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Abstract	

How	neuronal	diversity	emerges	from	complex	patterns	of	gene	expression	remains	poorly	
understood.	Here	we	present	an	approach	to	understand	electrophysiological	diversity	through	
gene	expression	by	integrating	transcriptomics	with	intracellular	electrophysiology.	Using	a	
brain-wide	dataset	of	34	neuron	types,	we	identified	420	genes	whose	expression	levels	
significantly	correlated	with	variability	in	one	or	more	of	11	electrophysiological	parameters.	
The	majority	of	these	correlations	were	consistent	in	an	independent	sample	of	12	visual	cortex	
cell	types.	Many	associations	reported	here	have	the	potential	to	provide	new	insights	into	how	
neurons	generate	functional	diversity,	and	correlations	of	ion	channel	genes	like	Gabrd	and	
Scn1a	(Nav1.1)	with	resting	potential	and	spiking	frequency	are	consistent	with	known	causal	
mechanisms.	These	results	suggest	that	despite	the	complexity	linking	gene	expression	to	
electrophysiology,	there	are	likely	some	general	principles	that	govern	how	individual	genes	
establish	phenotypic	diversity	across	very	different	cell	types.	

Introduction	

A	major	goal	of	neuroscience	has	been	to	understand	the	mechanistic	origins	of	neuronal	
electrophysiological	phenotypes.	Such	electrical	features	help	define	the	computational	
functions	of	each	neuron	1,2,	and	further,	specific	electrophysiological	deficits	contribute	to	
brain	disorders	such	as	epilepsy,	ataxia,	and	autism	3–5.	

The	molecular	basis	of	neuron	electrophysiology	is	complex.	There	are	over	200	mammalian	ion	
channel	and	transporter	genes	whose	products	influence	a	neuron’s	electrophysiological	
phenotype	6–9.	Numerous	additional	genes	regulate	channel	functional	expression	through	
initiating	gene	transcription	and	alternative	splicing,	post-translational	modifications,	and	
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trafficking	channels	to	and	from	the	membrane	surface	10–12.	Even	morphological	features	
contribute	to	cellular	electrophysiology	13.	Recent	genetic	studies	in	human	epileptic	and	
neuropsychiatric	patients	provide	convergent	evidence,	as	mutations	in	many	genes	reflecting	
multiple	functional	pathways	are	associated	with	these	disorders	4,14–16.	In	light	of	this	
complexity,	the	gold	standard	employed	by	neurophysiologists	is	to	use	gene	knockouts	or	
pharmacology	to	assay	how	electrophysiological	function	changes	following	protein	disruption	
7,8.	However,	these	single-gene	focused	methods	are	relatively	low-throughput	and	many	
potentially	relevant	genes	have	yet	to	be	studied	for	their	electrophysiological	function.	

Cell	type-specific	transcriptomics,	enabling	genome-wide	assay	of	quantitative	mRNA	
expression	levels,	provides	a	lucrative	avenue	for	discovering	novel	genes	that	might	contribute	
to	specific	aspects	of	cellular	physiology	17,18.	Correlation-based	approaches	have	been	
proposed	that	pair	single-cell	expression	profiling	with	patch-clamp	electrophysiology	19–21.	
These	approaches	leverage	the	biological	variability	observed	across	a	collection	of	cells	to	
identify	gene	expression	patterns	correlated	with	cellular	phenotypic	differences.	However,	
generalizing	from	these	studies	has	proven	challenging	however,	since	they	typically	have	been	
focused	on	a	limited	number	of	cell	types.	Similarly,	and	perhaps	more	critically,	there	are	
typically	hundreds	to	thousands	of	genes	correlated	with	electrophysiological	variability22.	Thus	
it	has	been	difficult	from	this	data	to	pin	down	how	individual	genes	might	shape	specific	
cellular	phenotypes.	Though	making	use	of	larger	and	more	diverse	collections	of	cell	types	
could	provide	a	potential	solution,	collecting	such	reference	data	is	immensely	resource-	and	
labor-intensive.			

Here,	we	present	an	approach	for	correlating	cell	type-specific	transcriptomics	with	neuronal	
electrophysiological	features.	We	employ	a	novel	reference	dataset	on	brain-wide	neuronal	
gene	expression	and	electrophysiological	diversity,	reflecting	the	neuronal	characterization	
efforts	of	hundreds	of	investigators	as	well	as	our	recent	work	to	compile	and	standardize	these	
data	23–25.	We	identified	hundreds	of	genes	whose	expression	levels	significantly	correlate	with	
specific	electrophysiological	features	(e.g.,	resting	potential	or	maximum	spiking	frequency).	
Illustrating	the	generalizability	of	these	results,	most	correlations	were	also	consistent	with	an	
independent	neocortex-specific	dataset	from	the	Allen	Institute.	Many	of	these	genes	have	
been	further	found	to	directly	regulate	neuronal	electrophysiology,	suggesting	that	some	of	the	
correlations	reported	here	likely	reflect	novel	causal	relationships.	Our	findings	present	a	major	
step	for	understanding	how	a	multitude	of	genes	contribute	to	cell	type-specific	phenotypic	
diversity.	

Results	

Our	overall	approach	was	to	first	compile	a	reference	dataset	of	brain	cell	type-specific	
transcriptomes	paired	with	cell	type-specific	electrophysiological	(ephys)	profiles.	We	then	
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assessed	the	ability	of	gene	expression	to	statistically	explain	variance	in	specific	ephys	
properties.	We	next	validated	whether	these	gene-ephys	correlations	were	consistent	with	an	
independent	dataset	on	visual	cortex	neurons	collected	by	the	Allen	Institute	for	Brain	Science	
(AIBS).	Lastly	we	made	use	of	literature	review	to	establish	whether	any	of	these	gene-ephys	
correlations	had	been	previously	shown	to	be	causal.	

Discovery	and	validation	datasets	

To	construct	our	primary	dataset	for	gene-ephys	correlation	analysis,	we	combined	two	
databases	developed	and	curated	by	our	group.	The	first,	NeuroExpresso,	a	database	
containing	microarray-based	transcriptomes	collected	from	samples	of	purified	mouse	brain	
cell	types	under	normal	conditions	23.	The	second,	NeuroElectro,	a	database	of	neuronal	
electrophysiological	profiles	manually	curated	from	the	published	literature	on	rodent	
intracellular	electrode	recordings	from	normal,	non-treated	cells,24,25.	Given	the	methodological	
heterogeneity	of	the	primary	data	comprising	these	databases,	we	applied	a	number	of	quality	
control	filtering	and	cross-laboratory	standardization	and	normalization	methods	(see	
Methods).	We	obtained	neuron	type-specific	gene	expression	and	ephys	data	by	merging	these	
databases	on	cell	type	identity,	making	use	of	our	detailed	annotations	of	each	sample’s	
specific	cell	type	(Figure	1A).	The	final	“discovery”	reference	dataset	is	composed	of	34	neuron	
types	sampled	throughout	the	brain	and	reflects	cell	types	with	diverse	circuit	roles,	
neurotransmitters,	and	developmental	stages	(summarized	in	Table	1	and	Supplemental	Table	2).	

For	validation	we	utilized	an	independent	dataset	characterizing	neurons	from	adult	mouse	
primary	visual	cortex	collected	by	the	Allen	Institute	for	Brain	Science.	Here,	genetically	labeled	
cells	were	characterized	either	for	their	transcriptomic	profiles,	using	single-cell	RNA	
sequencing	(scRNAseq)	26,	or	their	electrophysiological	properties,	using	patch-clamp	
electrophysiology	in	vitro	with	standardized	protocols	(http://celltypes.brain-map.org/).	
Importantly,	for	both	expression	and	ephys	characterization,	the	same	mouse	lines	for	
genetically	labeling	specific	populations	of	cells	were	used,	making	it	straightforward	to	
combine	samples	post-hoc,	yielding	a	final	“validation”	dataset	composed	of	12	unique	cell	
types	(Table	2).	Averaging	data	across	labeled	single	cells	within	a	mouse	line	also	helps	mitigate	
the	influence	of	cell-to-cell	variability	and	technical	“dropouts”	in	the	scRNAseq	data	18.	Given	
the	smaller	number	of	cell	types	present	in	the	AIBS	dataset	we	chose	to	use	these	data	
primarily	for	validation	and	generalization	of	findings	made	using	discovery	dataset.	Note	that	
for	both	the	discovery	and	validation	datasets,	electrophysiological	and	gene	expression	values	
are	from	separate	cells.	

