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Abstract10

In the sensory systems, most neurons’ firing rates are tuned to at least one aspect of the stimulus. Other11

neurons are appear to be untuned, meaning that their firing rates do not depend on the stimulus. Previous12

work on information coding in neural populations has ignored untuned neurons, based on the tacit assumption13

that they are unimportant. Recent experimental work has questioned this assumption, showing that in some14

circumstances, neurons with no apparent stimulus tuning can contribute to sensory information coding. These15

findings are intriguing, because they suggest that – by virtue of our ignoring putatively untuned neurons –16

our understanding of neural population coding might be incomplete. At the same time, several key questions17

remain unanswered: Are the impacts of putatively untuned neurons on population coding due to weak tuning18

that is nevertheless below the threshold the experimenters set for calling neurons tuned (vs untuned)? And19

why do there appear to be untuned neurons in the brain? Do mixed populations of tuned and untuned neurons20

have a functional advantage over populations containing only tuned neurons? Using theoretical calculations and21

analyses of in vivo neural data, I answer those questions by: a) showing how untuned neurons can enhance22

sensory information coding; b) demonstrating that this effect does not rely on weak tuning; and c) identifying23

conditions under which the neural code can be made more informative by replacing some of the tuned neurons24

with untuned ones. These conditions specify when there is a functional benefit to having untuned neurons in25

a circuit, and thus suggest a reason why the brain might contain untuned neurons. Overall, this work shows26

that, even in the extreme case, where some neurons have no tuning, those neurons can still contribute to sensory27

information coding, and thus should not be ignored.28

Introduction29

When you look at a picture, signals from your eyes travel along the optic nerve to your brain, where they evoke30

activity in neurons in the thalamus and visual cortex. As sensory systems neuroscientists, we ask how these31

patterns of stimulus-evoked brain activity reflect the outside world – in this case, the picture at which you are32

looking. Other related work asks how patterns of activity in different parts of the brain reflect motor commands33
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sent to the muscles. Answers to these questions are important both for basic science, and for brain-machine34

interface technologies that either decode brain activity to control prosthetic limbs or other devices [1, 2, 3], or35

stimulate the brain to alleviate sensory deficits [4, 5].36

For decades, researchers have addressed these information coding questions by recording neural activity37

patterns in animals while they are being presented with different stimuli, or performing different motor tasks.38

That work revealed that many neurons in the relevant brain areas show firing rates that depend systematically39

on the stimulus presented to the individual, or on the motor task. This neural “tuning” underlies the ability40

of these neural circuits to encode information about the stimulus and/or behavior. At the same time, many41

neurons appear to be untuned, thus showing little or no systematic variation in their firing rates as the stimulus42

(or behavior) is changed [6]. These untuned neurons are typically ignored in studies of neural information43

coding because it is presumed that they do not contribute [7]. Instead, data collection and analysis are typically44

restricted to the tuned neurons (for example, consider the selection criteria used by [8, 9]).45

Recently, researchers have begun to question that assumption: analyses of neural data in the prefrontal46

cortex [10], somatosensory cortex [11], and auditory cortex (Insanally et al., 2017 cosyne abstract), show that47

even neurons with no obvious stimulus tuning can nevertheless contribute to the population code. These findings48

are intriguing, because they suggest that – by virtue of our ignoring the putatively untuned neurons – our49

understanding of neural population coding might be incomplete. At the same time, several key questions remain50

unanswered: Are the impacts of putatively untuned neurons on population coding due to weak tuning that is51

nevertheless below the threshold the experimenters set for calling neurons tuned (vs untuned)? And why do52

there appear to be untuned neurons in the brain? Do mixed populations of tuned and untuned neurons have a53

functional advantage over populations containing only tuned neurons?54

To answer these questions, I used theoretical calculations, and then verified the predictions from those55

calculations by analyzing 2-photon imaging data collected in the visual cortices of mice that were shown drifting56

grating stimuli [12]. For the theoretical calculations, I used a common mathematical model of the neural57

population responses to sensory stimulation [13, 14, 15, 16, 17, 18, 19, 9, 20, 21, 22, 19, 23]. This model describes58

key features of sensory neural responses: the stimulus tuning (or lack thereof) of individual neurons; the trial-59

by-trial deviations (or “noise”) in the neural responses [9, 24, 25, 26, 27, 28]; and the potential for that noise to60

be correlated between neurons [29, 30, 9, 31, 32, 29, 33, 34, 35, 36, 37, 38]. For different conditions – for example,61

including vs. excluding untuned neurons – I computed the amount of information about the stimulus that is62

encoded in the population firing patterns. By comparing the information across conditions, I characterized the63

impact that untuned neurons can have on the neural population code.64

Because the untuned neurons in the theoretical model have no stimulus tuning, these calculations enabled65

me to demonstrate conclusively that strictly untuned neurons really can contribute to population coding. I66

provide a geometrical explanation for this phenomenon. Moreover, by studying the information coding of neural67

populations containing different fractions of tuned vs untuned neurons, I demonstrated that mixed populations68

can sometimes encode stimulus information better than populations containing only tuned neurons. This provides69

a functional explanation for why the brain might contain untuned neurons. Using mathematical analyses, I70

subsequently identified the conditions under which a population code can be made more informative by including71

some untuned neurons; these analyses explain when untuned neurons enhance brain function. Finally, I used72

decoding analyses applied to data collected in the visual cortices of awake mice to validate the key predictions73

of the theory: excluding putatively untuned neurons hinders decoding; and decoding random groups of neurons74

(both tuned and untuned) yields better performance than does decoding neural populations of the same size,75

but containing only tuned neurons.76
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Results77

I first study a theoretical model of information coding in neural populations, to understand whether and how78

untuned neurons contribute to information coding. I then validate the main predictions from the theory by79

analyzing data collected in mouse visual cortex.80

Theoretical analysis81

The role of untuned neurons in sensory information coding82

To investigate the role of untuned neurons in sensory information coding, I studied populations of neurons that83

encode information about the motion direction of a visual stimulus via their randomly shaped and located tuning84

curves (Fig. 1A). Many different population sizes were considered. For each population, 70% of the neurons85

were tuned, and the other 30% were untuned. (These numbers match the fraction of well-tuned neurons selected86

for analysis in a recent population imaging study [38], and are comparable to the fraction of tuned neurons in87

the experimental data that I analyzed. I later consider populations with different fractions of untuned neurons.)88

