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Abstract

Gene expression data, such as those generated by next generation sequencing technologies
(RNA-seq), are of an inherently relative nature: the total number of sequenced reads has no
biological meaning. This issue is most often addressed with various normalization techniques
which all face the same problem: once information about the total mRNA content of the origin
cells is lost, it cannot be recovered by mere technical means. Additional knowledge, in the form
of an unchanged reference, is necessary; however, this reference can usually only be estimated.
Here we propose a novel method where sample normalization is unnecessary, but important
insights can be obtained nevertheless. Instead of trying to recover absolute abundances, our
method is entirely based on ratios, so normalization factors cancel by default. Although the
differential expression of individual genes cannot be recovered this way, the ratios themselves
can be differentially expressed (even when their constituents are not). Yet, most current
analyses are blind to these cases, while our approach reveals them directly. Specifically, we
show how the differential expression of gene ratios can be formalized by decomposing log-ratio
variance (LRV) and deriving intuitive statistics from it. Although small LRVs have been used
to detect proportional genes in gene expression data before, we focus here on the change in
proportionality factors between groups of samples (e.g. tissue-specific proportionality). For
this, we propose a statistic that is equivalent to the squared t-statistic of one-way ANOVA,
but for gene ratios. In doing so, we show how precision weights can be incorporated to
account for the peculiarities of count data, and, moreover, how a moderated statistic can be
derived in the same way as the one following from a hierarchical model for individual genes.
We also discuss approaches to deal with zero counts, deriving an expression of our statistic
that is able to incorporate them. In providing a detailed analysis of the connections between
the differential expression of genes and the differential proportionality of pairs, we facilitate
a clear interpretation of new concepts. The proposed framework is applied to a data set
from GTEx consisting of 98 samples from the cerebellum and cortex, with selected examples
shown. A computationally efficient implementation of the approach in R has been released as
an addendum to the propr package.1

Key words: Differential gene expression, sample normalization, proportionality, count
ratios, moderated statistics, covariance regularization, count zeros.

1This paper is a slightly revised version of the conference paper presented at CoDaWork 2017, the 7th Com-
positional Data Analysis Workshop, Abbadia San Salvatore, Italy. Its main change is a modified definition of the
moderated statistic.
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1 Introduction

Normalization techniques for transcriptome sequencing data continue to be of high interest
to the data analysis community (e.g. see (Dillies et al., 2013) for a review and (Lun et al.,
2016) for a recent example in single-cell RNA-seq). For sample normalization between entirely
different conditions, however, ever more sophisticated techniques cannot close the knowledge
gap that is of a principal nature: the total mRNA content of the cells of origin is unknown
and can only be obtained with an appropriate ‘absolute’ technique.

It has been argued that normalizations can be avoided by performing a log-ratio transfor-
mation of the data (Fernandes et al., 2013; Lovell et al., 2015). Such data transformations,
however, depend on the reference that is used. The danger here is that the resulting trans-
formed data is ultimately interpreted in a gene-wise fashion. Interpreting log-ratio transformed
expression data as referring to gene abundances (instead of ratios with respect to a given ref-
erence) runs into the exact same problems as using normalizations (Erb & Notredame, 2016).
It effectively means that the log-ratio transformation is seen as a normalization (that has, as
it were, an additional aura of technical sophistication). The only way out of this dilemma
seems to be to let go of the gene-wise perspective entirely and instead consider ratios as the
basic objects of interest. Although some information will remain hidden this way (such as the
true differential gene expression between absolute abundances), the remaining signal will be
inherently unbiased.

Here we propose a formal framework for understanding differential ratio expression, a
change in the ratio of abundances between experimental groups. In doing so, we show that
techniques developed for the analysis of the differential expression of genes (e.g. methods
known from the limma/voom approach (Smyth, 2004; Smyth, 2005; Law et al., 2014) apply
to the analysis of differential ratios as well. This seems intuitive when considering gene ra-
tios as depicted in Figure 1D: an identical picture could be obtained using read counts of a
differentially expressed gene instead of gene ratios as shown. However, the interpretation of
differential ratios differs considerably.