Analysis	approach	
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Our	primary	analysis	focus	was	to	understand	how	cell	type-specific	expression	of	individual	
genes	might	statistically	explain	the	variance	in	electrophysiological	parameters	observed	
across	cell	types	(Figure	1A,	right).	For	example,	how	does	Scn1a	(Nav1.1)	expression	correlate	
with	neuronal	maximum	firing	rates?	which	genes	are	most	correlated	with	cellular	resting	
membrane	potentials?	We	primarily	chose	to	employ	a	single-gene	focused	approach	because	
of	sample	size	considerations,	reasoning	that	we	did	not	have	enough	unique	cell	types	in	
either	the	discovery	or	validation	datasets	to	rigorously	pursue	a	combinatorial	gene	approach.	
However,	this	single-gene	focus	might	limit	our	ability	to	identify	highly	combinatorial	and/or	
redundant	or	degenerate	relationships	between	gene	expression	profiles	and	ephys	27,28.	

Neuron	Type	 Abbreviation	
Basal	forebrain	cholinergic	cells	 BF	ACh	

Basolateral	amygdala	pyramidal	cells	 BLA	Pyr	
Brain	stem	cholinergic	cells	 BS	ACh	

Cerebellum	Golgi	cells	 CB	Golgi	
Cerebellum	granule	cells	 CB	gran	

Cerebellum	Purkinje	cells,	P14	 CB	Purk	P14	
Cerebellum	Purkinje	cells,	P3	 CB	Purk	P3	
Cerebellum	Purkinje	cells,	P56	 CB	Purk	P56	
Cerebellum	Purkinje	cells,	P7	 CB	Purk	P7	
Dentate	gyrus	granule	cells	 DG	gran	

Frontal	cortex	layer	5	pyramidal	cells	 ORB	L5	Pyr	
Hippocampus	CA1	pyramidal	cells	 CA1	Pyr	

Hippocampus	GIN	(SST)	interneurons	 HIP	GIN	
Hypothalamus	hypocretinergic	cells	 HY	orexin	
Locus	cereuleus	noradrenergic	cells	 LC	NAdr	

Midbrain	serotonergic	cells	 MB	5HT	
Neocortex	corticostratial	pyramidal	cells	 Ctx	CStr	Pyr	
Neocortex	corticothalamic	pyramidal	cells	 Ctx	CThal	Pyr	
Neocortex	G42	(PV)	interneurons,	P10	 Ctx	G42	P10	
Neocortex	G42	(PV)	interneurons,	P15	 Ctx	G42	P15	
Neocortex	G42	(PV)	interneurons,	P25	 Ctx	G42	P25	
Neocortex	G42	(PV)	interneurons,	P7	 Ctx	G42	P7	
Neocortex	GIN	(SST)	interneurons	 Ctx	GIN	

Neocortex	Glt25d2-expressing	pyramidal	cells	 Ctx	Glt	Pyr	
Neocortex	Htr3a-expressing	cells	 Ctx	Htr3a	
Neocortex	layer	2-3	pyramidal	cells	 Ctx	L2-3	Pyr	
Neocortex	layer	6	pyramidal	cells	 Ctx	L6	Pyr	
Neocortex	Oxtr-expressing	cells	 Ctx	Oxtr	

Somatosensory	cortex	layer	5	pyramidal	cells	 SSp	TT	Pyr	
Striatum	cholinergic	cells	 Str	ACh	

Striatum	Drd1-expressing	medium	spiny	neurons	 Str	Drd1	MSN	
Striatum	Drd2-expressing	medium	spiny	neurons	 Str	Drd2	MSN	
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Substantia	nigra	pars	compacta	dopaminergic	cells	 SNc	DA	
Ventral	tegmental	area	dopaminergic	cells	 VTA	DA	

Table	1:	Descriptions	for	neuron	types	composing	the	NeuroExpresso/NeuroElectro	discovery	dataset.	References	

for	individual	transcriptomic	and	electrophysiological	samples	are	available	in	Supplemental	Table	2.	

	

Mouse	line	(cre-driver)	 N	cells	(scRNAseq)	 N	cells	(ephys)	 Color	

Ctgf	 23	 12	 midnightblue	

Cux2	 122	 55	 olivedrab1	

Gad2	 77	 11	 thistle1	

Htr3a	 123	 81	 firebrick4	

Nr5a1	 48	 62	 blue2	

Ntsr1	 90	 37	 deepskyblue	

Pvalb	 89	 141	 firebrick2	

Rbp4	 173	 61	 mediumseagreen	

Rorb	 54	 106	 skyblue3	

Scnn1a.Tg2	 19	 28	 cyan	

Scnn1a.Tg3	 99	 52	 lightskyblue	

Sst	 107	 107	 orchid	

Table	2:	Descriptions	for	neuron	types	composing	the	Allen	Institutes	for	Brain	Sciences	Cell	Types	validation	
dataset.	Mouse	line	indicates	cre-driver	lines	used	to	label	specific	populations	of	cells	in	the	adult	mouse	visual	
cortex.	N	cells	indicates	number	of	cells	assayed	per	cre-line	via	single-cell	RNAseq	or	patch-clamp	
electrophysiology.	Color	indicates	cell	type	color	used	within	this	manuscript.	
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Figure	1.	Correlating	cell	type-specific	gene	expression	with	electrophysiological	diversity.	A)	Illustration	of	
transcriptomic	and	ephys	data	compilation	by	cell	type	(left)	and	correlation	analysis	of	single	gene	expression	by	
ephys	parameter	diversity	(right).	B)	Top	row:	Gene	expression	levels	of	Nkain1	across	34	neuron	types	sampled	
from	the	combined	NeuroExpresso/NeuroElectro	dataset.	Each	dot	reflects	a	unique	transcriptomic	sample	
collected	from	purified	cells	and	y-axis	is	in	units	of	log2	expression	(i.e.,	each	increment	reflects	a	2-fold	change	in	
expression	level).	Dashed	line	at	6	indicates	approximate	level	of	background	expression.	Bottom	row:	Input	
resistance	values	for	the	same	cell	types	in	top	row.	Individual	dots	reflect	population	mean	electrophysiological	
values	manually	curated	from	individual	articles	represented	in	the	NeuroElectro	database,	following	experimental	
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condition	normalization.	C)	Same	data	as	in	B,	but	data	has	been	summarized	by	the	mean	(expression,	x-axis)	or	
median	(ephys,	y-axis)	value	within	each	cell	type.	rs	indicates	Spearman	rank	correlation	and	padj	indicates	
Benjamini	Hochberg	false	discovery	rate.	Note	that	cell	types	with	high	Rin,	such	as	cerebellar	granule	cells	and	
midbrain	dopaminergic	cells,	express	high	levels	of	Nkain1	whereas	cell	types	with	low	Rin,	including	neocortical	
and	hippocampal	pyramidal	cells,	express	low	levels	of	Nkain1.	D)	Corresponding	summary	data	from	the	Allen	
Institute	for	Brain	Science	(AIBS)	Cell	Types	dataset.	Dots	reflect	averaged	values	from	12	individual	mouse	cre-

lines	and	are	detailed	in	Table	2.	Expression	values	are	based	on	single-cell	RNAseq	(scRNAseq),	quantified	as	
Transcripts	Per	Million	(TPM).	Ephys	values	are	based	on	single-cell	characterization	in	vitro.	