The untuned neurons had flat tuning curves that did not depend on the stimulus – see the dashed lines in Fig.89

1A. The neurons had Poisson-like variability: for each cell, the variance over repeats of a given stimulus was
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Figure 1: Untuned neurons can play an important role in sensory information coding. (A) I

considered populations of neurons with randomly shaped and located tuning curves. Of those neurons,

70% were tuned to the stimulus, whereas 30% were untuned – their mean firing rates do not depend

on the stimulus (dashed black lines in panel A). The neurons’ trial to trial variability was Poisson-like

and correlated between neurons. (B) These correlations followed the “limited-range” structure with

ρmax = 0.75 and λ = 0.5 radians (29o). The mean correlation coefficients (averaged over neurons)

were 0.12, which is comparable to values reported in primary visual cortex [30]. (Modifying these

values did not qualitatively change the results – see Fig. S1). (C) For different sized populations, I

computed the Fisher information, which quantifies how well the stimulus can be estimated from the

neural population activities. The different lines correspond to: the Fisher information for the full neural

populations (blue); and the Fisher information for the tuned 70% of the populations (red). Data points

are mean ± S.E.M., computed over 5 different random draws of the tuning curves.

90

equal to the mean response to that stimulus. This mimics the experimentally observed relation between means91

and variances of neural activities [25, 23]. The variability was correlated between cells, and the correlation92

coefficients were chosen to follow the “limited-range” structure reported experimentally [30, 18, 39, 40, 41], and93

used in previous theoretical studies [13, 14, 15, 20]. With this structure, the correlation coefficients were large94

for neurons with similar preferred directions, and smaller for neurons with very different preferred directions (see95
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Methods and Fig. 1B).96

For each population, I computed the Fisher information (Fig. 1C, blue curve), which quantifies how well an97

observer – like a downstream neural circuit – can estimate the stimulus direction angle from the neural activities98

(see Methods). I compared that with the Fisher information obtained from only the tuned subset of neurons – in99

other words, the information that would be obtained if the untuned cells were ignored (Fig. 1C, red curve). The100

difference was stark. Ignoring the untuned neurons leads to a dramatic underestimate of the encoded stimulus101

information. This emphasizes that, despite their lack of stimulus dependence, the untuned neurons can still102

contribute significantly to the population code.103

Because the correlation coefficients in Fig. 1 did not depend on the stimulus, it is not the case that the104

untuned neurons themselves encode information indirectly, through their second-order statistics (as was the case105

in the theoretical model of [42]). This point is emphasized in Fig. 4, where the information in the population goes106

to zero as the fraction of untuned neurons approaches 100%. This suggests the question of how untuned neurons107

contribute to neural information coding. While the untuned neurons’ activities do not reflect the stimulus, they108

do reflect the trial-specific noise in the tuned neurons’ activities (because they are correlated). Accordingly, a109

downstream readout – like the circuit receiving these neural spikes – can obtain a less noisy estimate of the110

stimulus by using the untuned neurons’ activities to estimate the noise in the activities of the tuned neurons,111

and subtracting that noise estimate from the observed firing rates. Ignoring untuned neurons leads to the loss112

of the information available through this “de-noising”.
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Figure 2: Untuned neurons can shape noise, improving the population code. (A) Two

neurons’ tuning curves are shown; cell 1 is untuned. In response to stimulation, the cells give noisy

responses. That noise is correlated between the two neurons, with a correlation coefficient of 0.9. (B)

The distribution of noisy responses to each stimulus is described by an ellipse in the space of the two

neurons’ firing rates. The stimulus values are indicated by arrows in panel (A). The ellipses are well

separated, meaning that the stimuli can be readily discriminated based on the two cells’ firing rates.

If the untuned cell is ignored, then only the tuned cell is observed. The distribution of the tuned

cell’s firing rate in response to each stimulus is shown along the right vertical of panel (B). Because

those distributions overlap substantially, the stimulus cannot be readily discriminated based only on

the firing rate of the tuned cell.

113

To illustrate this point, I considered a pair of neurons, one of which is tuned to the stimulus (Fig. 2A). In114

response to stimulation, the neurons give noisy responses, and that noise is correlated between the two cells.115

When plotted in the space of the two cells’ firing rates, the distributions of neural responses to each stimulus are116

defined by ellipses, shown in Fig. 2B. (These are the 1 standard deviation probability contours.) The correlation117

between cells is reflected in the fact that these ellipses are diagonally oriented. These ellipses are relatively118

disjoint, meaning that the neural responses to the different stimuli have little overlap, and so it is relatively119

4

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2017. ; https://doi.org/10.1101/134379doi: bioRxiv preprint 

https://doi.org/10.1101/134379
http://creativecommons.org/licenses/by-nc/4.0/


unambiguous to infer from the neural firing rates which stimulus was presented. For contrast, consider the120

neural activities observed when the untuned neuron is ignored. In that case, only the tuned neuron is observed,121

and the distributions in its responses to the different stimuli overlap substantially (Fig. 2B, right vertical axis).122

This means that, based on only observations of the tuned cell, the stimulus cannot reliably be determined.123

Ignoring the untuned neuron leads to a loss of stimulus information. Because the untuned neurons’ contribution124

to the population code relies on their activities reflecting the single-trial noise in the activities of the tuned cells,125

the untuned neurons do not contribute to population coding if they are independent of the tuned neurons. To126

demonstrate this point, I repeated the analysis from Fig. 1 (above), but made the untuned neurons uncorrelated127

from each other and from the tuned neurons. In that case, the untuned neurons do not contribute to the128

population code: the full population and the tuned subset both have the same amount of stimulus information129

(Fig. 3A).
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Figure 3: Untuned neurons improve population coding when they are correlated with the

tuned neurons. (A) I repeated the analysis from Fig. 1C, and modified it so that the untuned

neurons were independent of each other and of the tuned neurons. (B) For comparison, I also show

again the results from Fig. 1C. As in Fig. 1, 70% of the neurons in each population were tuned to

the stimulus, and 30% were untuned. Upper panels show correlation matrices for 400-cell populations:

cells 1 through 120 are untuned, whereas the remainder were tuned. Center panels show the Fisher

information for the full neural populations (blue), or for the tuned subsets of neurons in each population

(red). (Data points shown are mean ± S.E.M., computed over 5 different random draws of the tuning

curves). The cartoons in the lower panels illustrate why these two different correlation structures lead

to untuned neurons having such different effects on the population code (see text). The cartoons show

the space of neural firing patterns: each axis is the firing rate of a different neuron. The vertical axis

is the firing rate of an untuned neuron. The other axes are the firing rates of tuned cells. Ellipses

represent the 1 standard deviation probability contours of the neural population responses to the 3

different stimuli.