First, we must consider what it means for a gene ratio to remain unchanged across all
sample data. The answer is that the two genes change in the same way (or otherwise remain
both unchanged). Figure 1A shows this case in a scatter plot of the read counts for two
genes (a splicing factor and a polymerase subunit). Note that although the gene ratio may
remain the same, the genes themselves could have joint differential expression. Such gene-wise
differential expression is not detected by the ratio approach: although the two genes appear
differentially expressed between the tissues, their approximately constant ratio, as shown in
Figure 1B, does not reveal this. However, without knowing absolute mRNA abundances, genes
may appear differentially expressed only as an artifact of their relative nature.

Second, we must consider what it means for a gene ratio to differ between experimental
groups. Figures 1C and 1D shows an example of tissue-specific gene ratios. Here, the two genes
(the same splicing factor as before and a kinase) are correlated in both tissues (with a similar
strength of correlation), but with different slopes. This means their proportionality factor is
tissue-specific (i.e. they have differential proportionality). In terms of biochemistry, this could
indicate a change in the stoichiometry of the protein products resulting from these mRNAs.
Preliminary GO-category enrichment analyses support this view, showing that differentially
proportional pairs often contain genes that form protein complexes like those involved in
transcription or ribosomal activity.

Current standard methods are not tailored to infer differentially proportional pairs (c.f.,
Figure 3), although a special class of them, involving receptor subunits in the human brain,
has been found by considering time-dependent correlations (Bar-Shira et al., 2015). One
method, differential correlation (Tesson et al., 2010), is concerned with differential correlation
coefficients, but not with the differential slopes of linear relationships. Importantly, current
methods always include a normalization step that–in the best case scenario–introduces extra
noise, thus reducing efficacy compared with a method that picks up such signals directly.
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Figure 1: Constant and changing ratios across 98 samples from two tissues: (A) Scatter plot of
two genes having an approximately constant read count ratio across all samples (i.e. proportional
genes). (B) Ratio plot of the same two genes as in panel A. Although panel A suggests their
differential expression, ratios are unable to reveal it. (C) Example of differentially proportional
genes. Their correlation appears to be about equally strong in both tissues, but the slope of their
linear relationship changes between the tissues. (D) Ratio plot of the same two genes as in panel
C. The tissue-specific proportionality factors can be detected clearly, and the picture suggests that
conventional methods of differential gene expression can be applied to ratios as well.
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2 Methods and Results

2.1 Simple statistics for differential proportionality
We start by introducing a short-hand notation which allows us to denote projections of the
log-ratios of two vectors x,y having n components (e.g. a gene or transcript pair) onto a subset
of size k:

Lx,y
1,...,k :=

(
log

x1

y1
, . . . , log

xk
yk

)
. (1)

Equivalently, the log-ratio mean (LRM) and variance (LRV) evaluated on this subset are
denoted by E(Lx,y

1,...,k) and var(Lx,y
1,...,k) respectively. Let us now assume we have a natural

partition of our n samples into two subsets (conditions, or tissues) of experimental replicates
of sizes k and n−k. To avoid clutter, we drop x,y from the notation in the following equation.
It is well known that variance evaluates to

var(L1,...,n) = E(L2
1,...,n)− E2(L1,...,n)

=
kE(L2

1,...,k) + (n− k)E(L2
k+1,...,n)

n
− (kE(L1,...,k) + (n− k)E(Lk+1,...,n))2

n2

=
kE2(L1,...,k) + (n− k)E2(Lk+1,...,n)

n
+
kvar(L1,...,k) + (n− k)var(Lk+1,...,n)

n

− (kE(L1,...,k) + (n− k)E(Lk+1,...,n))2

n2

=
k(n− k)

n2
(E(L1,...,k)− E(Lk+1,...,n))2 +

kvar(L1,...,k) + (n− k)var(Lk+1,...,n)

n
. (2)