Correlation	of	neuronal	transcriptomics	with	electrophysiological	properties	

For	each	of	the	34	neuron	types	in	the	NeuroExpresso/NeuroElectro	discovery	dataset,	we	
obtained	a	gene	expression	profile	for	11,509	genes	and	5-11	intrinsic	electrophysiological	
properties	(mean	=	9	+/-	2	ephys	properties	per	cell	type;	described	in	Supplemental	Table	1).	We	
first	asked	whether	there	are	individual	genes	whose	quantitative	mRNA	expression	levels	
correlate	with	systematic	ephys	diversity	in	the	both	the	discovery	and	AIBS	validation	datasets.	
Using	the	discovery	dataset,	after	first	filtering	for	genes	with	sufficiently	high	and	variable	
expression	across	cell	types	(see	Methods),	we	found	a	total	of	653	genes	(of	2694	tested)	
correlated	with	at	least	1	of	the	11	ephys	properties	at	padj	<	0.05	(padj	indicates	Benjamini-
Hochberg	false	discovery	rate	adjusted	p-value).	1095	genes	were	identified	at	padj	<	0.1	and	
217	genes	were	identified	at	padj	<	0.01.	

As	an	illustrative	example	of	one	gene-ephys	correlation,	we	found	that	expression	levels	of	the	
gene	Nkain1	correlated	with	input	resistance	(Rin)	values	across	cell	types	in	the	discovery	
dataset	(Figure	1B,	C;	Spearman	correlation,	rs	=	0.86;	padj	=	1.7*10-7).	We	also	saw	this	trend	
recapitulated	when	only	considering	within-cell	type	changes	observed	across	cortical	basket	
cell	and	Purkinje	cell	development,	with	Nkain1	expression	and	Rin	decreasing	dramatically	as	
these	cells	mature	(Supplemental	Figure	1).	In	the	AIBS	validation	dataset,	after	summarizing	the	
single-cell	data	to	the	level	of	cell	types,	we	further	found	a	consistent	Nkain1-	Rin	correlation	
amongst	adult	visual	cortex	cell	types	(Figure	1D;	rs	=	0.71).	Little	is	known	about	Nkain1	protein	
function,	except	that	it	interacts	with	the	Na+/K+	pump	β-subunit	and	likely	modulates	the	
pump’s	function	and	membrane	localization	29.	Intriguingly,	the	Na+/K+	pump	has	a	known	role	
in	establishing	cellular	volumes	and	input	resistance	30.	
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Supplemental	Figure	1.	Example	of	cell	type-specific	transcriptomic	and	electrophysiological	changes	across	
development.	A)	Gene	expression	levels	of	Nkain1	across	development	of	cortical	G42	parvalbumin-expressing	
interneurons.	Dots	reflect	unique	transcriptomic	samples.	B)	Same	as	A,	but	for	cerebellar	Purkinje	cells.	C)	Values	
of	input	resistance	sampled	from	cortical	G42	parvalbumin-expressing	interneurons	at	various	points	in	
development.	Individual	dots	reflect	population	means	from	individual	articles	represented	in	the	NeuroElectro	
database	and	lines	are	based	on	loess	smoothing.	D)	Same	as	C,	but	for	cerebellar	Purkinje	cells.		

We	provide	a	summary	of	the	total	number	of	genes	identified	as	significantly	correlated	with	
each	of	the	11	ephys	properties	in	Figure	2A	and	the	full	list	of	gene-ephys	correlations	in	
Supplemental	Table	3.	We	initially	noticed	that	different	ephys	properties	were	significantly	
correlated	with	varying	numbers	of	genes.	For	example,	at	the	somewhat	conservative	
threshold	of	padj	<	0.05,	we	found	no	genes	correlated	with	action	potential	threshold	voltage	
(APthr),	despite	there	being	many	genes	previously	implicated	with	this	feature	5,31.	In	contrast,	
there	were	over	200	genes	significantly	correlated	with	either	Vrest	or	AHPamp.	However,	we	
consider	it	unlikely	that	all	of	these	genes	reflect	a	direct	causal	relationship,	as	gene-gene	
correlations	driven	by	gene	co-regulation	create	ambiguity.	

We	note	that	in	the	discovery	dataset,	not	all	ephys	properties	were	available	for	each	cell	type,	
with	19-34	cell	types	quantified	per	ephys	property.	Furthermore,	since	correlation	p-values	are	
in	part	related	to	sample	size,	we	found	a	positive	relationship	between	the	total	number	of	
genes	associated	with	each	ephys	property	and	the	number	of	cell	types	where	the	ephys	
property	was	quantified		(R2	=	0.30;	Supplemental	Figure	2).	Next,	given	that	ephys	properties	tend	
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to	be	correlated	with	one	another	21,25,	we	asked	if	pairs	of	correlated	ephys	properties	also	
tend	to	share	associated	genes.	For	example,	cellular	measurements	of	membrane	capacitance	
(Cm)	and	Rin	are	highly	anti-correlated	(rs	=	-0.69	in	the	discovery	dataset);	furthermore,	of	the	
80	genes	significantly	associated	with	Cm,	36	were	also	associated	with	Rin.	Though	some	pairs	
of	ephys	properties	share	common	biophysical	mechanisms	and	could	be	thus	regulated	via	
common	genes	(e.g.,	Cm	and	Rin	are	both	dependent	in	part	on	cell	size),	correlations	between	
ephys	properties	likely	limit	the	specificity	of	the	relationships	reported	here.	

	

Figure	2:	Identification	and	validation	of	transcriptomic	-	electrophysiological	correlations.	A)	Count	of	genes	
significantly	correlated	with	various	electrophysiological	properties,	broken	down	by	statistical	significance	of	
Benjamini-Hochberg	FDR-adjusted	correlation	p-values	(padj).	Names	and	descriptions	of	ephys	properties	are	

provided	in	Supplemental	Table	1.	B)	Comparison	of	correlations	calculated	using	NeuroExpresso/	
NeuroElectro	discovery	dataset	(NeuExp/NeuElec,	x-axis)	versus	correlations	calculated	using	Allen	Institute	
validation	dataset	(AIBS,	y-axis).	Dots	reflect	correlation	values	of	individual	genes.	Subpanels	indicate	correlations	

computed	across	various	electrophysiological	properties	and	p-values	are	provided	in	Table	3.	

We	next	used	the	AIBS	dataset	to	validate	the	significant	correlations	observed	in	the	discovery	
dataset.	We	predicted	that	gene-ephys	correlations	discovered	in	our	brain-wide	dataset	
should	generalize	to	the	transcriptomic	and	electrophysiological	diversity	among	adult	visual	
cortex	cell	types.	Because	of	the	limited	number	of	cell	types	available	in	the	AIBS	dataset,	we	
compared	results	between	the	discovery	and	validation	datasets	as:	1)	overall	consistency,	
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defined	by	the	global	rank	correlation	between	results	from	the	two	datasets	(Figure	2B);	and	2)	
consistency	for	the	subset	of	gene-ephys	relationships	meeting	our	threshold	for	significance	in	
the	discovery	dataset	(padj	<	0.05).	Overall,	we	found	positive,	but	modest,	agreement	between	
the	two	datasets,	with	most	ephys	properties	showing	a	positive	correlation	(Table	3).	However,	
APthr,	Rheo,	and	Tau	are	notable	exceptions	and	might	reflect	challenges	in	normalizing	these	
ephys	features	from	the	cross-study	NeuroElectro	database	25.	Focusing	specifically	on	
significant	gene-ephys	correlations	identified	in	the	discovery	dataset,	we	found	that	the	
majority	of	these,	61.2%,	reflecting	420	individual	genes,	were	consistent	in	the	validation	
dataset,	with	consistency	defined	as	a	matching	correlation	direction	and	with	an	absolute	
value	of	rs	>	0.3	(Table	3).	

The	degree	of	consistency	between	the	NeuroExpresso/NeuroElectro	and	AIBS	datasets	is	
encouraging	given	their	dissimilarity	in	design	and	content.	For	example,	the	AIBS	cell	types	
dataset	is	sampled	from	a	single	brain	region	(visual	cortex)	at	one	developmental	stage	(adult).	
Moreover,	there	are	considerable	technical	differences	between	the	datasets,	such	as	
transcriptome	quantification	via	single-cell	RNAseq	vs	pooled-cell	microarrays	or	between	
standardized	versus	heterogeneous	ephys	data	collection.	