130

This contribution of untuned neurons to the population code can be understood via the cartoon in Fig. 3B131
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(lower), which shows the distribution of population responses to 3 different stimuli. In the cartoon, cell 1 is132

untuned, whereas the rest of the cells are tuned. This means that, as the stimulus changes, the mean responses133

change along the plane orthogonal to the cell 1 axis. Because the untuned neuron is correlated with the tuned134

ones, the noise distributions are tilted along the vertical axis. In this configuration, the distributions do not135

overlap very much. If, however, the untuned neuron is made independent from the tuned ones (as in Fig. 3A),136

the vertical tilt goes away, causing much more overlap in the response distributions. In other words, when137

the untuned neurons are correlated with the tuned ones, they improve the population code by separating the138

responses to different stimuli. This effect disappears when the untuned neurons are independent of the tuned139

ones.140

The results in Figs. 1 and 3 are for neural populations in which information increases without bound as141

the population size increases. However, in many large neural populations, information saturates with increasing142

population size [19]. Accordingly, it is important to check that the same results hold for these population codes.143

As shown in Fig. S2, populations with information-limiting correlations, show the same main effect as the144

populations with limited-range correlations studied in Figs. 1 and 3: ignoring untuned neurons leads to a strong145

reduction in information.146

Mixed populations of tuned and untuned neurons can encode stimulus information more147

effectively than populations containing only tuned neurons148

In the preceding analyses, I showed that neurons with no stimulus tuning can contribute to the population code:149

ignoring them entails a loss of stimulus information. Here, I turn to the question of why the brain might contain150

those neurons at all. In other words, is there a functional benefit to including untuned neurons in a population151

vs having only tuned neurons?152

To answer this question, I repeated the analysis from Fig. 1 – again, using populations of heterogeneously153

tuned neurons with limited-range correlations – but altered the fraction of untuned neurons in each population.154

The maximum information values were obtained with around 30% of neurons being untuned; this effect was larger155

in larger populations (Fig. 4A). Because the maximum information does not occur when all of the neurons are156

tuned (corresponding to an untuned neuron fraction of 0), this analysis shows that neural populations can be157

made more informative by replacing tuned neurons with untuned ones. This suggests that there may be a158

functional reason why the brain should contain untuned neurons.159

How can mixed populations of tuned and untuned neurons be better at encoding information than populations160

of the same size but containing only tuned cells? The cartoon in Figs. 4B and C provides some intuition. In161

both cases, the distributions of firing rates of two neurons are shown, in response to 3 different stimuli (similar to162

Fig. 2B): ellipses indicate 1 standard-deviation probability contours. In both panels, the neurons have Poisson163

variability in their firing rates, and the two cells are correlated. In Fig. 4B, both cells are tuned to the stimulus,164

and the centers of the ellipses are correspondingly displaced relative to each other along both the vertical, and the165

horizontal, axes of the plot. With this geometrical configuration, the ellipses corresponding to different stimulus-166

evoked responses overlap substantially: that overlap means that there is ambiguity in determining the stimulus167

from the neural responses, and so the population code has relatively low information. Fig. 4C differs from Fig.168

4B only in the tuning of cell 1: in Fig. 4C, cell 1 is untuned, whereas in Fig. 4B, it was tuned. This means169

that, in Fig. 4C (where only one of the cells is tuned to the stimulus), the different stimulus-evoked response170

distributions are displaced relative to each other only in the vertical direction, and not the horizontal one. Owing171

to the diagonal orientation of the ellipses, there is less overlap between the different response distributions in172

Fig. 4C than 4B. Consequently, the pair of neurons in Fig. 4C (one of which is untuned) is better at encoding173

stimulus information than the pair of neurons in Fig. 4B (both of which are tuned to the stimulus).174

The cartoon in Figs. 4BC shows how the presence of untuned neurons can improve the population code:175
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Figure 4: Populations containing some untuned neurons can encode more information

than ones with only tuned neurons. (A) I repeated the calculations from Fig. 1, but with different

fractions of untuned neurons in each population. For several different population sizes (indicated on the

plot), the Fisher information is shown as a function of the fraction of untuned neurons in the population.

As in Fig. 1, each population had limited-range correlations, with average correlation coefficients that

are in the physiological range. Error bars are the S.E.M. over 5 random sets of different tuning curves.

(B and C) Cartoon showing how mixed populations containing tuned and untuned neurons can be

better at encoding information than populations containing only tuned neurons. In response to 3

different stimuli, I show the 1 standard-deviation probability contours in the responses of a pair of

neurons. In all cases, the neurons have Poisson variability, and correlated noise. In panel (B), both

cells are tuned to the stimulus, whereas in panel (C), cell 2 is tuned to the stimulus, and cell 1 is

untuned.

including untuned neurons modifies the signal correlation structure (the correlation between neurons in the176

stimulus-evoked mean responses) relative to the case where both neurons are tuned. And because the relationship177

between the signal and noise correlations determines the population coding efficacy [17, 16, 14], this modification178

can improve the population code overall.179

Under what conditions do mixed populations contained tuned and untuned neurons encode stimulus infor-180

mation better than populations containing only tuned cells? To answer this question, I performed mathematical181

analyses – described in detail in the Methods – that identify conditions where the population code can be made182

more informative by replacing a tuned neuron (neuron k) by an untuned one. Those analyses showed that183

making neuron k untuned will improve the population code whenever the following inequality holds:184

−2
dfk
ds

∑

j 6=k

C−1kj

dfj
ds

>

(
dfk
ds

)2

C−1kk , (1)

where dfk
ds is the slope of the tuning curve of neuron k, and C is the covariance matrix of the neural variability.185