This is the well-known decomposition into between-group variance (first term) and within-
group variance (second term) known from analysis of variance (ANOVA). Note that all vari-
ances throughout the text are defined as the biased estimators (so the sum of squares are
divided by k rather than k − 1, with k the number of summands). As will be seen from the
discussion below, differential proportionality can be studied relative to LRV and there is no
need for evaluation of the total size of LRV (which is a problem when studying proportionality
across all the samples). If we divide (2) by var(L1,...,n), we obtain as summands the various
proportions of (weighted) group variances and of the between-group variance to the overall
variance. For illustration, this is visualized as a ternary diagram in Figure 2A. The proportion
of within-group variance with respect to overall variance is thus a function of the three LRVs:

ϑ(x,y) =
kvar Lx,y

1,...,k + (n− k)var Lx,y
k+1,...,n

nvar Lx,y
1,...,n

. (3)

Conveniently, ϑ is a number between zero and one. When approaching zero it indicates
that the total LRV is explained by the squared difference in group LRMs (Fig. 2B). A large
enough difference means that scatter plots of y vs. x will have different slopes depending
on the condition the samples come from. This case is thus characterized by tissue-specific
proportionality factors (or group LRMs). We call this type of differential proportionality
disjointed proportionality here.

We can use ϑ for testing this property on our vector pairs and evaluate its significance using
a simple permutation test for an estimate of the false discovery rate (FDR). Alternatively, a
classical test-statistic known from one-way ANOVA with two groups is the squared t-statistic
F . It is related to ϑ by

F = (n− 2)
(1− ϑ)

ϑ
. (4)

This statistic can be used to do a classical F -test of the null hypothesis of equal group (popu-
lation) LRMs under standard ANOVA assumptions. Note that regardless of the statistic used,
multiple testing corrections are especially important in the ratio context due to the large num-
ber of gene pairs that get tested. These can be efficiently obtained by estimating the FDR,
such as by using the plug-in estimate from a permutation procedure, see e.g. (Hastie et al.,
2009).

We have seen that disjointed proportionality describes pairs where between-group variance
constitutes the major part of their LRV. Another type of differential proportionality can be
defined for those pairs where one of the group LRVs dominates the total LRV. A scatter of
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Figure 2: Decomposition of log-ratio variance into (weighted) group variances and between-group
variance shown in ternary diagrams. Data from our example from GTEx (group 1 cerebellum,
group 2 cortex) are shown. For better visibility, a subset of 10,000 randomly sampled gene pairs
were selected. (A): The 10,000 dots corresponding to LRVs of each gene pair. (B): Gene pairs
fulfilling ϑ < 0.5 (disjointed proportionality). (C): Gene pairs fulfilling ϑe < 0.2 (emergent propor-
tionality). (D): Gene pairs fulfilling ϑe > 0.7. Such cut-offs from below induce a cut-off on ϑ and
an additional restriction on the difference between weighted group variances.

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2018. ; https://doi.org/10.1101/134536doi: bioRxiv preprint 

https://doi.org/10.1101/134536
http://creativecommons.org/licenses/by/4.0/


y vs. x will then show proportionality for samples in one condition but no correlation for
the other condition. We will call this type of proportionality emergent to distinguish it from
disjointed proportionality. In complete analogy to the definition of ϑ, from (2) we get

ϑ1(x,y) =
nvar Lx,y

1,...,n − kvar Lx,y
1,...,k

nvar Lx,y
1,...,n

, (5)

as the proportion of the sum of between-group variance and the LRV of group 2 to the total
LRV. Small values of ϑ1 indicate that the LRV of group 1 constitutes the major part of the
total LRV, which is our defining feature of emergent proportionality in group 2. A convenient
measure for detecting emergent proportionality regardless of group can be defined as