In	the	remainder	of	the	manuscript,	we	focus	on	further	characterizing	the	significant	gene-
ephys	correlations	from	the	discovery	dataset	that	have	evidence	for	further	validating	in	the	
AIBS	dataset.		

Ephys	
Property	

Overall	AIBS	consistency	 Discovered	genes;	
padj	<	0.05	

AIBS	consistency;	
|rs|	>	0.3	

	

Spearman	corr.	 p-value	 count	 count	 %	 p-value	

AHPamp	 0.45	 0.009	 285	 204	 72	 0.005	

APamp	 0.404	 <0.001	 169	 119	 70	 0.006	

APhw	 0.04	 0.323	 4	 3	 75	 0.056	

APthr	 -0.146	 0.877	 0	 ---	 ---	 ---	

Cm	 0.384	 0.037	 80	 55	 69	 0.015	

FRmax	 0.209	 0.074	 21	 7	 33	 0.159	

Rheo	 -0.049	 0.649	 15	 5	 33	 0.162	

Rin	 0.346	 0.004	 144	 68	 47	 0.029	

SFA	 0.298	 0.01	 2	 1	 50	 0.277	

Tau	 -0.106	 0.713	 6	 5	 83	 0.007	
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Vrest	 0.332	 0.029	 279	 148	 53	 0.025	

Table	3:	Consistency	of	gene-electrophysiological	property	correlations	between	NeuroExpresso/NeuroElectro	
discovery	and	AIBS	validation	datasets.	Overall	AIBS	consistency	indicates	overall	rank	correlation	between	gene-
electrophysiological	correlations	calculated	in	both	the	discovery	and	validation	datasets.	P-values	based	on	1000	
random	reshuffles	of	cell	type	labels	in	the	AIBS	validation	dataset.	Discovered	genes,	padj	<	0.05	reflects	count	of	
genes	significantly	correlated	with	each	ephys	property	with	in	discovery	dataset	(only	includes	genes	that	are	also	
present	in	AIBS	scRNAseq	dataset).	AIBS	consistency,	|rs|>	0.3	reflects	count	and	percentage	of	discovered	genes	
that	further	show	a	consistent	relationship	in	the	AIBS	validation	dataset.	P-value	also	based	on	1000	shuffled	
samples	of	cell	type	labels	in	the	validation	dataset.	

	

	

Supplemental	Figure	2	:	Factors	affecting	numbers	of	genes	identified	as	significantly	correlated	with	different	
electrophysiological	properties.	A)	Scatterplot	illustrating	the	relationship	between	the	numbers	of	genes	
identified	as	significantly	correlated	with	each	ephys	property	(padj	<	0.05)	versus	the	number	of	cell	types	with	
ephys	data	in	the	NeuroExpresso/NeuroElectro	dataset.	B)	Pairwise	correlations	between	electrophysiological	
properties,	based	on	cell	types	in	combined	NeuroExpresso/NeuroElectro	sample.	Heatmap	colors	indicate	the	
absolute	value	of	measured	Spearman	correlations	between	ephys	property	pairs.	Inset	values	indicate	the	
number	of	significant	genes	shared	between	each	pair	of	ephys	properties	(padj	<	0.05).	Numbers	in	parentheses	on	
y-axis	and	values	along	diagonal	indicate	number	of	significant	genes	identified	for	each	ephys	property	(i.e.,	as	in	
y-axis	in	A).	

Causal	relationships	between	discovered	gene-electrophysiological	correlations	

A	key	question	is	whether	any	of	the	gene-ephys	correlations	we	observed	are	due	to	direct	
causal	relationships	supported	by	specific	evidence.	To	this	end,	we	made	use	of	the	existing	
literature	on	gene-ephys	relations.	We	focused	on	ion	channel	genes,	reasoning	that	these	
would	be	most	likely	to	have	been	directly	tested	for	electrophysiological	function.	We	
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manually	searched	the	literature	for	such	experiments,	since	at	present	this	data	is	not	
reflected	within	a	comprehensive	database	(the	current	NeuroElectro	database	reflects	
experiments	done	under	standard	or	control	conditions,	not	genetic	or	pharmacological	
manipulations).	

We	present	a	brief	summary	of	our	gene-centered	literature	search	alongside	highlights	from	
our	correlation-based	analysis	below,	with	the	complete	results	provided	in	Supplemental	Table	
4.	Of	31	significant	and	validated	ion	channel-ephys	correlations,	we	found	17	had	been	directly	
tested	through	genetic	manipulations	or	channel-specific	pharmacology	(reflecting	12	unique	
ion	channel	genes).	To	compare	our	correlations	to	individual	results	from	direct	experiments,	
we	first	mapped	our	correlations	to	predicted	causal	effects;	for	example,	knocking	out	a	gene	
whose	expression	is	positively	correlated	with	maximum	firing	rate	should	tend	to	lower	firing	
rates,	all	else	being	equal.	We	found	that	of	17	total	tested	ion	channel-ephys	correlations;	11	
were	consistent	with	literature	evidence,	2	showed	mixed	evidence,	1	showed	no	effect	on	the	
ephys	property,	and	3	were	inconsistent.	Here,	we	defined	inconsistent	evidence	as	those	
where	a	predicted	increase	(or	decrease)	in	an	ephys	property	was	reflected	by	a	change	in	the	
opposite	direction	in	the	literature;	mixed	evidence	were	those	where	some	manipulations	
were	consistent	but	others	were	inconsistent	(e.g.,	pharmacology	versus	gene	knockout).	
Below,	we	provide	specific	illustrative	examples	from	this	literature	search.	

Scn1a,	encoding	the	sodium	channel	Nav1.1,	was	positively	correlated	with	maximum	firing	
rate	(Figure	3B;	NeuExp/NeuElec	rs	=	0.86,	AIBS	rs	=	0.36),	with	the	highest	Scn1a	expression	
observed	in	adult	cortical	PV	interneurons	and	Purkinje	cells.	In	a	mouse	model	of	Dravet	
syndrome	with	a	hemizygous	gene	deletion	(i.e.,	Scn1a	+/-),	it	was	observed	that	fast-spiking	PV	
interneurons	cells	could	no	longer	fire	at	their	characteristically	high	frequencies	(Figure	3C),	
with	a	smaller	but	significant	effect	also	observed	in	Sst-expressing	Martinotti	cells	5.	However,	
the	same	change	was	not	seen	in	layer	5	pyramidal	cells,	which	express	~3–4	fold	less	Scn1a	
relative	to	PV	cells	(in	NeuroExpresso	and	AIBS),	potentially	suggesting	that	total	expression	
levels	might	mediate	the	effect	of	hemizygous	Scn1a	deletion.	Intriguingly,	in	a	
haploinsufficiency	model	of	Dravet	syndrome,	directly	upregulating	Scn1a	expression	using	long	
non-coding	RNAs	rescued	the	firing	phenotype	in	PV	cells	and	lowered	seizure	number	and	
duration	32.	