Intuitively, this equation compares the loss of information from removing the tuning of neuron k (the right-hand186

side of Eq. 1), with the gain in information from the noise-shaping effect shown in Figs. 4BC (the left-hand187

side of Eq. 1). Whenever the gain exceeds the loss, it is beneficial to make neuron k untuned. Note that the188

inequality in Eq. 1 will not necessarily be satisfied by all sets of neural tuning curves and covariance matrices.189

Consequently, it is not guaranteed that including untuned neurons will always improve the population code.190

However, under the condition specified by Eq. 1, there is a functional benefit to including untuned neurons in a191

population.192
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Analysis of in vivo neural activities193

The theoretical work described above makes a key prediction: the ability to decode a stimulus from the evoked194

neural population activities could be improved if untuned neurons are included in those populations, as opposed195

to being ignored. To test this prediction, I analyzed data from 2-photon Ca2+ imaging recordings done in primary196

visual cortex of awake mice (data from [12]) whose neurons expressed the genetically encoded calcium indicator197

GCaMP6f. The mice were presented with stimuli consisting of gratings drifting in 8 different directions, and198

the fluorescence levels of O(100) neurons were observed in each experiment. I analyzed the data from 46 such199

experiments.200

For each stimulus presentation and neuron, I extracted the mean fluorescence change during the stimulus201

presentation, relative to the fluorescence in the period before the stimulus presentation: this ∆F/F value mea-202

sures the stimulus-induced change in neural activity. I then computed the neurons’ tuning curves by averaging203

these ∆F/F values over all trials in which the stimulus drifted in each direction. Some of the neurons had well-204

defined direction tuning curves (Fig. 5A), whereas others were relatively untuned (Fig. 5B). Following [43, 9], I205

categorized these cells as tuned or putatively untuned (hereafter referred to simply as untuned) based on their206

direction selectivity indices (see Methods). Between the 46 experiments, 5379/8943 ≈ 60% of the neurons were207

classified as being tuned for direction. (In the population coding analyses discussed below, I consider several208

different thresholds for labelling neurons as “tuned” vs “untuned”.)
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Figure 5: Tuned and untuned neurons are correlated in vivo. Neurons’ responses to drifting

grating stimuli were measured using 2-photon Ca2+ imaging. (A) Tuning curves for two direction tuned

neurons. (B) Tuning curves of two untuned neurons. Markers show mean ∆F/F ± S.E.M, calculated

over 75 trials of each stimulus direction. (C) Direction selectivity indices for the 8493 neurons whose

stimulus-evoked responses were measured. (D) The distributions of correlation coefficients for cell pairs

of different types: where both cells were direction tuned (“TT”; n = 391833 pairs); where both cells

were untuned (“UU”; n = 150801 pairs); and where one cell was tuned and one was untuned (“TU”;

n = 434752 pairs). Each box plot shows the median, the range (maximum and minimum indicated by

black bars), and the boundaries of the 25th and 75th percentiles (blue box) of the distributions.

209
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Along with the tuning, I measured the correlations in the cells’ trial-to-trial variability over repeats of each210

stimulus. These “noise correlations” are shown all pairs of simultaneously observed neurons (Fig. 5D). The cor-211

relation coefficients were typically positive for pairs of tuned neurons (“TT”), pairs of untuned neurons (“UU”),212

and mixed pairs consisting of one tuned and one untuned neuron (“TU”). Because there were correlations be-213

tween the tuned and untuned neurons, the theory predicts that stimulus decoding could be improved by including214

the untuned neurons, as opposed to ignoring them.215

To test this prediction, I used the logistic regression method of [44] to take in vectors of neural activity216

recorded in response to one of 2 different stimuli, and to identify the stimulus from those neural responses (see217

Methods for details). I then computed the fraction of trials on which the stimulus was correctly identified.218

I first performed this analysis on the full populations of recorded neurons – including the tuned and untuned219

ones – and compared this to the decoding performance when only tuned neurons were used by the decoder.220

Using all of the neurons resulted in 10 ± 1% (mean ± S.E.M) better decoding performance (p = 8.9 × 10−11,221

paired one-sided t-test; and p < 10−8, non-parametric binomial test of significance) than did using only the222

tuned neurons (Fig. 6A).
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Figure 6: Untuned neurons can enhance information coding in in vivo neural populations.

I used logistic regression to perform pairwise discrimination on the population response vectors, to

determine which of 2 different stimuli caused each response. I repeated this analysis for all possible

pairs of stimuli: reported values are the percentage of trials for which the stimulus was correctly

identified, averaged over all possible pairings (there is one data point per experiment). (A) Decoding

accuracy when the full population response vectors were decoded (vertical axis) vs. when only the

tuned subsets of the neurons are seen by the decoder (horizontal axis). (B) Decoding accuracy when

random subsets of the neurons (of the same size as the tuned subset, but containing both tuned and

untuned neurons) are input to the decoder (vertical axis) vs. when only the tuned subsets of the

neurons are seen by the decoder (horizontal axis). Chance performance for this binary discrimination

task is 50%. Diagonal line denotes equality.

223

Next, I asked whether – as in the theoretical calculations in Fig. 4 – populations that include both tuned and224

untuned neurons could yield better decoding vs populations of the same size but containing only tuned cells. To225

answer this question, I extracted a random subset of the neurons from each population, that was the same size226

as the set of tuned neurons within that population. I then performed the logistic regression analysis on these227

random subsets, and compared the performance with that which was obtained on the tuned subsets (Fig. 6B).228

On average, the decoding performance was 4 ± 1% (mean ± S.E.M.) better using the random subsets vs the229

fully tuned ones, a modest but statistically significant difference (p = 1.7× 10−5, paired single-sided t-test; and230
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p = 0.027, non-parametric binomial test of significance).231

