical explanation for this phenomenon. Moreover, by studying62

the information coding of neural populations containing different fractions of tuned vs untuned neu-63

rons, I demonstrated that mixed populations can encode stimulus information better than populations64

containing only tuned neurons. This provides a functional explanation for why the brain contains un-65

tuned neurons, and explains when untuned neurons improve brain function. Finally, I used decoding66
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analyses applied to data collected in the visual cortices of awake mice to validate the key predictions of67

the theory: excluding putatively untuned neurons hinders decoding; this effect depends on the noise-68

shaping mechanism described by the theory; and decoding random groups of neurons (both tuned69

and untuned) yields better performance than does decoding neural populations of the same size, but70

containing only tuned neurons.71

Results72

I first study a theoretical model of information coding in neural populations, to understand whether73

and how untuned neurons contribute to information coding. I then validate the main predictions from74

the theory by analyzing data collected in mouse visual cortex.75

Theoretical analysis76

A role for untuned neurons in sensory information coding77

To investigate the role of untuned neurons in sensory information coding, I studied populations of78

neurons that encode information about the motion direction of a visual stimulus via their randomly79

shaped and located tuning curves (Fig. 1A). Many different population sizes were considered. For each80

population, 70% of the neurons were tuned, and the other 30% were untuned. (These numbers match81

the fraction of well-tuned neurons selected for analysis in a recent population imaging study [37],82

and are comparable to the fraction of tuned neurons in the experimental data that I analyzed. I83

later consider populations with different fractions of untuned neurons.) The untuned neurons had flat84

tuning curves that did not depend on the stimulus – see the dashed lines in Fig. 1A.85

The neurons had Poisson-like variability: for each cell, the variance over repeats of a given stimulus86

was equal to the mean response to that stimulus. This mimics the experimentally observed relation87

between means and variances of neural activities [24, 22]. The variability was correlated between88

cells, and the correlation coefficients were chosen to follow the “limited-range” structure reported89

experimentally [29, 17, 38, 39, 40], and used in previous theoretical studies [12, 13, 14, 19]. With90

this structure, the correlation coefficients were large for neurons with similar preferred directions, and91

smaller for neurons with very different preferred directions (see Methods and Fig. 1B).92

For each population, I computed the Fisher information (Fig. 1C, blue curve), which quantifies93

how well an observer – like a downstream neural circuit – can estimate the stimulus direction angle94

from the neural activities (see Methods). I compared that with the Fisher information obtained from95

only the tuned subset of neurons – in other words, the information that would be obtained if the96

untuned cells were ignored (Fig. 1C, red curve). The difference was stark. Ignoring the untuned97

neurons leads to a dramatic underestimate of the encoded stimulus information. This emphasizes98

that, despite their lack of stimulus dependence, the untuned neurons can still contribute significantly99

to the population code.100

Because the correlation coefficients in Fig. 1 did not depend on the stimulus, it is not the case that101

the untuned neurons themselves encode information indirectly, through their second-order statistics102
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Figure 1: Untuned neurons can play an important role in sensory information coding.

(A) I considered populations of neurons with randomly shaped and located tuning curves. Of

those neurons, 70% were tuned to the stimulus, whereas 30% were untuned – their mean firing

rates do not depend on the stimulus (dashed black lines in panel A). The neurons’ trial to trial

variability was Poisson-like and correlated between neurons. (B) These correlations followed the

“limited-range” structure with ρmax = 0.75 and λ = 0.5 radians (29o). The mean correlation

coefficients (averaged over neurons) were 0.12, which is comparable to values reported in primary

visual cortex [29]. (Modifying these values did not qualitatively change the results – see Fig.

S1). (C) For different sized populations, I computed the Fisher information, which quantifies

how well the stimulus can be estimated from the neural population activities. The different

lines correspond to: the Fisher information for the full neural populations (blue); and the Fisher

information for the tuned 70% of the populations (red). Data points are mean ± S.E.M.,

computed over 5 different random draws of the tuning curves.

(as was the case in the theoretical model of [41]). This point is emphasized in Fig. 4, where the103

information in the population goes to zero as the fraction of untuned neurons approaches 100%. This104

suggests the question of how untuned neurons contribute to neural information coding. While the105

untuned neurons’ activities do not reflect the stimulus, they do reflect the trial-specific noise in the106

tuned neurons’ activities (because they are correlated). Accordingly, a downstream readout – like the107

circuit receiving these neural spikes – can obtain a less noisy estimate of the stimulus by using the108

untuned neurons’ activities to estimate the noise in the activities of the tuned neurons, and subtracting109

that noise estimate from the observed firing rates. Ignoring untuned neurons leads to the loss of the110

information available through this “de-noising”.111

To illustrate this point, I considered a pair of neurons, one of which is tuned to the stimulus112