We	found	4	(of	5	total)	ion	channel	genes	correlated	with	Vrest	that	were	consistent	with	
literature	evidence.	Hcn3,	encoding	a	slow	HCN	channel	variant	6,	was	positively	correlated	with	
Vrest	(Figure	3D;	NeuExp/NeuElec	rs	=	0.82,	AIBS	rs	=	0.57).	Blocking	HCN-current	using	ZD7288	
across	multiple	cell	types	consistently	made	Vrest	more	hyperpolarized	(Figure	3	E)	33,34.	Gabrd,	
Kcnk1,	and	Itpr1,	were	each	negatively	correlated	with	Vrest	and	each	gene	reflects	a	different	
mechanistic	route	towards	Vrest	hyperpolarization	(Figure	3F	and	Supplemental	Figure	3).	For	
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example,	Gabrd	encodes	the	δ-subunit	of	the	GABAA	receptor	and	mediates	extrasynaptic	tonic	
inhibition,	effectively	turning	the	GABAA	receptor	into	a	chloride	channel35.	Thus,	increased	
Gabrd	expression,	or	pharmacologically	increasing	its	activity	(Figure	3F,G)36	would	tend	to	
hyperpolarize	cells	through	the	chloride	reversal	potential	(median	ECl	=	-72	mV,	based	on	
reported	internal	and	external	solutions).	Similarly,	Kcnk1,	encoding	the	K2P1.1	2-pore	
potassium	channel,	hyperpolarizes	Vrest	through	the	potassium	reversal	potential	(EK	~	-100	mV)	
37.	Itpr1	activity	releases	calcium	from	intracellular	stores	and	hyperpolarizes	Vrest	through	
calcium-activated	potassium	channels	38,39.	Taken	together,	each	of	these	genes	reflect	distinct	
and	potentially	degnerate	routes	towards	modulating	cellular	Vrest.	

We	found	evidence	for	two	ion	channel	subunits,	Kcna1	and	Kcnab2,	regulating	multiple	
distinct	electrophysiological	properties	(Supplemental	Figure	3).	For	example,	Kcna1,	encoding	
the	delayed	rectifier	potassium	channel	Kv1.1,	was	negatively	correlated	with	action	potential	
half	width	(NeuExp/NeuElec	rs	=	-0.70,	AIBS	rs	=	-0.52)	and	positively	correlated	with	rheobase	
(NeuExp/NeuElec	rs	=	0.69,	AIBS	rs	=	0.66).	These	correlations	were	corroborated	by	Kcna1	
genetic	knockouts	or	pharmacological	block	in	auditory	brainstem	neurons	and	are	consistent	
with	known	mechanistic	insight	about	Kv1.1	function	40,41.	

While	the	previous	examples	are	encouraging,	not	all	of	our	findings	were	concordant	with	
previous	literature.	For	example,	we	saw	that	Kcnb1,	encoding	the	Kv2.1	channel,	was	
negatively	correlated	with	spike	afterhyperpolarization	amplitude	(AHPamp)	(Supplemental	Figure	
4A;B;	NeuExp/NeuElec	rs	=	-0.70,	padj	=	0.0033;	AIBS	rs	=	-0.62).	Based	on	this	correlation,	we	
would	expect	that	decreasing	Kv2.1	functional	expression	should	increase	AHPamp	values.	
However,	convergent	genetic	and	pharmacological	evidence	suggests	the	opposite:	decreasing	
Kv2.1	activity	or	expression	decreases	AHPamp	values	42,43.	Delving	deeper,	the	Kcnb1-	AHPamp	
correlation	appears	driven	in	part	by	gross	differences	between	excitatory	and	non-excitatory	
cell	types,	with	excitatory	cells	strongly	expressing	Kcnb1	and	also	having	small	AHPamp	relative	
to	non-excitatory	cell	types	(Supplemental	Figure	4C).	Thus	though	there	is	likely	some	
mechanistic	explanation	for	why	excitatory	cells	tend	to	express	more	Kcnb1,	this	does	not	
appear	to	be	directly	related	to	AHPamp	per-se.	This	example	suggests	that	caution	is	needed	
before	interpreting	each	correlation	reported	here	as	a	direct	causal	relationship.		

To	summarize,	we	found	multiple	examples	of	direct	regulation	of	specific	ephys	properties	by	
individual	genes	identified	through	our	correlation-based	methodology.	In	the	remainder	of	the	
results,	we	highlight	additional	genes	that	may	be	of	relevance	in	future	studies.	
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Figure	3:	Ion	channel	specific	gene-electrophysiological	correlations	and	literature	evidence	for	causal	regulation.	
A)	Heatmap	showing	NeuExp/NeuElec	dataset	gene-ephys	correlations	for	ion	channel	genes.	Genes	filtered	for	
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those	with	at	least	one	significant	ephys	correlation	(padj	<	0.05)	and	with	validation	supported	in	AIBS	dataset.	
Gene	names	in	bold	indicate	those	we	found	to	be	previously	studied	for	specific	predicted	ephys	properties,	
based	on	our	literature	search.	Symbols	within	heatmap:	·,	padj	 < 0.1;	*,	padj	 < 0.05;	**,	padj	 < 0.01;	/,	indicates	
inconsistency	between	discovery	and	AIBS	validation	dataset.	B)	Correlation	between	cell	type-specific	Scn1a	
(Nav1.1)	gene	expression	and	maximum	firing	rate	(FRmax)	from	discovery	dataset	(NeuExp/NeuElec,	left)	and	Allen	
Institute	dataset	(AIBS,	right).	Grey	trend	lines	indicate	linear	fit.	C)	Replotted	data	from	Tai	et	al	2014,	showing	
evoked	firing	rates	at	300	pA	current	injection	for	parvalbumin	positive	interneurons	in	control	and	Scn1a	
heterozygous	mice	(Scn1a	+/-).	Data	plotted	as	mean	+/-	SEM.	D)	Same	as	B,	but	for	Hcn3	and	resting	membrane	
potential	(Vrest).	E)	Replotted	data	from	Lupica	et	al	2001,	where	Vrest	from	CA1	OLM	interneurons	was	measured	
before	and	after	the	application	of	ZD7288,	a	selective	antagonist	of	HCN	channels.	F)	Same	as	B,	but	for	Gabrd	
and	Vrest.	G)	Replotted	data	from	Gao	et	al,	2010,	showing	Vrest	recorded	from	dorsal	motor	nucleus	of	vagus	
neurons	after	application	of	THIP,	a	selective	agonist	of	Gabrd-mediated	tonic	inhibition.	
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Supplemental	Figure	3:	Further	evidence	for	causal	regulation	of	specific	gene-ephys	correlations.	A)	
Correlation	between	cell	type-specific	Kcnk1	(K2P1.1/TWIK1)	gene	expression	and	resting	membrane	potential	
(Vrest)	from	discovery	dataset	(NeuExp/NeuElec,	left)	and	Allen	Institute	dataset	(AIBS,	right).	B)	Replotted	data	
from	Yarishkin	et	al,	2014,	showing	effects	of	siRNA-induced	knockdown	of	Kcnk1	expression	in	dentate	gyrus	
granule	cells.	C,	E,	I,	G,	K)	Same	as	A	but	shown	for	specific	ephys	properties	and	genes.	D)	Replotted	data	from	
Hagenston	et	al,	2010,	showing	effects	of	antagonizing	Itpr1	function	through	the	use	of	2-APB.	F,	H)	Replotted	
data	from	Brew	et	al,	2010,	showing	effects	of	knocking	out	Kcna1	(Kv1.1)	on	action	potential	half	width	(APhw)	and	
rheobase	(Rheo)	as	measured	in	auditory	brainstem	neurons.	J,	L)	Replotted	data	from	Perkowski	et	al,	2011,	
showing	effects	of	knocking	out	Kcnab2	(Kvbeta2)	on	rheobase	and	input	resistance	(Rin)	as	measured	in	lateral	
amygdala	pyramidal	neurons.		