It is important to check that the results in Fig. 6 do not depend on the specific criterion used to distinguish232

tuned from putatively untuned neurons. Consequently, I repeated the analysis from Fig. 6 with several different233

criteria (see Methods and Figs. S3-S4). These results are all in qualitative agreement with those of Fig. 6:234

regardless of the specific criterion that is used, the putatively untuned neurons contribute to the population235

code, and mixed populations of tuned and untuned neurons encode more information than do populations of the236

same size but containing only tuned neurons.237

Discussion238

I showed that, when the variability in neural responses to stimulation is correlated between cells, even neurons239

whose firing rates do not depend on the stimulus (“untuned” neurons) can contribute to sensory information240

coding. Moreover, in at least some cases, populations with both tuned and untuned neurons can convey more241

information about the stimulus than do populations of the same size but containing only tuned neurons. These242

effects were observed in both a theoretical model (Figs. 1-4), in and in large population recordings from mouse243

visual cortex (Fig. 6). These experimental findings were not sensitive to the specific criterion used to define244

neurons as being tuned vs untuned (Figs. S3-S4).245

These results have two main implications. First, our understanding of how the sensory systems encode246

information about the outside world is likely to be incomplete unless it includes the contributions of all neurons,247

regardless of whether or not they appear to be tuned to the stimulus. This means that current practices, in248

which putatively untuned neurons are ignored during data collection and analysis, might be hindering progress.249

Moreover, because there is not always a clear distinction between tuned and untuned neurons (Fig. 5C: histogram250

is unimodal) – and this effect is confounded by noise in the experimental measurements – selection criteria are251

largely arbitrary. This experimental noise also means that is is nearly impossible to know whether there really252

are strictly “untuned” (as opposed to only weakly tuned) neurons in the brain. Either way, the results shown253

here suggest that, rather than discarding neurons with weak (or zero) tuning, it is better to simply include all254

the neurons in the analysis: even in the extreme case, where those neurons really have no tuning, they can still255

contribute to the population code. This last point applies especially to decoding population activities to control256

brain-machine interface devices: better performance could be obtained by decoding all neurons, as opposed to257

decoding only the well-tuned ones (Fig. 6A).258

Second, because adding untuned neurons can increase the stimulus information (Figs. 4, 6B), there might be259

a functional benefit to having some untuned neurons in a population. This is related to previous observations260

that heterogeneous tuning curves could confer advantages on the population code [45, 15]. Those previous studies261

did not, however, consider the role of untuned neurons in the population code. Here, I showed the conditions262

under which mixed populations containing tuned and untuned neurons can better encode the stimulus than263

can populations of the same size (and same level of neural variability), but containing only tuned cells. It is264

important to note, however, that no brain area can encode more stimulus information than it received from its265

inputs [46, 23]. This is the data-processing inequality, and it implies that there is not a limitless increase in266

information to be obtained by adding large numbers of untuned neurons to neural circuits.267

Observations related to those presented here have also been made by Insanally and colleagues (Cosyne 2017268

abstract), and by [10, 11] based on analyses of in vivo neural data. There, as in the analysis of mouse data269

presented here, it is hard to distinguish weakly tuned neurons from purely untuned ones, and thus difficult to270

isolate the coding benefits of putatively untuned neurons due to noise shaping, vs those due to non-zero tuning,271

that is nonetheless under the chosen threshold. (However, the fact that the results are not sensitive to the272

specific criterion uses to label neurons as tuned vs untuned does help to make this distinction: Figs. S3, S4).273
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This complication highlights the value of the theoretical work presented here (Figs. 1-4): in the model, the274

untuned neurons really have no stimulus dependence, enabling us to shown that even neurons with no tuning275

can contribute to sensory information coding.276

For large neural populations, an astronomically large number of different correlation patterns are possible277

(and this problem is confounded when one includes correlations of higher order than the pairwise ones considered278

here [47, 48]). Accordingly, it was not possible to simulate all possible correlation patterns in the theoretical279

study. Thus, it is natural to ask how general the results are over different correlation structures. Here, the fact280

that I saw consistent effects in the experimental data (Fig. 6) as in the theoretical model with limited range281

correlations (Fig. 1), and the model with information-limiting correlations (Fig. S2), argues for the generality282

and applicability of the findings.283

The experimental data studied here (Figs. 5 and 6) were recorded while mice were passively viewing the284

visual stimulus. Consequently, the correlated fluctuations in visual cortical neural activity could correspond285

to changes in attention, arousal, or other factors that were not controlled in the experiment. As a result, it286

is important for future work to assess the role of untuned neurons under experimental conditions with more287

carefully controlled behavior; that work is beyond the scope of this study.288

Adding neurons to a population can never decrease the amount of encoded stimulus information: because289

a downstream read-out could always choose to ignore the added cells, those cells can at worst contribute zero290

information. Consequently, untuned neurons can never hinder the population code. (However, decoding based291

on observations with small numbers of trials is subject to overfitting. In this case, adding more cells can hinder292

the decoding because the decoder might be inaccurate). This means that the potential effects of untuned neurons293

on population coding range between no contribution (Fig. 3A), and positive contributions at least as large as294

those seen in Fig. 1C (i.e., at least 70% increase in information available by including vs. ignoring untuned295

neurons). There may be other cases in which the positive contributions of untuned neurons are even larger.296

It is important not to interpret the results presented here as implying that neural tuning is not essential to297

sensory information coding. Whereas the theoretical model of [42] can encode stimulus information via changes298

in the correlations between neurons, that effect is not responsible for the results shown here. Notably, for the299

theoretical calculations in Figs. 1-4, the correlations do not depend on the stimulus, yet nevertheless the untuned300

neurons contribute to the population code. Underscoring this point is the fact that, if there are no tuned neurons301

in our models, there is no stimulus information (Fig. 4: information approaches zero as the fraction of untuned302

neurons approaches 1). Moreover, the fact that a quasi-linear decoder can identify the stimuli presented to the303

mouse, based on the visual cortical activity patterns (Fig. 6), suggests that the information is being encoded in304

the firing rates and not the correlation patterns. Given that this neurally plausible decoder [44] would not be305

able to extract information that depended only on the stimulus-dependence of the correlations between neurons,306

this is an important distinction.307

We conclude by noting that, even when untuned neurons do not by themselves encode information about the308

stimulus, they can shape the noise in the population responses, thereby improving the population code overall.309

Thus, untuned neurons are not irrelevant for sensory information coding.310

Methods311

I first discuss the theoretical calculations, and then the analysis of experimental data.312
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Theoretical Calculations313

Modeling the stimulus-evoked neural responses, and the information encoded314

I considered for simplicity a 1-dimensional stimulus s (for example, the direction of motion of a drifting grating).315

In response to the stimulus presentation, the neural population displays firing rates ~ri, where the index i denotes316

the trial. (Each element of the vector ~ri is the firing rate of a single neuron). These responses have two317

components. The first, ~f(s), is the mean (trial-averaged) response to stimulus s, whereas the second component,318