(Fig. 2A). In response to stimulation, the neurons give noisy responses, and that noise is correlated113

between the two cells. When plotted in the space of the two cells’ firing rates, the distributions of114

neural responses to each stimulus are defined by ellipses, shown in Fig. 2B. (These are the 1 standard115

deviation probability contours.) The correlation between cells is reflected in the fact that these ellipses116

are diagonally oriented. These ellipses are relatively disjoint, meaning that the neural responses to the117

different stimuli have little overlap, and so it is relatively unambiguous to infer from the neural firing118
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rates which stimulus was presented. For contrast, consider the neural activities observed when the119

untuned neuron is ignored. In that case, only the tuned neuron is observed, and the distributions in its120

responses to the different stimuli overlap substantially (Fig. 2B, right vertical axis). This means that,121

based on only observations of the tuned cell, the stimulus cannot reliably be determined. Ignoring the122

untuned neuron leads to a loss of stimulus information.123
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Figure 2: Untuned neurons can shape noise, improving the population code. (A) Two

neurons’ tuning curves are shown; cell 1 is untuned. In response to stimulation, the cells give

noisy responses. That noise is correlated between the two neurons, with a correlation coefficient

of 0.9. (B) The distribution of noisy responses to each stimulus is described by an ellipse in the

space of the two neurons’ firing rates. The stimulus values are indicated by arrows in panel (A).

The ellipses are well separated, meaning that the stimuli can be readily discriminated based on

the two cells’ firing rates. If the untuned cell is ignored, then only the tuned cell is observed.

The distribution of the tuned cell’s firing rate in response to each stimulus is shown along the

right vertical of panel (B). Because those distributions overlap substantially, the stimulus cannot

be readily discriminated based only on the firing rate of the tuned cell.

Because the untuned neurons’ contribution to the population code relies on their activities reflecting124

the single-trial noise in the activities of the tuned cells, the untuned neurons do not contribute to125

population coding if they are independent of the tuned neurons. To demonstrate this point, I repeated126

the analysis from Fig. 1 (above), but made the untuned neurons uncorrelated from each other and127

from the tuned neurons. In that case, the untuned neurons do not contribute to the population code:128

the full population and the tuned subset both have the same amount of stimulus information (Fig.129

3A).130

This contribution of untuned neurons to the population code can be understood via the cartoon131

in Fig. 3B (lower), which shows the distribution of population responses to 3 different stimuli. In the132

cartoon, cell 1 is untuned, whereas the rest of the cells are tuned. This means that, as the stimulus133

changes, the mean responses change along the plane orthogonal to the cell 1 axis. Because the untuned134

neuron is correlated with the tuned ones, the noise distributions are tilted along the vertical axis. In135

this configuration, the distributions do not overlap very much. If, however, the untuned neuron is136
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Figure 3: Untuned neurons improve population coding when they are correlated with

the tuned neurons. (A) I repeated the analysis from Fig. 1C, and modified it so that the

untuned neurons were independent of each other and of the tuned neurons. (B) For comparison,

I also show again the results from Fig. 1C. As in Fig. 1, 70% of the neurons in each population

were tuned to the stimulus, and 30% were untuned. Upper panels show correlation matrices

for 400-cell populations: cells 1 through 120 are untuned, whereas the remainder were tuned.

Center panels show the Fisher information for the full neural populations (blue), or for the

tuned subsets of neurons in each population (red). (Data points shown are mean ± S.E.M.,

computed over 5 different random draws of the tuning curves). The cartoons in the lower panels

illustrate why these two different correlation structures lead to untuned neurons having such

different effects on the population code (see text). The cartoons show the space of neural firing

patterns: each axis is the firing rate of a different neuron. The vertical axis is the firing rate

of an untuned neuron. The other axes are the firing rates of tuned cells. Ellipses represent the

1 standard deviation probability contours of the neural population responses to the 3 different

stimuli.

made independent from the tuned ones (as in Fig. 3A), the vertical tilt goes away, causing much more137

overlap in the response distributions. In other words, when the untuned neurons are correlated with138

the tuned ones, they improve the population code by separating the responses to different stimuli.139
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This effect disappears when the untuned neurons are independent of the tuned ones.140

Mixed populations of tuned and untuned neurons can encode stimulus information141

more effectively than populations containing only tuned neurons142

In the preceding analyses, I showed that neurons with no stimulus tuning can contribute to the143

population code: ignoring them entails a loss of stimulus information. Here, I turn to the question of144

why the brain contains those neurons at all. In other words, is there a functional benefit to including145

untuned neurons in a population vs having only tuned neurons?146

To answer this question, I repeated the analysis from Fig. 1, but altered the fraction of untuned147

neurons in each population.The maximum information values were obtained with around 30% of148

neurons being untuned; this effect was larger in larger populations (Fig. 4A). Because the maximum149

information does not occur when all of the neurons are tuned (corresponding to an untuned neuron150

fraction of 0), this analysis shows that neural populations can be made more informative by replacing151

tuned neurons with untuned ones. This suggests that there may be a functional reason why the brain152

contains untuned neurons.153
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Figure 4: Populations containing some untuned neurons can encode more information

than ones with only tuned neurons. (A) I repeated the calculations from Fig. 1, but with

different fractions of untuned neurons in each population. For several different population sizes

(indicated on the plot), the Fisher information is shown as a function of the fraction of untuned

neurons in the population. Error bars are the S.E.M. over 5 random sets of different tuning

curves. (B and C) In response to 3 different stimuli, I show the 1 standard-deviation probability

contours in the responses of a pair of neurons. In all cases, the neurons have Poisson variability,

and noise correlation coefficient of 0.9. In panel (B), both cells are tuned to the stimulus,

whereas in panel (C), cell 2 is tuned to the stimulus, and cell 1 is untuned.