	

	

Supplemental	Figure	4	:		Specific	evidence	for	gene-electrophysiology	correlation	not	implying	causation.	A)	
Correlation	between	cell	type-specific	Kcnb1	(Kv2.1)	gene	expression	and	action	potential	after-hyperpolarization	
amplitude	(AHPamp)	from	discovery	dataset	(NeuExp/NeuElec,	left)	and	Allen	Institute	dataset	(AIBS,	right).	B)	
Replotted	data	from	Honingsperger	et	al	2016,	showing	measured	AHPamp	values	from	entorhinal	cortex	pyramidal	
neurons	during	control	and	under	perfusion	of	Guangxitoxin-1E,	a	specific	blocker	of	Kv2-family	currents.	Data	
illustrates	that	effect	of	Kv2.1	blockade	results	in	increased	AHPamp,	the	opposite	of	expected	result	based	on	
correlations	shown	in	A.	C)	Same	data	shown	in	A,	but	broken	down	by	major	cell	types,	illustrating	that	Kcnb1-
AHPamp	correlation	is	in	part	related	to	major	differences	in	Kcnb1	expression	and	AHPamp	values	between	
excitatory	glutamatergic	and	non-excitatory	cell	types.	
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Further	analysis	of	specific	gene-electrophysiology	correlations	

Encouraged	that	many	of	the	ion	channel	gene-ephys	associations	discovered	through	our	
analysis	were	consistent	with	previous	experimental	manipulations,	we	next	expanded	our	
attention	to	other	classes	of	genes.	From	the	larger	list	of	correlations	identified	in	our	analysis	
(Supplemental	Table	3),	we	have	highlighted	below	a	small	number	of	individual	gene-ephys	
correlations.		

Multiple	genes	known	to	regulate	ion	channel	functional	expression	and	localization	were	
identified	in	our	analysis	(Figure	4A,	B).	For	example,	two	genes	regulating	the	localization	of	
sodium	channels,	L1cam	and	Fgf14,	were	correlated	with	Vrest	in	our	analysis	and	the	direction	
of	correlation	was	further	supported	by	previous	experiments	44,45.	Along	this	theme,	our	
analysis	identified	novel	associations	between	Nedd4l	and	Slmap	with	Vrest,	Ank1	with	
maximum	firing	frequency,	and	Nkain1	with	Rin	(as	shown	in	Figure	1).	Nedd4l,	identified	as	an	
epilepsy	gene	through	whole-exome	sequencing	14,	ubiquitinates	voltage-gated	sodium	and	
potassium	channels	46;	Slmap,	associated	with	Brugada	syndrome,	controls	the	trafficking	and	
surface	expression	of	voltage-gated	sodium	channels	in	cardiac	and	muscle	cells	but	remains	
unstudied	in	neurons	47.	Ank1,	a	member	of	the	ankyrin	family,	has	recently	been	shown	to	
coordinate	the	localization	of	specific	Nav	subunits	to	nodes	of	Ranvier	48.	Though	we	found	the	
highest	expression	of	Ank1	in	fast-spiking	cells,	including	Purkinje	and	PV	interneurons,	its	
function	remains	completely	uncharacterized	in	these	cells.	

We	noted	several	transcription	factors	in	our	list	of	associated	genes,	including	some	that	have	
known	roles	in	the	nervous	system	that	are	compatible	with	possible,	but	unknown,	roles	in	the	
regulation	of	cellular	ephys	(Figure	4C).	For	example,	we	found	Zbtb18	(a.k.a.,	RP58,	Zfp238)	to	
be	negatively	correlated	with	Vrest.	Though	Zbtb18	has	yet	to	be	studied	for	its	potential	
electrophysiological	effects,	this	gene	has	been	shown	to	be	required	for	the	normal	
development	of	neocortical	glutamatergic	cells	49,50	and	its	human	homolog	has	recently	been	
identified	as	a	causative	gene	for	autism	and	neurodevelopmental	disorders	51.	As	another	
example,	Zscan21	(a.k.a.,	Zipro1	or	Zfp38)	positively	correlated	with	input	resistance	here	and	
has	been	shown	to	be	involved	in	the	normal	proliferation	of	progenitor	cells	into	cerebellar	
granule	cells	52.	

Among	genes	correlated	with	membrane	capacitance	and	input	resistance,	we	noticed	that	
many	of	these	were	cytoskeletal	proteins	or	otherwise	associated	with	regulating	neuronal	
differentiation	and	dendritic	morphology,	including	Cap2,	Chn1,	and	Bex1,	and	Tpm4	
(Supplemental	Figure	5).		

In	summary,	this	analysis	presents	suggestive	evidence	for	many	novel	gene-ephys	
relationships.	Though	we	do	not	expect	all	of	these	novel	associations	to	reflect	direct	causal	
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relationships,	by	focusing	on	gene	classes	that	are	compatible	with	possible	regulation	of	ephys,	
we	can	further	hone	the	list	of	associated	genes	to	those	that	might	be	of	further	interest	for	
follow-up	investigation.	

	

Figure	4	:	Summary	of	gene-ephys	correlations	for	selected	functional	gene	sets.	A)	Genes	regulating	ion	channels	
and	transporter	function.	B)	Ion	transporters.	C)	Transcription	factors.	Genes	filtered	for	those	with	at	least	one	
statistically	significant	correlation	with	an	ephys	property	(padj	<	0.05)	and	validating	in	AIBS	dataset.	Symbols	
within	heatmap:	·,	padj	 < 0.1;	*,	padj	 < 0.05;	**,	padj	 < 0.01;	/,	indicates	inconsistency	between	discovery	and	AIBS	
dataset.	
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Supplemental	Figure	5:	Summary	of	gene-ephys	correlations	for	additional	functional	gene	sets.	Top:	Nervous	
system	development	genes.	Bottom:	Cytoskeletal	organization	genes.	Genes	filtered	for	those	with	at	least	one	
statistically	significant	correlation	with	an	ephys	property	(padj	<	0.05)	and	validating	in	AIBS	dataset.	Symbols	
within	heatmap:	·,	padj	 < 0.1;	*,	padj	 < 0.05;	**,	padj	 < 0.01;	/,	indicates	inconsistency	between	discovery	and	AIBS	
dataset.	

Discussion	

The	relationship	between	gene	expression	and	cellular	phenotypes	like	electrophysiology	or	
morphology	is	complex	and	largely	unknown.	Here,	we	have	enumerated	a	subset	of	potential	
gene-electrophysiology	relationships	by	identifying	genes	whose	expression	significantly	
correlates	with	specific	electrophysiology	parameters	across	a	brain-wide	collection	of	neuron	
types.	The	majority	of	these	relationships	were	consistent	in	an	independent	sample	of	visual	
cortex	cell	types.	Beyond	correlation,	some	of	these	genes,	such	as	Scn1a/Nav1.1	and	Gabrd,	
have	been	experimentally	shown	to	be	causally	responsible	for	specific	ephys	properties.	The	
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majority	of	genes	discussed	here,	such	as	Nkain1	and	Slmap,	have	yet	to	be	investigated	in	the	
context	of	neuronal	intrinsic	electrophysiology.	These	genes	present	opportunities	for	further	
study	and	potential	avenues	for	targeted	manipulation	of	electrophysiological	features.	

The	combined	NeuroExpresso/NeuroElectro	reference	dataset	is	a	first-of-its-kind	resource	of	
cell	type-specific	transcriptomes	paired	with	electrophysiological	profiles	across	a	large	
collection	of	neuron	types.	The	community	resource	directly	reflects	the	efforts	of	hundreds	of	
investigators	to	characterize	the	rich	diversity	of	neuron	types	throughout	the	brain.	It	further	
reflects	our	considerable	efforts	in	curating	and	standardizing	this	heterogeneous	data	23–25.	
The	dataset	includes	cell	type-specific	samples	from	a	wide	range	of	cell	types	varying	in	sub-
threshold	and	spiking	patterns,	morphologies,	and	developmental	stages.	We	have	made	the	
combined	dataset	available	here,	as	it	could	be	a	useful	resource	and	benchmark	for	future	
analyses.	Moreover,	the	approach	could	be	expanded	to	incorporate	additional	cellular	
phenotypes,	like	neuronal	morphology	or	synaptic	physiology,	and	newer	genomic	data	sources	
including	from	RNA-seq,	epigenomics,	or	proteomics	18,53–55.		