ϑe(x,y) = 1−
max

(
kvar Lx,y

1,...,k, (n− k)var Lx,y
k+1,...,n

)
nvar Lx,y

1,...,n

, (6)

of which a cut-off from above will give us the a set of pairs that are proportional in just one
of the two conditions (Fig. 2C). Let us now look at the relationship between ϑe and ϑ. Note
that we have

ϑe = 1− ϑ+
min (kvar L1,...,k, (n− k)var Lk+1,...,n)

nvar L1,...,n
. (7)

It follows that
1− ϑ ≤ ϑe ≤ 1− ϑ/2, (8)

with the equality 1 − ϑ = ϑe holding if one of the group LRVs vanishes and ϑe = 1 − ϑ/2 in
the case of equality of weighted group LRVs kvar L1,...,k = (n− k)var Lk+1,...,n. It transpires
that ϑe can be used to study both types of differential proportionality since large values of it
enforce small ϑ. For this, a second cut-off on ϑe, this time from below, needs to be determined.
However, note that a cut-off ϑe > C would enforce a somewhat stricter definition on disjointed
proportionality, where the induced cut-off ϑ < 2(1 − C) can only be attained for equality of
weighted group LRVs, a condition that is relaxed when going further down with ϑ. In fact,
cut-offs from below on ϑe cut the upper corner of the ternary diagram with two lines that yield
a diamond shape as opposed to the triangle that results from a cut-off on ϑ (Fig. 2D). Thus ϑe

allows for better control of the correlation within the groups. This can be useful when filtering
out those differentially proportional pairs that consist of genes having differential expression
but which are not proportional within the groups. This case will be discussed in section 2.4.

2.2 Introducing precision weights
RNA-seq data show a pronounced mean-variance relationship that leads to biases when linear
models are fit to them. However, log-ratios do not show the mean-variance relationship of the
counts directly. The problem here is rather that we should have less confidence in ratios when
they involve low counts, as their precision will be lower due to the mean-variance relationship.
It has been suggested that an incorporation of the mean-variance relationship via precision
weights makes count data accessible for linear modelling (Law et al., 2014) and weighting in
general leads to better benchmark performance (Liu et al., 2015). Here we need weights for
log-ratios rather than log counts. We can combine the weights ω(xi) for read counts of gene
x in condition i into a ratio weight by simply multiplying the weights of both genes involved.
Let us denote these weights by

ωx,y
i = ω(xi)ω(yi). (9)

The overall weight of a given ratio for the set of samples 1, . . . , k1 from condition 1 is then

Ωx,y
1 =

k1∑
i=1

ωx,y
i . (10)

Let us now drop the upper indices for the gene pair. The weighted log-ratio means and
variances for a given gene pair in condition 1 will then be

Eω(L1,...,k1) =
1

Ω1

k1∑
i=1

ωilog
xi
yi
, (11)

varω(L1,...,k1) =
1

Ω1

k1∑
i=1

ωi

(
log

xi
yi
− Eω(L1,...,k1)

)2

. (12)
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The decomposition of weighted log-ratio variance goes through as before, and a weighted
statistic

ϑω =
Ω1varω L1,...,k + Ω2varω Lk1+1,...,k1+k2

(Ω1 + Ω2)varω L1,...,k1+k2

(13)

can be defined in analogy to (3). Here we were just interested in the sums, not the actual
variances. Note that we can define a unbiased weighted variance estimator specifically for
reliability weights. For this, the prefactor in (12) changes from 1/Ω1 to 1/(Ω1 −

∑
ω2
i /Ω1).