~εi, represents the trial-by-trial fluctuations, or “noise” in the neural firing rates.319

~ri = ~f(s) + ~εi (2)

The tuning curves were chosen to be either Von Mises functions (as in [15, 17, 23]), or, in the case of untuned320

neurons, to be constants (Fig. 1A). The parameters of the tuning curves were randomly drawn, using the same321

distributions as in [23].322

The neurons’ noise variances were chosen to match the mean responses, in accordance with experimental323

observations of Poisson-like variability. I considered different patterns of inter-neural correlation, as described324

below.325

For each set of tuning curves and correlations, I used the typical linear Fisher information measure, I(s), to326

quantify the ability of downstream circuits to determine the stimulus, s, from the noisy neural responses on each327

trial ~ri [13, 14, 15, 16, 17, 18, 20, 22, 19, 21, 23]:328

I(s) = ~f ′T (s) [C(s)]
−1 ~f ′(s), (3)

where the prime denotes a derivative with respect to the stimulus, the supserscript T denotes the transpose329

operation, and C(s) = cov (~εi| s) is the covariance matrix of the noise in the neural responses to stimulus s. For330

all calculations, I checked that the correlation (and covariance) matrices were positive semi-definite (thus being331

physically realizable) before performing the Fisher information calculations.332

To compute the information for a subset of a neural population, I extracted the block of the covariance333

matrix, and the elements of the vector ~f ′(s), that correspond to the neurons in that subset. I then used those334

values in Eq. 2.335

For all of the information values presented here, I computed the information for each of 50 different stimulus336

values, evenly spaced over [0o, 360o]. The reported values are averages over these 50 stimuli. This accounts for337

the fact that Fisher information I(s) is a local quantity which varies from stimulus to stimulus. By averaging338

over many stimuli, I avoid the possibility that the reported information values might be atypical, and affected339

by the specific stimulus at which the information was calculated.340

Limited-range correlations341

The elements of covariance matrix C(s) were Cij(s) =
√
fi(s)fj(s)ρij , where ρij is the correlation between cells342

i and j. The factor of
√
fi(s)fj(s) ensures that the neurons have Poisson variability (variance of noise is equal343

to mean firing rate, meaning that standard deviation of noise is equal to square root of mean firing rate).344

The correlation coefficients ρij were calculated from the equation in Fig. 1B. The tuning curve separation345

∆(φ) for each cell pair was computed as ∆(φ) = | arccos [cos(φi − φj)] |, where φi and φj are the cells’ preferred346

direction angles (the locations of their tuning curve peaks). This formula accounts for the fact that angles “wrap”347

around the circle: so values of 10o and 350o have a separation of 20o (and not 340o).348

For the untuned neurons, their preferred stimulus angles were randomly assigned, uniformly over the range349

[0o, 360o].350
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When do untuned neurons improve population coding?351

Here, I derive Eq. 1 from the main text, which specifies the conditions under which including untuned neurons352

in a population improves its ability to encode stimulus information. To do this, I compute the information in the353

neural population, and the information that would be obtained if one of the neurons were to be made untuned.354

I then ask when the information increases as a result of this change.355

I start by considering the linear Fisher information (Eq. 3), and explicitly describe the summation over356

neurons:357

I(s) =
∑

ij

f ′i(s)f
′
j(s)C

−1
ij (s), (4)

where the prime denotes a derivative with respect to the stimulus, and C(s) = cov (~εi| s) is the covariance matrix358

of the noise in the neural responses to stimulus s.359

If neuron k were to be replaced by an untuned neuron, f ′k(s) would be set to zero, and the population would360

now have a Fisher information value of361

Ĩ(s) =
∑

ij

f ′i(s) (1− δik) f ′j(s) (1− δjk)C−1ij (s)

= I(s)− 2f ′k(s)
∑

j

C−1kj (s)f ′j(s) + (f ′k(s))
2
C−1kk (s) (5)

= I(s)− (f ′k(s))
2
C−1kk (s)− 2f ′k(s)

∑

j 6=k

C−1kj (s)f ′j(s),

where δij is the Kronecker delta (equal to 1 if i = j, and zero otherwise), and I(s) the Fisher information value362

from Eq. 4.363

Whenever Ĩ(s) > I(s), the population code is made more informative by the inclusion of an untuned neuron.364

That condition corresponds to365

−2f ′k(s)
∑

j 6=k

C−1kj (s)f ′j(s) > (f ′k(s))
2
C−1kk (s), (6)

which is Eq. 1 of the main text.366

Analysis of in vivo neural recordings367

Overview of the experiment368

The full description of the experiment is given by [12], and so I briefly summarize here. GCaMP6f was expressed369

in the excitatory neurons of the forebrain of mice. 2-photon imaging was used to measure the fluorescence of370

neurons in visual cortex through a cranial window. The mice were presented with drifting grating stimuli. The371

stimuli could move in any of 8 different directions, and at 6 different temporal frequencies. The stimuli were372

presented for 2 seconds each, followed by a 1 second gray screen before the next stimulus was presented. Each373

combination of direction and frequency was presented repeatedly (either 15 or 30 times each, depending on the374

temporal frequency).375

Data access376

Following the example Jupyter notebook provided by [12] – which provides a template for accessing the ex-377

perimental data – I retrieved the following data: average ∆F/F values for each neuron on each trial, and the378

stimulus direction for each trial. I analyzed all of the neurons observed in each experiment, and not only those379

that were labelled as visually responsive.380
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Tuning curves381

I calculated the tuning curves (Figs. 5A and B) by averaging the ∆F/F values for all trials of each direction:382

this marginalizes over the different temporal frequencies. The noise correlations coefficients (Fig. 5D) were383

computed over repeats of the same stimulus (same orientation and temporal frequency), and then averaged over384

all stimuli.385

Statistical tests of significance386

For the results in Figs. 6, S3, and S4, I used two different methods to assess statistical significance. First, I used387

the standard paired sample t-tests. Second, I used non-parametric tests described below. These are typically388

more conservative because they are not sensitive to non-Gaussianity in the data. Both methods showed that the389

experimental results are significant.390

For the non-parametric tests, I identified the number, K, of experiments in which the effect was positive.391