In	our	framework,	a	causal	gene-ephys	relationship	implies	that	a	consistent	change	in	a	gene’s	
expression	would	result	in	a	corresponding	change	in	an	ephys	phenotype,	all	else	being	equal.	
Based	on	the	diversity	of	cell	types	present	here,	we	hypothesize	that	these	gene-ephys	
relationships	might	further	be	relatively	independent	of	cell	type	identity.	Indeed,	we	found	
examples	during	our	literature	search	where	the	specific	experiment	to	confirm	a	causal	gene-
ephys	relationship	was	performed	in	a	cell	type	not	present	in	either	the	discovery	or	AIBS	
datasets,	including	auditory	and	autonomic	brainstem	neurons	(Figure	3,	Supplemental	Figure	4).	
Not	only	do	these	examples	provide	direct	support	for	the	gene-ephys	relation,	but	we	also	
infer	the	same	causal	relationship	in	other	cell	types,	beyond	those	tested	directly.	Though	
additional	experiments	are	needed	to	determine	whether	these	relationships	are	truly	cell	
type-independent,	this	possibility	is	exciting	as	it	suggests	that	there	could	be	some	genes	that	
contribute	to	similar	ephys	functions	across	very	different	cell	types.	

Every	novel	correlation	reported	here	presents	a	specific,	testable	causal	prediction.	The	results	
from	our	ion	channel-focused	literature	search	are	encouraging,	as	13	of	17	tested	gene-ephys	
relationships	showed	some	evidence	for	direct	experimental	support.	However,	it	is	overly	
optimistic	to	conclude	that	most	novel	ephys-correlated	genes	reported	here	will	prove	causal.	
Instead,	we	advocate	further	in-depth	analysis	of	gene	function	when	prioritizing	individual	
genes	for	future	experiments.	For	example,	the	correlation	between	Nkain1	and	input	
resistance	(Rin)	is	plausibly	causal	because	the	Nkain1	protein	interacts	with	the	Na+/K+	pump	
complex	29	and	the	pump’s	activity	regulates	Rin	through	helping	maintain	cellular	volumes	30.	
Similarly,	the	correlation	between	Ank1	and	FRmax	is	intriguing	because	Ank1,	an	isoform	of	the	
autism	gene	Ank3,	helps	coordinate	the	localization	of	Nav	subunits	to	the	nodes	of	Ranvier	48.	
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Though	we	found	Ank1	to	be	highly	expressed	in	adult	PV	and	Purkinje	cells	here,	its	function	in	
these	cells	has	yet	to	be	characterized.	Specific	transcription	factors	identified	might	regulate	
the	expression	of	downstream	genes	relevant	to	ephys.	For	example,	Zbtb18,	correlated	with	
resting	potential	here,	is	required	for	normal	glutamatergic	cell	development	and	has	recently	
been	implicated	in	human	neurodevelopmental	disorders	through	genome	sequencing	49–51.	
Ultimately,	these	genes	could	provide	novel	means	for	manipulating	cellular	ephys	in	the	
context	of	disease.	For	example,	upregulating	Scn1a	expression	using	anti-sense	RNA	
approaches	has	been	shown	to	be	an	effective	means	of	reducing	seizures	in	a	model	of	Dravet	
syndrome	32.	

Limitations	and	caveats	

The	results	presented	here	are	restricted	to	a	limited	range	of	situations.	First,	we	can	only	
identify	genes	where	mRNA,	as	measured	in	dissociated	cells	56,	is	an	adequate	readout	of	a	
gene’s	functional	activity	at	the	protein	level.	Future	datasets	employing	RNA-seq,	proteomics,	
or	techniques	to	capture	non-somatic	mRNA	will	likely	be	able	to	identify	more	genes	where	
alternative	splicing	and	post-translational	modifications	are	essential	for	understanding	gene	
function	10–12.	

Second,	our	analysis	approach	assumes	a	gene’s	contribution	to	electrophysiology	is	similar	and	
monotonic	across	cell	types.	We	likely	miss	genes	that	contribute	to	complex	ephys	features	in	
ways	that	are	biologically	degenerate	and	are	highly	non-linear	or	combinatorial	27,28.	For	
example,	Kv3-family	ion	channels,	including	Kcnc1/Kv3.1,	have	been	implicated	in	helping	fast-
spiking	cells	maintain	narrow	spike	widths	31,57,	but	we	did	not	identify	Kcnc1	as	correlated	with	
AP	width	in	our	analysis.	More	sophisticated	analysis	methods,	such	as	those	that	incorporate	
information	about	how	proteins	interact	to	form	functional	complexes,	might	reveal	additional	
signals	and	mitigate	spurious	correlations.	However,	pursuing	such	approaches	will	likely	
necessitate	larger	datasets	than	are	currently	available.	

Third,	the	focus	of	our	analysis	is	to	explain	how	ephys	differences	across	cell	types	emerge	
through	gene	expression.	It	remains	an	open	question	whether	the	same	genes	driving	large	
across	cell	type	differences	would	also	be	the	same	genes	that	are	defining	subtler	within	cell	
type	differences,	like	amongst	olfactory	bulb	mitral	cells	or	CA1	pyramidal	cells	1,2,53.	As	the	
patch-seq	methodology,	enabling	transcriptomic	and	ephys	characterization	from	the	same	
single-cell	19,20,	is	further	developed	and	applied,	we	eagerly	anticipate	testing	these	
hypotheses.	However,	small	changes	in	expression	of	individual	genes,	as	expected	within	a	
single	cell	type,	are	difficult	to	reliably	detect	using	current	technologies,	in	part,	due	to	
relatively	limited	sample	sizes	and	technical	challenges	like	“dropouts”	18.	Indeed,	while	these	
patch-seq	studies	have	demonstrated	their	utility	in	classifying	individual	cells	into	types	19,20,	
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how	variance	in	expression	of	specific	genes	gives	rise	to	within	cell	type	ephys	differences	
remains	largely	unaddressed.		

Fourth,	ephys	property	correlations	and	gene	co-expression	limits	the	potential	specificity	of	
any	causal	prediction	made	here.	For	example,	some	pairs	of	ephys	properties,	like	AHPamp	and	
Rin,	are	correlated	but	probably	do	not	share	common	biophysical	underpinnings	(Supplemental	

Figure	2B).	Because	of	this	common	correlation,	genes	significantly	associated	with	one	ephys	
feature	are	more	likely	to	be	also	associated	with	other	ephys	features,	potentially	spuriously.	
Similarly,	many	pairs	of	genes	show	correlated	expression	across	samples	(i.e.,	gene	co-
expression).	Gene	co-expression	often	reflects	biologically	meaningful	signals,	such	as	co-
regulation	by	common	transcription	factors	or	shared	membership	in	biological	pathways	and	
cellular	compartments	58.	However,	co-expression	makes	interpreting	individual	gene-ephys	
associations	difficult	and	likely	contributes	to	why	we	found	many	more	genes	for	some	ephys	
properties	than	we	would	naively	expect,	such	as	Vrest	and	AHPamp.	Future	analysis	approaches	
that	explicitly	consider	co-expression	might	prove	useful	59.	

Lastly,	the	heterogeneous	nature	of	the	compiled	NeuroExpresso/NeuroElectro	dataset	23,25,56	
might	limit	our	power	to	see	possible	biologically	relevant	signals	and	could	explain	our	failure	
to	find	genes	for	some	ephys	features.	For	example,	because	data	in	NeuroElectro	are	compiled	
from	different	studies	collected	in	the	absence	of	standards	for	how	some	ephys	properties	are	
defined	24,60,	this	likely	limits	our	downstream	attempts	at	normalization.	However,	the	overall	
consistency	with	the	AIBS	Cell	Types	dataset,	where	data	were	collected	using	standardized	
conditions	and	protocols,	suggests	that	the	results	shown	here	are	not	entirely	the	result	of	
technical	artefacts	due	to	data	compilation.		

Future	directions	

Our	findings	suggest	a	number	of	directions	for	future	study.	Can	specific	gene-ephys	
relationships	be	used	as	biomarkers	to	detect	electrophysiological	changes	in	a	disease	or	
treatment	context?	For	example,	if	Scn1a/Nav1.1	is	upregulated	in	a	cell	type,	does	that	serve	
as	a	reliable	indicator	of	hyper-excitability?	Given	the	relative	ease	and	growing	popularity	of	
single-cell	transcriptomics	on	dissociated	cells	and	nuclei	18,26,	could	these	gene-ephys	
correlations	be	used	to	impute	ephys	phenotypes	from	transcriptomic	signatures	alone?	Lastly,	
are	the	gene-ephys	correlations	reported	here	predictive	of	cell-to-cell	variability	reported	
within	the	same	cell	type?	