2.3 A moderated statistic for ratios

It has been shown that similarities in expression between the genes can be exploited by as-
suming an underlying prior distribution of within-group variances and log-fold changes in a
gene-expression matrix (Lönnstedt & Speed, 2002; Smyth, 2004). The resulting hierarchical
model can be used to derive a moderated t-statistic whose parameters can be estimated from
the data in empirical-Bayes fashion. The moderated statistic has been shown to be much
more powerful than the classical t-statistic in simulation-based benchmarks, see (McCarthy &
Smyth, 2009). Its effect is especially relevant for small numbers of samples. The moderation
shrinks the within-group variance of a gene toward a prior variance and should have a similar
effect as the regularization (Witten & Tibshirani, 2009) of a covariance matrix. Here we make
use of the gene-wise hierarchical model to moderate the gene ratio variances. This approach,
although somewhat ad-hoc, is justified by the fact that ratios with unchanged (reference) genes
in the denominator are proportional to absolute abundances, which the gene-wise hierarchical
model is designed for. The changes of model parameters between arbitrary references are
found to be small and are neglected in our approach.

Let us denote the pooled within-group variance of the log-ratios with unchanged reference
z by

s2
x,z =

kvar Lx,z
1,...,k + (n− k)var Lx,z

k+1,...,n

n
. (14)

Given the hierarchical model, it was shown that the posterior mean of the inverse population
variance σ−2

x,z, given the sample variance (14) has the form

s̃−2
x,z =

dz + n

dzs2
z + ns2

x,z
, (15)

where dz and s2
z are the parameters of the Gamma distribution serving as a prior for the

variance (14). We will not go into more detail of the underlying Bayesian model here but
just mention that a moderated t-statistic can be obtained by replacing s2

x,z in the original t-
statistic by s̃2

x,z. In the following we use (15) as a justification for moderating the within-group
variances. This can also be seen as a kind of regularization of the covariance matrix of the
log-ratios that have z as a reference. From (15) we now derive moderated versions of F and
ϑ for all the gene ratios. Let us denote by F ′ the ratio of between-group over within-group
LRV for a given gene pair. F ′ is the same as F in Equation (4) without the factor (n − 2).
We have

F ′(x,y) = K

(
E(Lx,y

1,...,k)− E(Lx,y
k+1,...,n)

)2

s2
x,y

, (16)

where we also used the short-hand expression

K =
k(n− k)

n2
. (17)

The idea is now to replace the term s2
x,y by its moderated version derived from (15). It would

only slightly change the parameters (and would lead to loss of symmetry between x and y) to
use a different hierarchical model for each reference y. We thus choose a generic reference z
for obtaining the prior variance. For the moderated F ′ we then find

F̃ ′z(x,y) = K

(
E(Lx,y

1,...,k)− E(Lx,y
k+1,...,n)

)2

(dz + n)

dzs2
z + ns2

x,y
. (18)

We can further simplify this expression using two relationships following from equations (2)
and (3), namely

K
(
E(Lx,y

1,...,k)− E(Lx,y
k+1,...,n)

)2
= var Lx,y

1,...,n(1− ϑ(x,y)) (19)
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and
s2
x,y = var Lx,y

1,...,nϑ(x,y). (20)

With these, (18) becomes

F̃ ′z(x,y) =
(dz + n) (1− ϑ(x,y))

nϑ(x,y) +
dzs2z

var L
x,y
1,...,n

. (21)

The expression s2
z/var Lx,y

1,...,n occurring here can be considered the prior ϑ to which the original

ϑ(x,y) is shrunk. The parameters dz and s2
z can be determined, e.g. using the limma package

(Smyth, 2005). Whether the dependence on the choice of z is of any practical importance needs
to be investigated empirically. From F̃ ′ we get immediately the corresponding expressions for
F̃ and ϑ̃ by applying (4):

F̃ = F̃ ′(n+ dz − 2), (22)

ϑ̃ =
1

1 + F̃ ′
. (23)

Here, we did not use the weighted variances for clarity and to ease the notational burden; they
can be derived in similar fashion.