For example, for Fig. 6A, this was the number of experiments in which the full population gave better decoding392

performance than did the subset containing only tuned neurons. I then computed the probability that, of393

the N = 46 experiments, K or more of them would have a positive effect, if the outcome of each experiment394

came from an unbiased coin flip (which assigned a positive, or negative, effect with equal probability). This395

probability is obtained from the binomial distribution, and gives the probability that we would have observed396

the same results by random chance.397

Identifying tuned vs untuned neurons398

Following [43, 9], direction selective cells were identified via their circular variance, with the direction selectivity399

index (DSI) computed for each neuron as follows. For each stimulus direction, I computed the two-dimensional400

direction vector d(θ) = [cos(θ), sin(θ)], and multiplied that by the neuron’s mean response to this stimulus r(θ)401

(i.e., the tuning curve value for that stimulus). This yielded a vector v(θ) = r(θ)d(θ) that points in the direction402

of the stimulus, with the length determined by the cell’s mean response to the stimulus. I then averaged this403

vector over all stimulus directions. If the neuron gave equal responses to all stimuli, the horizontal and vertical404

components of v(θ) would average out to zero over all the stimuli, whereas if the neuron responds selectively to405

one stimulus direction, this cancellation would not occur. Consequently, the DSI is measured by the length of406

〈v(θ)〉, relative to the neuron’s mean response (averaged over all stimuli):407

DSI =

∣∣∣∣
〈v(θ)〉
〈r(θ)〉

∣∣∣∣ . (7)

If the neuron responds strongly to only one stimulus direction, the DSI can be as large as 1, and the DSI can be408

as small as 0 for neurons that respond equally to all stimuli.409

To identify tuned (vs “untuned”) neurons, I chose a cutoff of DSI > 0.25. This matches the smallest DSI410

of the direction-selective retinal ganglion cells studied by [9]. I also repeated the decoding analysis from Fig.411

6 with different cutoffs on the DSI, and found qualitatively similar results: the precise value of the cutoff is412

unimportant (Figs. S3 and S4).413

Logistic regression decoding analysis414

I used the logistic regression method of [44]. The classifier was trained to take in vectors of neural responses, in415

response to two different stimuli, and to return labels (“0” or “1”) that indicate which of the two stimuli was416

presented on each trial. I randomly divided the data into a training set (75% of the data) that was used to fit417

the weights of the classifier, and a test set (25% of the data) that was used to measure the performance. After418
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training on the training data, I applied the classifier to the neural responses from the test data set, yielding419

an output value for each response vector. Values above 0.5 indicated that the stimulus was most likely to be420

stimulus “1”, whereas values less than 0.5 were taken to indicate that response was most likely generated by421

stimulus “0”. I then computed the fraction of these test trials on which this classifier correctly identified the422

stimulus that caused the neural response. This analysis was separately done for all (8 × 7)/2 = 28 different423

stimulus pairings: reported performance values are averages over all such stimulus pairings.424
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Supplemental Information and Figures524

Figure S1: different parameters for the limited-range correlations525
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Supplementary Figure 1: Dependence of information on limited range correlation parameters.

(Related to Fig. 1.) I repeated the calculations from Fig. 1, in all cases for populations of 200

neurons. I repeated the calculations for different values of ρmax and λ, the parameters that define the

limited-range correlations. For each set of parameters, I computed the ratio of Fisher information in

the full population of 200 neurons, vs. the Fisher information in just the tuned subset of (70% of) the

population. Error bars are the S.E.M. over 10 random sets of different tuning curves.

Information-limiting correlations and Fig. S2526

I repeated the calculations from Fig. 3, using the same random tuning curve shapes (as in Fig. 1A), but527

different covariance matrices. (In both Figs. S2A and S2B, the neurons had Poisson-like variability, as is seen528

experimentally). In Fig. S2A, the neurons had the differential correlations studied by [19, 23]. These correlations529

are such that the shared (correlated) part of the population noise mimics the changes in neural firing pattern530

induced by changes in the stimulus, thereby causing the distributions of responses to different stimuli to overlap531

substantially. As a a result of that overlap in the stimulus-evoked response distributions, the noise substantially532

hinders the population code, and thus information saturates with increasing population size.533

That covariance matrix, CA, is given by534

CA(s) = Co + Υ~f ′(s)~f ′
T

(s), (8)

where Υ is a (small) scalar parameter that sets the strength of the differential correlations, and Co is a diagonal535

matrix with entries equal to the mean firing rates given by f(s). For Υ = 0, this covariance matrix describes536

independent neurons with Poisson variability. For the results in Fig. S2A, I chose Υ = 5× 10−3, corresponding537

to weak but non-zero differential correlations.538

Because changes in the stimulus do not change the mean firing rates of the untuned neurons – and the539

differential correlations mean the correlated noise mimics the stimulus-evoked changes in firing rates – the540

untuned neurons are unaffected by the correlated noise. This means that, with “pure” differential correlations,541

the noise in the untuned neurons is independent from the noise in the tuned ones. Consequently, ignoring542

the untuned neurons causes no loss of information (Fig. S2A: full population and tuned subset have the same543

information values).544

To consider a case with information-limiting correlations in the tuned population, but with correlations545

between the tuned and untuned cells, I modified the differential correlation structure such that the untuned546
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neurons were correlated with the tuned ones. Specifically, I modified Eq. 8 in a fashion that kept the tuned547

subset of the population unchanged, but made the untuned subset correlated with the tuned one. To do this, I548

used the formula549

CB(s) = Co + Υ~g(s)~gT (s), (9)

where gi(s) = f ′i(s) if the neuron is tuned, and gi(s) ∼ N (0, 5) if the neuron is untuned. If only the subset of550

tuned neurons is considered, CA = CB . For the untuned neurons, the corresponding rows and columns of CA551

are all zeros, whereas for CB , they are randomly generated non-zero values. Figure S2B used the same value of552

Υ as Fig. S2A.553
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Supplementary Figure 2: Untuned neurons improve population coding when they are cor-

related with the tuned neurons. (Similar to Fig. 3, but with information-limiting cor-

relations) I considered neural populations with tuning curves as in Fig. 1, and where the untuned

neurons were either independent of the tuned ones (A), or where the untuned neurons were correlated

with the tuned ones (B). 70% of the neurons in each population were tuned to the stimulus, and 30%

were untuned. Upper panels show correlation matrices for 250-cell populations: cells 1 through 75

are untuned, whereas the remainder were tuned. Center panels show the Fisher information for the

full neural populations (black), for the tuned subsets of neurons (red), and for random subsets of 70%

of the neurons in each population (blue). (Data points shown are mean ± S.E.M., computed over 5

different random draws of the tuning curves).