How (and when) are mixed populations of tuned and untuned neurons better at encoding infor-154

mation than populations of the same size but containing only tuned cells? The plots in Figs. 4B and155
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C provide some intuition. In both cases, the distributions of firing rates of two neurons are shown, in156

response to 3 different stimuli (similar to Fig. 2B): ellipses indicate 1 standard-deviation probability157

contours. In both panels, the neurons have Poisson variability in their firing rates, and the two cells158

are correlated (with noise correlation of 0.9 in all cases). In Fig. 4B, both cells are tuned to the stim-159

ulus, and the centers of the ellipses are correspondingly displaced relative to each other along both160

the vertical, and the horizontal, axes of the plot. With this geometrical configuration, the ellipses161

corresponding to different stimulus-evoked responses overlap substantially: that overlap means that162

there is ambiguity in determining the stimulus from the neural responses, and so the population code163

has relatively low information. Fig. 4C differs from Fig. 4B only in the tuning of cell 1: in Fig. 4C,164

cell 1 is untuned, whereas in Fig. 4B, it was tuned. This means that, in Fig. 4C (where only one of165

the cells is tuned to the stimulus), the different stimulus-evoked response distributions are displaced166

relative to each other only in the vertical direction, and not the horizontal one. Owing to the diagonal167

orientation of the ellipses, there is less overlap between the different response distributions in Fig. 4C168

than 4B. Consequently, the pair of neurons in Fig. 4C (one of which is untuned) is better at encoding169

stimulus information than the pair of neurons in Fig. 4B (both of which are tuned to the stimulus).170

The examples in Figs. 4BC show how the presence of untuned neurons can improve the population171

code: including untuned neurons modifies the signal correlation structure (the correlation between172

neurons in the stimulus-evoked mean responses) relative to the case where both neurons are tuned.173

And because the relationship between the signal and noise correlations determines the population174

coding efficacy [16, 15, 13], this modification can improve the population code overall.175

Analysis of in vivo neural activities176

The theoretical work in the preceding Section makes a key prediction: the ability to decode a stimulus177

from the evoked neural population activities could be improved if untuned neurons are included in178

those populations, as opposed to being ignored. To test this prediction, I analyzed data from 2-photon179

Ca2+ imaging recordings done in primary visual cortex of awake mice (data from [11]) whose neurons180

expressed the genetically encoded calcium indicator GCaMP6f. The mice were presented with stimuli181

consisting of gratings drifting in 8 different directions, and the fluorescence levels of O(100) neurons182

were observed in each experiment. I analyzed the data from 46 such experiments.183

For each stimulus presentation and neuron, I extracted the mean fluorescence change during the184

stimulus presentation, relative to the fluorescence in the period before the stimulus presentation: this185

∆F/F value measures the stimulus-induced change in neural activity. I then computed the neurons’186

tuning curves by averaging these ∆F/F values over all trials in which the stimulus drifted in each187

direction. Some of the neurons had well-defined direction tuning curves (Fig. 5A), whereas others188

were relatively untuned (Fig. 5B). Following [42, 9], I categorized these cells as tuned or putatively189

untuned (hereafter referred to simply as untuned) based on their direction selectivity indices (see190

Methods). Between the 46 experiments, 5379/8943 ≈ 60% of the neurons were classified as being191

tuned for direction.192

Along with the tuning, I measured the correlations in the cells’ trial-to-trial variability over repeats193

of each stimulus. These “noise correlations” are shown all pairs of simultaneously observed neurons194
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Figure 5: Tuned and untuned neurons are correlated in vivo. Neurons’ responses to

drifting grating stimuli were measured using 2-photon Ca2+ imaging. (A) Tuning curves for two

direction tuned neurons. (B) Tuning curves of two untuned neurons. Markers show mean ∆F/F

± S.E.M, calculated over 75 trials of each stimulus direction. (C) Direction selectivity indices

for the 8493 neurons whose stimulus-evoked responses were measured. (D) The distributions

of correlation coefficients for cell pairs of different types: where both cells were direction tuned

(“TT”; n = 391833 pairs); where both cells were untuned (“UU”; n = 150801 pairs); and where

one cell was tuned and one was untuned (“TU”; n = 434752 pairs). Each box plot shows the

median, the range (maximum and minimum indicated by black bars), and the boundaries of the

25th and 75th percentiles (blue box) of the distributions.