2.4 Relation to differential expression
If we assume that we know the identity of an unchanged reference z, it provides us with an
ideal normalization (as mentioned in the previous section). The statistic ϑ(x, z) could then be
used as a measure for the amount of differential expression of gene x, whose log-fold change
would be

bx = E(Lx,z
1,...,k)− E(Lx,z

k+1,...,n). (24)

Likewise, within-group variances of individual genes x, with an ideal reference z can be written
as the within-group variances of the ratios with z, i.e.

s2
x = s2

x,z. (25)

We will now show that if we have two sufficiently strong differentially expressed genes whose
log-fold changes have opposite signs, then they will form a differentially proportional pair.
Hence, no within-group correlations of the genes are required in this case for their ϑ to be
small2. More formally, we assume

ϑ(x, z) ≤ c, (26)

ϑ(y, z) ≤ c, (27)

bxby < 0. (28)

The log-ratio change of the gene pair x,y is

E(Lx,y
1,...,k)− E(Lx,y

k+1,...,n)

= E(Lx,z
1,...,k)− E(Ly,z

1,...,k)− E(Lx,z
k+1,...,n) + E(Ly,z

k+1,...,n) = bx − by. (29)

Likewise, the within-group variance of the gene pair x,y can be written as

s2
x,y = s2

x,z + s2
y,z − 2czx,y, (30)

where the term czx,y denotes the within-group covariance between x and y defined by

czx,y =
k

n
cov(Lx,z

1,...,k,L
y,z
1,...,k) +

n− k
n

cov(Lx,z
k+1,...,n,L

y,z
k+1,...,n). (31)

Using (29),(30) and (16) we obtain

F ′(x,y) =
K (bx − by)2

s2
x,z + s2

y,z − 2czx,y
. (32)

2This means there are at least two kinds of pairs with small ϑ: the ones where genes are proportional within
the two groups of samples, and those where both genes are unrelated but differentially expressed individually. The
latter have a larger within-group LRV and thus need to compensate with a larger overall LRV.
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Figure 3: Differential expression of individual genes is not necessary for the pair to be differentially
proportional: (A) Read counts plotted against the sample index for the gene PSMD7 (a proteasome
subunit). Read counts do not indicate any apparent differences between tissues. (B) A similar
situation as in panel A, but for a nuclear receptor binding protein. (C) The ratio plot of the genes
from panels A and B. There is a clear difference in the gene ratios, although the individual read
counts show no apparent differential expression.
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Let us now find a bound from above for the denominator. The definition (16) implies that

s2
x,z =

Kb2x
F ′(x, z)

=
Kb2xϑ(x, z)

1− ϑ(x, z)
≤ Kb2xc

1− c , (33)

with the bound following from our condition (26), and for s2
y,z from (27). For an upper bound

on the denominator in (32), we can then use

s2
x,z + s2

y,z − 2czx,y ≤ 2
(
s2
x,z + s2

y,z

)
≤ 2K

c

1− c
(
b2x + b2y

)
. (34)

The first bound follows from the fact that the absolute value of the correlation coefficient
czx,y/

√
s2
x,zs2

y,z is smaller than one and the arithmetic mean bounds the geometric mean in its
denominator. The second bound uses (33). Inserting this back into (32) we find

F ′(x,y) ≥ K (bx − by)2

2K c
1−c (b2x + b2y)

=
b2x + b2y − 2bxby

2 c
1−c (b2x + b2y)

≥ 1− c
2c

, (35)

with the last bound following from (28). We thus find that (26)-(28) imply differential pro-
portionality in the sense that

ϑ(x,y) ≤ 2

1 + 1/c
. (36)

In a similar fashion, more complicated relationships could be derived where the conditions
(27) and (28) get relaxed. Instead, we will now look at the reversed question: What can
we know about differential expression of the individual genes when the pair is differentially
proportional? The only assumption we make is

ϑ(x,y) ≤ C. (37)

Starting from (32), we have

1− C
C

≤ F ′(x,y) =
K (bx − by)2

s2
x,y

=

(√
s2
x,z

1−ϑ(x,z)
ϑ(x,z)