For the tuned subset of the population, the noise structure in Fig. S2B was identical to the one in Fig. S2A554

(both contain differential correlations), and thus the tuned subsets of neurons have the same information in both555

cases. (Red data points in Fig. S2A have the same values as do points on the red curve in Fig. S2B). Different556

from Fig. S2A, the full population contained much more information than did the tuned subset, indicating that557

the untuned neurons do contribute to the population code in this case.558

Thus, the observation that, when there are correlations between tuned an untuned neurons, untuned neurons559

improve population coding, holds in the case of information-limiting correlations (Fig. S2).560

At the same time, it is important to note that the case of purely untuned neurons, with information-limiting561

correlations (Fig. S2), is, in some sense, pathological. Because the untuned neurons have no tuning, any noise562

that is correlated between the untuned and tuned cells will not perfectly match the stimulus-dependent changes563

in neural firing rates (i.e., the correlations will not be of the “pure” information-limiting type anymore, once564

correlations between tuned and untuned cells are included). Consequently, the large increase in information from565

including the untuned neurons seen in Fig. S2B will not occur if there is even weak tuning to the “untuned”566

population (because in that case, the “untuned” cells could be correlated with the strongly-tuned ones, while567
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maintaining a pure information-limiting correlation structure).568

For this reason, we chose to focus the result in the main paper (Fig. 3) on a limited-range correlation569

structure, which has no such pathology: Fig. 3 would be qualitatively unchanged if the “untuned” neurons were570

made weakly tuned instead of perfectly untuned.571

Varying the DSI cutoff for labelling cells as “tuned” vs “untuned”; Figs. S3 and S4572

I repeated the analysis from Fig. 6 with two different cutoffs on the direction selectivity index (DSI), which is573

used to distinguish “tuned” neurons from “untuned” ones.574

DSI cutoff of 0.3 (Fig. S3):575

I labeled cells with DSI > 0.3 as “tuned” and those with DSI < 0.3 as “untuned”. I then compared the576

logistic regression decoding performance on the full population with that on the tuned subset of the population.577

The full population yielded 13± 2% better decoding performance (p = 4.7× 10−12, paired sample single-sided t578

test; p < 10−8, non-parametric binomial test of significance).579
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Supplementary Figure 3: Untuned neurons can enhance information coding in in vivo neural

populations. (Similar to Fig. 6, but with a cutoff of DSI > 0.3 for labeling cells as

“tuned”.) I used logistic regression to perform pairwise discrimination on the population response

vectors, to determine which of 2 different stimuli caused each response. I repeated this analysis for

all possible pairs of stimuli: reported values are the percentage of trials for which the stimulus was

correctly identified, averaged over all possible pairings (there is one data point per experiment). (A)

Decoding accuracy when the full population response vectors were decoded (vertical axis) vs. when

only the tuned subsets of the neurons are seen by the decoder (horizontal axis). (B) Decoding accuracy

when random subsets of the neurons (of the same size as the tuned subset, but containing both tuned

and untuned neurons) are input to the decoder (vertical axis) vs. when only the tuned subsets of the

neurons are seen by the decoder (horizontal axis). Chance performance for this binary discrimination

task is 50%. Diagonal line denotes equality.

Next, I asked whether populations that include both tuned and untuned neurons could yield better decoding vs580

populations of the same size but containing only tuned cells. To answer this question, I extracted a random subset581

of the neurons from each population, that was the same size as the set of tuned neurons within that population.582

I then performed the logistic regression analysis on these random subsets, and compared the performance with583

that which was obtained on the tuned subsets. On average, the decoding performance was 5 ± 1% (mean ±584
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S.E.M.) better using the random subsets vs the fully tuned ones, a modest but statistically significant difference585

(p = 3.9× 10−6, paired single-sided t-test; and p = 2.2× 10−3, non-parametric binomial test of significance).586

DSI cutoff of 0.2 (Fig. S4):587

I labeled cells with DSI > 0.2 as “tuned” and those with DSI < 0.2 as “untuned”. I then compared the588

logistic regression decoding performance on the full population with that on the tuned subset of the population.589

The full population yielded 7± 1% better decoding performance (p = 9.8× 10−10, paired sample single-sided t590

test; p < 10−8, non-parametric binomial test of significance).591
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Supplementary Figure 4: Untuned neurons can enhance information coding in in vivo neural

populations. (Similar to Fig. 6, but with a cutoff of DSI > 0.2 for labeling cells as

“tuned”.) I used logistic regression to perform pairwise discrimination on the population response

vectors, to determine which of 2 different stimuli caused each response. I repeated this analysis for

all possible pairs of stimuli: reported values are the percentage of trials for which the stimulus was

correctly identified, averaged over all possible pairings (there is one data point per experiment). (A)

Decoding accuracy when the full population response vectors were decoded (vertical axis) vs. when

only the tuned subsets of the neurons are seen by the decoder (horizontal axis). (B) Decoding accuracy

when random subsets of the neurons (of the same size as the tuned subset, but containing both tuned

and untuned neurons) are input to the decoder (vertical axis) vs. when only the tuned subsets of the

neurons are seen by the decoder (horizontal axis). Chance performance for this binary discrimination

task is 50%. Diagonal line denotes equality.

Next, I asked whether populations that include both tuned and untuned neurons could yield better decoding vs592

populations of the same size but containing only tuned cells. To answer this question, I extracted a random subset593

of the neurons from each population, that was the same size as the set of tuned neurons within that population.594

I then performed the logistic regression analysis on these random subsets, and compared the performance with595

that which was obtained on the tuned subsets. On average, the decoding performance was 3 ± 1% (mean ±596

S.E.M.) better using the random subsets vs the fully tuned ones, a modest but statistically significant difference597

(p = 2.7× 10−5, paired single-sided t-test; and p = 5.7× 10−3, non-parametric binomial test of significance).598
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