(Fig. 5D). The correlation coefficients were typically positive for pairs of tuned neurons (“TT”),195

pairs of untuned neurons (“UU”), and mixed pairs consisting of one tuned and one untuned neuron196

(“TU”). Because there were correlations between the tuned and untuned neurons, the theory predicts197

that stimulus decoding could be improved by including the untuned neurons, as opposed to ignoring198

them.199

To test this prediction, I used the k-nearest neighbors (KNN) decoder to estimate the stimulus200

direction corresponding to the population activity pattern observed on each trial (Fig. 6A). KNN201

decoding works with even modest amounts of data, and has previously been used to study neural202

population coding [26]. To estimate the stimulus corresponding to a given activity pattern (like the203

question mark in Fig. 6A), the classifier identifies the k most similar activity patterns in the dataset204

(similarity measured by Euclidean distance between data points; k = 5 in Fig. 6A). The classifier205

then takes a majority vote over the stimulus directions associated with those activity patterns, to206
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estimate the stimulus that is responsible for the test point. (Note that, for decoding each data point,207

the KNN decoder is constructed from all other data points. This means that the test point is held-out208

from the decoder’s construction. This is important, because otherwise the test point would be used to209

decode itself, which could yield erroneously high performance values.) As a result of this procedure,210

KNN implements a simplified form of maximum likelihood estimation: to classify each test point, the211

decoder identifies the stimulus labels that occur with highest frequency in the region around the test212

point. Accordingly, it uses the empirical data distributions to sample the likelihood of response points213

similar to the test point, given each stimulus label, and classifies the test point with the stimulus that214

yields the highest likelihood.215

For each experiment, I performed the KNN decoding for different values of k, and computed the216

fraction of trials on which the stimulus direction was correctly identified. This performance measure217

did not depend strongly on k (Fig. 6B), so I chose k = 10 for the subsequent analyses. Next, I218

separately performed the KNN decoding on the full populations (including both tuned and untuned219

neurons), or on the subsets of tuned neurons in each recording. In most of the experiments, the stimulus220

could be decoded substantially better by including the untuned neurons, as opposed to ignoring them221

(Fig. 6C: p = 2.6 × 10−7; one-sided paired sample t-test). On average, decoding performance was222

24±5% (mean ± S.E.M.) better using the full populations vs just the tuned subsets. These results are223

consistent with the theoretical work presented above (Figs. 1-3), and indicate that untuned neurons224

can contribute to sensory information coding, and that their contributions can be sizable.225

Does the benefit of including putatively untuned neurons in the population code (vs excluding226

them) seen in Fig. 6C arise because of the noise-shaping effects described by the theory (Figs. 1-3),227

or because these putatively untuned neurons have weak stimulus tuning that, while below the chosen228

threshold, is nevertheless non-zero? To answer this question, I first noted that the noise-shaping229

mechanism described by the theory relies on noise correlations: the correlations in the neurons’ trial-230

to-trial variability (Fig. 3). A trial-shuffling procedure that removes the noise correlations [9] abolishes231

this noise-shaping effect.232

I thus repeated the analysis from Fig. 6C using trial-shuffled (uncorrelated) neural responses and233

I found that the full neural populations (including both tuned and untuned neurons) yielded 20± 4%234

(mean ± S.E.M over all 46 populations) better decoding performance than did the subsets of only235

tuned neurons. This shows that, even absent correlations, there is still more information in the full236

population than in the putatively tuned subset: this difference is due to the weak yet sub-threshold237

tuning discussed above. This weak tuning cannot, however, fully account for the results in Fig. 6C:238

with the correlated neural responses, the full populations yielded 24 ± 5% better decoding than did239

the tuned subsets. A comparison between the results with, and without, correlations (Fig. 6D), shows240

that the results in Fig. 6C arise from a combination of effects: first, even the putatively untuned241

neurons have some (weak) tuning, and second, the untuned neurons contribute to the population code242

by noise shaping, consistent with the theory in Figs. 1-3. This second effect is statistically significant:243

a paired one-sided t-test between the effect sizes in the raw data vs the trial-shuffled (uncorrelated)244

data yielded a value of p = 0.020.245

It is also important to check that the results in Fig. 6C do not depend on the specific criterion246
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Figure 6: Untuned neurons can enhance information coding in in vivo neural pop-

ulations. (A) k-nearest neighbors decoder. Cartoon shows 2 neurons’ activities, measured by

the ∆F/F . Activities observed single trials are shown; symbol type indicates which stimulus

was presented. To decode a data point – like the one indicated by the question mark – the

k-nearest data points are identified (k = 5 in this cartoon). A majority vote is taken over those

data points’ stimulus values to classify the test point. (B) For different values of k, I applied

this decoder to the population activities from all 46 the experiments. The percentage of trials

in which the stimulus was correctly identified by the decoder is shown, for decoding either the

full population (blue curve), or for decoding only the neurons with strong direction tuning (red

curve). Data points show the mean ± S.E.M. over the 46 different experiments. (C) Fraction of

trials on which the stimulus was correctly identified using either the full population recordings,

or the tuned subsets; each data point corresponds to one of the 46 experiments. (D) Differ-

ence in decoding performance when all neurons are decoded vs just the tuned ones, expressed

as percentage change relative to the accuracy when only the tuned neurons are decoded. For

each experiment the difference in decoding accuracy is shown for the raw data (“Correlated”),

and for uncorrelated surrogate data obtained via a trial shuffling procedure (“Shuffled”). (E)

Decoding performance when decoding either the tuned subsets of the populations, or random

subsets the same size as the tuned subsets, but containing both tuned and untuned neurons.