−
√
s2
y,z

1−ϑ(y,z)
ϑ(y,z)

)2

s2
x,y

, (38)

where the last equality was obtained rewriting the second equality in (33). The ϑ(x, z) for
which we get the smallest value of F ′ permitted by C (i.e. where the equality holds) is obtained
by solving the quadratic equation. We get√

1− ϑ(x, z)

ϑ(x, z)
=

√
s2
y,z

s2
x,z

(1− ϑ(y, z))

ϑ(y, z)
±

√
s2
x,y

s2
x,z

(1− C)

C
. (39)

Values of the left-hand side leading to bigger F ′ are obtained below the “−” and above the
“+” solution. We are in the latter regime if s2

x,z
1−ϑ(x,z)
ϑ(x,z)

≥ s2
y,z

1−ϑ(y,z)
ϑ(y,z)

. We can assume this

to be fulfilled (because x and y indices can just be swapped in case it is not). Thus choosing
the more convenient of the two ϑ, we obtain

1− ϑ(x, z)

ϑ(x, z)
≥

(√
s2
y,z

1−ϑ(y,z)
ϑ(y,z)

+
√
s2
x,y

1−C
C

)2

s2
x,z

≥
s2
x,y

s2
x,z

(1− C)

C
. (40)

We have thus found the following bound for one of the genes in the gene pair:

ϑ(x, z) ≤ 1

1 +
s2x,y

s2x,z

(1−C)
C

.
(41)

Intuitively this makes sense: when the genes are correlated within the groups, the within-
group LRV of the pair s2

x,y can be small compared to s2
x,z, and then C may not be sufficiently

small for differential expression of x (see Figure 3 for an example). For differential expression
we thus require a minimum within-group LRV of the differentially proportional pair. Note,
however, that although we can control for both s2

x,y and C, the within-group variance of the
gene s2

x,z remains inaccessible to us from a strict ratio point of view because it would require
our knowledge of the reference z leading to the correct normalization. Although for this reason
we cannot precisely quantify how small C needs to be, the obtained bound on ϑ(x, z) shows
qualitatively that differentially proportional pairs with sufficiently high within-group variance
will contain at least one differentially expressed gene.
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2.5 Handling zeros

As reviewed in (Martın-Fernandez et al., 2011), zeros resulting from undersampling (known as
count zeros, and a major source of zeros in RNA-seq data) can best be dealt with assuming a
Dirichlet prior leading to posterior counts where pseudocounts are added to the original counts.
Along the same lines, one can also choose a resampling strategy, where repeated drawings from
the posterior distribution lead to a kind of pseudo-replicates that do not contain zeros, which
will represent variation expected from the original counts (Fernandes et al., 2013; Tarazona
et al., 2015). Since an additive modification does not preserve ratios, a kind of multiplicative
modification of a given count

x̃k,i =

{
c if xk,i = 0,

(1− c · |{j : xk,j = 0}|) · xk,i otherwise,
(42)

was suggested (Martın-Fernandez et al., 2011). Here the column indices i go over the genes
in the given condition k, and the x̃k,i are the counts modified by the pseudocount c (which,
for simplicity, we assume to be independent of the samples here). The fact that ratios are not
preserved when simply adding the pseudocount, however, is felt strongest in the case of low
counts, where ratios should not be trusted anyway. To alleviate the problem, it thus seems
essential to use the precision weights of section 2.2 when calculating the relevant statistics.