Chance performance for these decoding tasks is 1/8 = 12.5%. Diagonal lines in panels C and E

denote equality.

used to distinguish tuned from putatively untuned neurons. Consequently, I repeated the analysis247

from Fig. 6C with several different criteria (see Methods and Fig. S2). These results are all in248
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qualitative agreement with those of Fig. 6C: regardless of the specific criterion that is used, the249

putatively untuned neurons contribute to the population code.250

Next, I asked whether – as in the theoretical calculations in Fig. 4 – populations that include251

both tuned and untuned neurons could yield better decoding vs populations of the same size but252

containing only tuned cells. To answer this question, I extracted a random subset of the neurons253

from each population, that was the same size as the set of tuned neurons within that population.254

I then performed the KNN decoding on these random subsets, and compared the performance with255

that which was obtained on the tuned subsets (Fig. 6E). On average, the decoding performance was256

10 ± 4% (mean ± S.E.M.) better using the random subsets vs the fully tuned ones, a modest but257

statistically significant difference (p = 0.028, single-sided paired sample t-test).258

Finally, it is important to verify that the results shown above apply to other decoders of the neural259

activity, and not just the KNN decoder. To perform this verification, I used the logistic regression260

method of [43] to identify the stimuli corresponding to the different population response vectors (see261

Supplemental Information). This analysis yielded results very similar to those obtained with the KNN262

decoder in Fig. 6: the full populations can be significantly better decoded to recover the stimulus263

than can the tuned subsets of the neurons (Fig. S3A), and this effect is diminished when the noise264

correlations are removed via a trial-shuffled procedure (Fig. S3B). Moreover, random subsets including265

both tuned and untuned neurons yield better decoding than do the subsets of only tuned neurons (Fig.266

S3C).267

The findings on the population imaging experiments validate the theoretical results from Figs.268

1-4. Namely, they show that untuned neurons can enhance neural population coding (Fig. 6C), that269

this effect depends on the correlations between neurons (Fig. 6D), and that mixed populations of270

tuned and untuned neurons can yield better information coding than populations of the same size but271

containing only tuned neurons (Fig. 6E).272

Discussion273

I showed that, when the variability in neural responses to stimulation is correlated between cells,274

untuned neurons can contribute to sensory information coding. Moreover, in at least some cases,275

populations with both tuned and untuned neurons can convey more information about the stimulus276

than do populations of the same size but containing only tuned neurons. These effects were observed277

in both a theoretical model (Figs. 1-4), in and in large population recordings from mouse visual cortex278

(Fig. 6). Moreover, the findings were not sensitive to the specific decoder used for the neural activities279

(Fig. S3), or to the specific criterion used to identify tuned vs untuned neurons (Fig. S2).280

These results have two main implications. First, our understanding of how the sensory systems281

encode information about the outside world is likely to be incomplete unless it includes the contribu-282

tions of untuned neurons. This means that current practices, in which untuned neurons are ignored283

during data collection and analysis, might be hindering progress. Moreover, because there is not al-284

ways a clear distinction between tuned and untuned neurons (Fig. 5C: histogram is unimodal) – and285

this effect is confounded by noise in the experimental measurements – selection criteria are largely286
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arbitrary. The results shown here suggest that, rather than discarding neurons with low selectivity287

indices, it may be better to simply include all the neurons in the analysis (Figs. 6C, S3A). This is288

especially true for the decoding of brain signals to control brain-machine interface devices: better289

decoding can be obtained by including the activities of untuned neurons in those signals.290

Second, because adding untuned neurons can increase the stimulus information (Figs. 4, 6E, S3C),291

there might be a functional benefit to having some untuned neurons in a population. This is related292

to previous observations that heterogeneous tuning curves could confer advantages on the population293

code [44, 14]. Those previous studies did not, however, consider the role of untuned neurons in the294

population code. It is important to note, however, that no brain area can encode more stimulus295

information than it received from its inputs [45, 22]. This is the data-processing inequality, and it296

implies that there is not a limitless increase in information to be obtained by adding large numbers297

of untuned neurons to neural circuits.298

Observations related to those presented here have also been made by Insanally and colleagues299

(Cosyne 2017 abstract), and by [10] based on analyses of in vivo neural data. There, as in the analysis300

of mouse data presented here, it is hard to distinguish weakly tuned neurons from purely untuned ones,301

and thus difficult to isolate the coding benefits of putatively untuned neurons due to noise shaping,302

vs those due to non-zero tuning, that is nonetheless under the chosen threshold. (However, the trial-303

shuffle analysis in Figs. 6D, S3B does help make this distinction, as does the fact that the results304

are not sensitive to the specific criterion uses to label neurons as tuned vs untuned: Fig. S2). This305

complication highlights the value of the theoretical work presented here (Figs. 1-4): in the model, the306

untuned neurons really have no stimulus dependence, enabling us to be pinpoint the role of untuned307

neurons in sensory information coding.308

For large neural populations, an astronomically large number of different correlation patterns are309

possible (and this problem is confounded when one includes correlations of higher order than the310

pairwise ones considered here [46, 47]). Accordingly, it was not possible to simulate all possible311

correlation patterns in the theoretical study. Thus, it is natural to ask how general the results are312

over different correlation structures. Here, the fact that I saw consistent effects in the experimental313

data (Fig. 6) as in the theoretical model with limited range correlations (Fig. 1), argues for the314

generality and applicability of the findings.315

Adding neurons to a population can never decrease the amount of encoded stimulus information:316

because a downstream read-out could always choose to ignore the added cells, those cells can at worst317

contribute zero information. Consequently, untuned neurons can never hinder the population code.318

(However, decoding based on observations with small numbers of trials is subject to overfitting. In this319

case, adding more cells can hinder the decoding because the decoder might be inaccurate). This means320

that the potential effects of untuned neurons on population coding range between no contribution (Fig.321

3A), and positive contributions at least as large as those seen in Fig. 1C (i.e., at least 70% increase322

in information available by including vs. ignoring untuned neurons). There may be other cases, not323

explored here, in which the positive contributions of untuned neurons are even larger.324

It is important not to interpret the results presented here as implying that neural tuning is not325

essential to sensory information coding. Whereas the theoretical model of [41] can encode stimulus326
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information via changes in the correlations between neurons, that effect is not responsible for the327

results shown here. Notably, for the theoretical calculations in Figs. 1-4, the correlations do not328

depend on the stimulus, yet nevertheless the untuned neurons contribute to the population code.329

This is because of the noise-shaping effects shown in Figs. 2-4. Underscoring this point is the fact330

that, if there are no tuned neurons in our models, there is no stimulus information (Fig. 4: information331

approaches zero as the fraction of untuned neurons approaches 1). Moreover, the fact that a linear332

decoder can identify the stimuli presented to the mouse, based on the visual cortical activity patterns333

(Fig. S3), suggests that the information is being encoded in the firing rates and not the correlation334

patterns. Given that the neurally plausible decoder [43] used in Fig. S3 is would not be able to extract335

information that depended only on the stimulus-dependence of the correlations between neurons, this336

is an important distinction.337

We conclude by noting that, even when untuned neurons do not by themselves encode information338

about the stimulus, they can shape the noise in the population responses, thereby improving the339

population code overall. Thus, untuned neurons are not irrelevant for sensory information coding.340

Methods341

I first discuss the theoretical calculations, and then the analysis of experimental data.342

Theoretical Calculations343

Modeling the stimulus-evoked neural responses, and the information encoded344

I considered for simplicity a 1-dimensional stimulus s (for example, the direction of motion of a drifting345

grating). In response to the stimulus presentation, the neural population displays firing rates ~ri, where346

the index i denotes the trial. (Each element of the vector ~ri is the firing rate of a single neuron). These347

responses have two components. The first, ~f(s), is the mean (trial-averaged) response to stimulus s,348

whereas the second component, ~εi, represents the trial-by-trial fluctuations, or “noise” in the neural349

firing rates.350

~ri = ~f(s) + ~εi (1)

The tuning curves were chosen to be either Von Mises functions (as in [14, 16, 22]), or, in the case351

of untuned neurons, to be constants (Fig. 1A). The parameters of the tuning curves were randomly352

drawn, using the same distributions as in [22].353

The neurons’ noise variances were chosen to match the mean responses, in accordance with exper-354

imental observations of Poisson-like variability. I considered different patterns of inter-neural correla-355

tion, as described below.356

For each set of tuning curves and correlations, I used the typical linear Fisher information measure,357

I(s), to quantify the ability of downstream circuits to determine the stimulus, s, from the noisy neural358

responses on each trial ~ri [12, 13, 14, 15, 16, 17, 19, 21, 18, 20, 22]:359

I(s) = ~f ′T (s) [C(s)]−1 ~f ′(s), (2)
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where the prime denotes a derivative with respect to the stimulus, the supserscript T denotes the360

transpose operation, and C(s) = cov (~εi| s) is the covariance matrix of the noise in the neural re-361

sponses to stimulus s. For all calculations, I checked that the correlation (and covariance) matrices362

were positive semi-definite (thus being physically realizable) before performing the Fisher information363

calculations.364

To compute the information for a subset of a neural population, I extracted the block of the365

covariance matrix, and the elements of the vector ~f ′(s), that correspond to the neurons in that subset.366

I then used those values in Eq. 2.367

For all of the information values presented here, I computed the information for each of 50 different368

stimulus values, evenly spaced over [0o, 360o]. The reported values are averages over these 50 stimuli.369

This accounts for the fact that Fisher information I(s) is a local quantity which varies from stimulus to370

stimulus. By averaging over many stimuli, I avoid the possibility that the reported information values371

might be atypical, and affected by the specific stimulus at which the information was calculated.372

Limited-range correlations373

The elements of covariance matrix C(s) were Cij(s) =
√
fi(s)fj(s)ρij , where ρij is the correlation374

between cells i and j. The factor of
√
fi(s)fj(s) ensures that the neurons have Poisson variability375