While pseudocounts need an associated distributional theory to estimate them, a well-
founded heuristic that has been used widely in data analysis are power transformations of the
Box-Cox type. In the limiting case of a power tending to zero, these return the logarithm:

log(x) = lim
α→0

xα − 1

α
. (43)

It has been shown by (Greenacre, 2009) that this transformation establishes a connection
between Correspondence Analysis (CA) of the transformed data and log-ratio analysis, which
is obtained as a limiting case of CA when letting α tend toward zero. This is interesting
because CA handles zeros naturally. We will briefly describe this replacement strategy here.
As shown in (Greenacre, 2011), from re-writing LRV in the form

var(Lx,y
1,...,n) =

1

n

n∑
i=1

(
log

xi

(
∏n
j=1 xj)

1
n

− log
yi

(
∏n
j=1 yj)

1
n

)2

, (44)

a similarity with the (squared) χ2 distance used in CA becomes evident. Here we show this
distance for data raised to the power of α and with rows summing to one:

dα(x,y) =
1

nα2

n∑
i=1

(
xαi

1
n

∑n
j=1 x

α
j

− yαi
1
n

∑n
j=1 y

α
j

)2

. (45)

We can obtain (45) directly from (44) by applying (43) for nonzero α and replacing geometric
by arithmetic means (which is justified in the limit α→ 0).

A precision-weighted ϑ like in (13) that can also handle zeros can thus be defined by

ϑαω(x,y) =

k1∑
i=1

ωi

(
xαi

1
Ω1

∑k1
j=1 ωjx

α
j

− yαi
1

Ω1

∑k1
j=1 ωjy

α
j

)2

+

k1+k2∑
i=k1+1

ωi

(
xαi

1
Ω2

∑k1+k2
j=k1+1 ωjx

α
j

− yαi
1

Ω2

∑k1+k2
j=k1+1 ωjy

α
j

)2

n∑
i=1

ωi

(
xαi

1
Ω1+Ω2

∑k1+k2
j=1 ωjxαj

− yαi
1

Ω1+Ω2

∑k1+k2
j=1 ωjyαj

)2 .

(46)

Note that the weighting scheme differs from the one used in CA where weights are determined
from row and column sums and low counts get upweighted. The choice of α needs to trade
off closeness to the original LRV values (for gene pairs not containing zero counts small α are
more accurate) with the amount by which zeros should get punished (pairs containing zeros
can have lower ϑ if α is larger).
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2.6 GTEx data

For the practical examples shown here, we used data from the Genotype Tissue Expression
(GTEx) project (Lonsdale et al., 2013). Reads were mapped using TopHat2 (Kim et al., 2013)
and gene counts were obtained from the Flux Capacitor (Montgomery et al., 2010). 10,842
genes with nonzero counts throughout 7867 samples from 40 tissues were used, then samples
were additionally filtered for low ischemic times. Finally, only samples from two approximately
balanced brain tissues (54 cerebellum and 44 cortex samples) were retained to match the use
case discussed in this article. At an FDR of 5% (estimated by permutation tests) we find
a cut-off ϑ < 0.94 covering 26.6 million gene pairs (45% of all pairs). At ϑ < 0.69 (4.56
million pairs) no false positives were detectable anymore. For high confidence disjointedly
proportional pairs with clear within-tissue correlations, we settled for a much stricter cut-off
of ϑ ≤ 0.2 (chosen subjectively by visual inspection of scatter plots) comprising 13,000 pairs.
Conventional differential expression analysis using edgeR (Robinson et al., 2010) and DeSeq2
(Love et al., 2014) find about half of all considered genes differentially expressed at an FDR
of 5%.

3 Outlook

While here we have presented how differential expression of ratios can be formalized, a practical
proof of concept needs more in-depth analysis of relevant biological data sets. Preliminary
results show that the approach holds great promise since the phenomenon of stoichiometry
switches appears to be wide-spread both between tissues and between developmental stages
when using data from BrainSpan (Sunkin et al., 2012) (see http://developinghumanbrain.org).
These results will be reported elsewhere. The principle is not limited to providing a list
of interesting gene pairs. Differential proportionality induces a distance measure between
genes (e.g. in the form of ϑ) that can be used in a network analysis that is independent of
normalization. Our R implementation, available as an addendum to the propr package (Quinn
et al., 2017), provides an entry point to relevant graph-based analyses.
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