(variance of noise is equal to mean firing rate, meaning that standard deviation of noise is equal to376

square root of mean firing rate).377

The correlation coefficients ρij were calculated from the equation in Fig. 1B. The tuning curve378

separation ∆(φ) for each cell pair was computed as ∆(φ) = | arccos [cos(φi − φj)] |, where φi and φj are379

the cells’ preferred direction angles (the locations of their tuning curve peaks). This formula accounts380

for the fact that angles “wrap” around the circle: so values of 10o and 350o have a separation of 20o381

(and not 340o).382

For the untuned neurons, their preferred stimulus angles were randomly assigned, uniformly over383

the range [0o, 360o].384

Analysis of in vivo neural recordings385

Overview of the experiment386

The full description of the experiment is given by [11], and so I briefly summarize here. GCaMP6f was387

expressed in the excitatory neurons of the forebrain of mice. 2-photon imaging was used to measure388

the fluorescence of neurons in visual cortex through a cranial window. The mice were presented with389

drifting grating stimuli. The stimuli could move in any of 8 different directions, and at 6 different390

temporal frequencies. The stimuli were presented for 2 seconds each, followed by a 1 second gray391

screen before the next stimulus was presented. Each combination of direction and frequency was392

presented repeatedly (either 15 or 30 times each, depending on the temporal frequency).393
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Data access394

Following the example Jupyter notebook provided by [11] – which provides a template for accessing395

the experimental data – I retrieved the following data: average ∆F/F values for each neuron on396

each trial, and the stimulus direction for each trial. I analyzed all of the neurons observed in each397

experiment, and not only those that were labelled as visually responsive.398

Tuning curves399

I calculated the tuning curves (Figs. 5A and B) by averaging the ∆F/F values for all trials of each400

direction: this marginalizes over the different temporal frequencies. The noise correlations coefficients401

(Fig. 5D) were computed over repeats of the same stimulus (same orientation and temporal frequency),402

and then averaged over all stimuli.403

K-nearest (KNN) neighbors decoding404

For these decoding analyses, I used the k-nearest neighbors method (Fig. 6A) on the population405

activity vectors observed on each trial. These vectors had as elements the ∆F/F values for all of the406

neurons (blue curves in Figs. 6B, and vertical axis of Fig. 6C), for just the direction selective cells407

(red curve in Fig. 6B, and horizontal axes of Figs. 6C and E), or for random subsets of neurons that408

were the same size as the groups of direction selective cells (Fig. 6E, vertical axis).409

For each analysis, I iteratively considered each single-trial activity vector as a “test” data point,410

and identified the k most similar other data points (smallest Euclidean distance) to the test point. I411

then took a majority vote over the stimulus directions of these k neighboring points, to guess the most412

likely stimulus direction for the test point. This was repeated for each test point, and I measured413

the neural coding performance as the percentage of trials on which the estimated stimulus direction414

matched the stimulus direction associated with the test point. (Note that, for decoding each data415

point, the KNN decoder is constructed from all other data points. This means that the test point is416

held-out from the decoder’s construction. This is important, because otherwise the test point would417

be used to decode itself, which could yield erroneously high performance values.)418

Identifying tuned vs untuned neurons419

Following [42, 9], direction selective cells were identified via their circular variance, with the direction420

selectivity index (DSI) computed for each neuron as follows. For each stimulus direction, I computed421

the two-dimensional direction vector d(θ) = [cos(θ), sin(θ)], and multiplied that by the neuron’s mean422

response to this stimulus r(θ) (i.e., the tuning curve value for that stimulus). This yielded a vector423

v(θ) = r(θ)d(θ) that points in the direction of the stimulus, with the length determined by the cell’s424

mean response to the stimulus. I then averaged this vector over all stimulus directions. If the neuron425

gave equal responses to all stimuli, the horizontal and vertical components of v(θ) would average out426

to zero over all the stimuli, whereas if the neuron responds selectively to one stimulus direction, this427

cancellation would not occur. Consequently, the DSI is measured by the length of 〈v(θ)〉, relative to428
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the neuron’s mean response (averaged over all stimuli):429

DSI =

∣∣∣∣
〈v(θ)〉
〈r(θ)〉

∣∣∣∣ . (3)

If the neuron responds strongly to only one stimulus direction, the DSI can be as large as 1, and the430

DSI can be as small as 0 for neurons that respond equally to all stimuli.431

To identify tuned (vs “untuned”) neurons, I chose a cutoff of DSI > 0.25. This matches the432

smallest DSI of the direction-selective retinal ganglion cells studied by [9]. I also repeated the decoding433

analysis from Fig. 6 with different cutoffs on the DSI, and found qualitatively similar results: the434

precise value of the cutoff is unimportant (Fig. S2).435
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Supplemental Information536

Supplemental Figures537
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Supplementary Figure 1: Dependence of information on limited range correlation pa-

rameters. (Related to Fig. 1.) I repeated the calculations from Fig. 1, in all cases for

populations of 200 neurons. I repeated the calculations for different values of ρmax and λ, the

parameters that define the limited-range correlations. For each set of parameters, I computed

the ratio of Fisher information in the full population of 200 neurons, vs. the Fisher information

in just the tuned subset of (70% of) the population. Error bars are the S.E.M. over 10 random

sets of different tuning curves.
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Supplementary Figure 2: Dependence of the role of untuned neurons on the DSI cutoff.

(Related to Fig. 6C.) I repeated the calculations from Fig. 6C for 3 different values of the DSI

cutoff that distinguishes tuned from putatively untuned neurons. For a lower DSI cutoff (vs the

value of 0.25 for the results in the main paper) of 0.2 (left panel), the full populations can be

decoded 15 ± 3% better to recover the stimulus than can the tuned subsets (p = 7.4 × 10−6;

paired one-sided t-test). For a higher DSI cutoff of 0.3 (right panel), the full populations yield

29 ± 5% better decoding accuracy than the tuned subsets (p = 3.6 × 10−8; paired one-sided

t-test). Reported values are mean ± S.E.M. over the 46 populations. Chance performance for

this task is 1/8 = 12.5%. Diagonal line denotes equality.
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Logistic regression analysis538

To confirm that the results from Fig. 6CDE are not specific to the KNN decoder, I repeated the539

same analysis using another decoder. I used the logistic regression method of [43] to take in vectors540

of neural activity recorded in response to one of 2 different stimuli, and to return a label (“0” or “1”)541

that indicates which of the two stimuli was presented. I randomly divided the data into a training set542

(75% of the data) that was used to fit the weights of the classifier, and a test set (25% of the data) that543

was used to measure the performance. After training on the training data, I applied the classifier to544

the neural responses from the test data set, yielding an output value for each response vector. Values545

above 0.5 indicated that the stimulus was most likely to be stimulus “1”, whereas values less than 0.5546

were taken to indicate that response was most likely generated by stimulus “0”. I then computed the547

fraction of these test trials on which this classifier correctly identified the stimulus that caused the548

neural response. This analysis was separately done for all (8× 7)/2 = 28 different stimulus pairings:549

reported performance values are averages over all such stimulus pairings.550
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Supplementary Figure 3: Role for untuned neurons – logistic regression decoder. (Re-

lated to Figs. 6CDE.) I used logistic regression to perform pairwise discrimination on the

population response vectors, to determine which of 2 different stimuli caused each response. I

repeated this analysis for all possible pairs of stimuli: reported values are the percentage of

trials for which the stimulus was correctly identified, averaged over all possible pairings (there

is one data point per experiment). (A) Decoding accuracy when the full population response

vectors were decoded (vertical axis) vs. when only the tuned subsets of the neurons are seen

by the decoder (horizontal axis). (B) Difference in decoding performance when all neurons are

decoded vs just the tuned ones, expressed as percentage change relative to the accuracy when

only the tuned neurons are decoded. For each experiment the difference in decoding accuracy is

shown for the raw data (“Correlated”), and for uncorrelated surrogate data obtained via a trial

shuffling procedure (“Shuffled”). (C) Decoding accuracy when random subsets of the neurons

(of the same size as the tuned subset, but containing both tuned and untuned neurons) are

input to the decoder (vertical axis) vs. when only the tuned subsets of the neurons are seen by

the decoder (horizontal axis). Chance performance for this binary discrimination task is 50%.

Diagonal line denotes equality.
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I first performed this analysis on the full populations of recorded neurons – including the tuned551

and untuned ones – and compared this to the decoding performance when only tuned neurons (having552

DSI > 0.25) were used by the decoder (Fig. S3A). Using all of the neurons resulted in 11±1% better553

decoding performance (mean ± S.E.M. p = 5.3× 10−11; paired one-sided t-test).554

Next, I asked whether the role of untuned neurons in population coding relies on the correlations555

between cells (as predicted by the “noise shaping” theory). To to this, I repeated the analysis from Fig.556

S3A with trial-shuffled data, in which the correlations between neurons were removed. On these trial-557

shuffled data, the full populations yielded 9± 1% (mean ± S.E.M.) better decoding performance than558

did the tuned subsets of neurons. A comparison, for each experiment, of the improvement in decoding559

performance by including putatively untuned neurons vs excluding them (Fig. S3B) shows that the560

effect of untuned neurons is larger with the correlated data vs the uncorrelated control (p = 0.005;561

paired single-sided t-test). Thus, similar to the results in the main paper (obtained with the KNN562

decoder), the impact of untuned neurons on the population code depends on the correlations between563

neurons, as is predicted by the theory (Figs. 1-3 of the main paper).564

Finally, I used the logistic regression decoder to ask whether populations containing both tuned565

and untuned neurons could be better decoded than could populations the same size but containing566

only tuned neurons. To do this, I compared the decoding performance on the tuned neurons in each567

population (Fig. S3C; horizontal axis), and compared that with the decoding performance obtained568

on random subsets of each population that were the same size as the tuned subset (Fig. S3C; vertical569

axis). Using randomly chosen neurons resulted in 4±1% (mean± S.E.M.) better decoding performance570

than was obtained by selecting only tuned neurons (p = 2.0× 10−4; paired single-sided t-test). Thus,571

the mixed populations of tuned and untuned neurons were better at encoding the stimulus than were572

populations of the same size but containing only tuned neurons.573
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