In	summary,	our	results	suggest	that	large-scale	transcriptomics	can	prove	useful	in	helping	
elucidate	the	biophysical	basis	for	the	rich	electrophysiological	diversity	seen	amongst	neuron	
types	throughout	the	brain.	

Methods	
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NeuroExpresso	Database	Description	

To	obtain	neuron	type-specific	transcriptomic	data,	we	made	use	of	the	NeuroExpresso	
database	(neuroexpresso.org),	described	previously	23.	Briefly,	the	database	contains	
transcriptomic	studies	collected	from	mouse	brain	cell	types	sampled	under	normal	conditions.	
We	specifically	utilized	the	microarray-specific	subset	of	NeuroExpresso.	These	samples	were	
collected	using	purified,	pooled-cell	microarrays	with	transcriptomes	quantified	using	the	
Affymetrix	Mouse	Expression	430A	Array	(GPL339)	or	Mouse	Genome	430	2.0	Array	(GPL1261).	
We	further	only	used	probesets	that	were	shared	between	both	platforms. Transcriptomic	
samples	were	quality	controlled	and	manually	curated	for	cell	type	identity	and	basic	sample	
metadata,	including	animal	age,	array	platform,	and	purification	method.	The	samples	were	
subjected	to	RMA	normalization	and	an	additional	round	of	quantile	normalization	in	order	to	
obtain	a	uniform	distribution	of	signals	across	samples.	When	a	single	gene	was	represented	by	
multiple	probesets,	the	probeset	with	highest	variability	across	samples	was	chosen	to	
represent	the	gene.	We	note	that	we	have	re-annotated	the	cell	type	labels	used	here	from	
those	used	in	the	NeuroExpresso	database	and	web	resource.	

For	the	purpose	of	obtaining	a	large	corpus	of	cell	types,	we	made	use	of	a	small	number	of	cell	
type-specific	transcriptomic	samples	excluded	from	analysis	in	the	original	NeuroExpresso	
publication	(e.g.,	developmentally	immature	samples).	Specifically,	for	two	major	cell	types	
with	transcriptomic	data	collected	at	varying	ages,	cortical	parvalbumin-positive	(PV)	
interneurons	labelled	by	the	G42	mouse	line	and	cerebellar	Purkinje	cells	22,61,	we	kept	samples	
collected	at	different	ages	separate	and	used	of	samples	collected	from	animals	aged	less	than	
P14.	We	further	included	data	representing	cortical	Htr3a-	and	Oxtr-expressing	cells	from	Gene	
Expression	Omnibus	(GEO)	accession	GSE56996	62	and	layer	2-3	and	layer	6	pyramidal	cells	from	
GSE69340	63.	The	complete	listing	of	transcriptomic	samples,	annotated	cell	types,	and	
references	is	provided	in	Supplemental	Table	2.	

Gene	filtering	and	sample	summarization	

Following	data	compilation,	we	filtered	genes	to	retain	only	those	with	1)	high	mean	
expression;	and	2)	highly	variable	expression	across	cell	types	in	the	combined	dataset.	
Specifically,	for	each	gene,	g,	we	calculated	its	expression	mean,	μg,	and	standard	deviation,	σg,	
across	the	collection	of	34	cell	types	in	the	combined	discovery	dataset.	Next,	we	calculated	a	
global	mean,	μglobal	defined	as	mean(μg1:gN),	and	standard	deviation,	σglobal	defined	as	
mean(σg1:gN)	across	the	total	set	of	genes.	Here,	μglobal	=	7.5	and	σglobal	=	0.75;	for	context,	
background	expression	levels	were	approximately	~6.0	(log2	expression	units).	We	filtered	
genes	where	μg	>	μglobal	and	σg	>	σglobal,	leaving	2694	from	11667	total	genes	quantified.	Lastly,	
we	summarized	each	cell	type	by	the	mean	expression	per	gene	across	samples.	
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NeuroElectro	Database	Description	and	Normalization	

To	obtain	neuron	type-specific	electrophysiological	measurements,	we	used	an	updated	version	
of	the	NeuroElectro	database	(neuroelectro.org),	originally	described	in	24,25.	Briefly,	we	
populate	the	NeuroElectro	database	using	manual	curation	to	extract	information	on	
electrophysiological	measurements	such	as	resting	membrane	potential	and	input	resistance	
(described	in	Supplemental	Table	1)	from	the	results	sections	of	published	papers	using	
intracellular	electrophysiology.	Curators	also	annotate	a	set	of	relevant	methodological	
information,	including	species,	animal	age,	electrode	type,	preparation	type,	recording	
temperature,	and	use	of	liquid	junction	potential	correction.	

NeuroElectro	database	

We	note	the	following	major	improvements	to	the	NeuroElectro	database,	beyond	an	increase	
in	the	overall	database	size	(from	331	to	968	articles	as	of	December	2016).	

First,	we	have	now	curated	and	manually	standardized	a	greater	number	of	electrophysiological	
properties,	including	after	hyperpolarization	amplitude	(AHPamp),	maximum	spiking	frequency	
(FRmax),	and	spike	frequency	adaptation	(SFA).	For	example,	in	the	process	of	data	curation	we	
have	standardized	electrophysiological	properties	for	the	use	of	different	baselines,	for	
example,	AHP	amplitude	reported	as	an	absolute	voltage	as	opposed	to	amplitude	relative	to	
spike	threshold	(e.g.,	-70	mV	vs	10	mV).	We	note	that	because	of	raw	data	unavailability,	we	do	
not	recalculate	measurements	in	NeuroElectro	from	raw	ephys	traces.	Thus,	we	could	not	
ensure	that	ephys	properties	such	as	SFA	or	AHPamp	were	calculated	using	a	consistent	
stimulation	protocol	across	different	studies.	These	differences	where	present	would	tend	to	
contribute	to	study-to-study	variability.	

Second,	when	curating	specific	neuron	subtypes	reported	in	the	literature,	we	now	take	care	to	
manually	annotate	the	specific	features	the	authors	used	to	define	each	cell	subtype	(e.g.,	the	
mouse	line	used,	brain	region,	gene	or	protein	expression,	firing	pattern,	etc.);	for	example,	
“barrel	cortex	layer	2-3	somatostatin-expressing	interneuron	from	the	GIN	mouse	line”	or	
“hypothalamus	orexin-expressing	cell”.	This	level	of	fine-grained	cell	type	curation	allows	us	to	
better	harmonize	relevant	electrophysiological	to	transcriptomic	datasets	post	hoc.	

NeuroElectro	Data	Preprocessing	

Electrophysiological	data	was	filtered	for:	1)	recordings	from	acute	brain	slices	in	vitro	(thus	
removing	in	vivo	recordings	and	from	slice	and	cell	cultures);	2)	from	mice,	rats,	or	guinea	pigs;	
3)	with	an	animal	age	greater	than	2	days	old.	Animal	ages,	when	reported	as	a	range	(e.g.,	P14-
P20),	were	summarized	using	the	geometric	mean.	When	animal	age	or	recording	temperature	
was	not	reported,	we	used	median	imputation	to	fill	in	missing	values	(which	typically	was	
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rare).	To	address	the	correction	of	liquid	junction	potential	(LJP),	we	manually	removed	or	
“uncorrected”	the	correction	of	LJP	when	it	had	previously	been	performed	and	when	the	
original	authors	provided	the	explicit	voltage	correction	value	used	(i.e.,	LJP	offset).	We	then	
used	a	custom	LJP	metadata	field	denoted	‘PostCorrected’	to	define	these	cases.	

Experimental	condition-based	data	normalization	

As	described	previously,	we	used	statistical	regression	models	to	normalize	ephys	data	for	
study-to-study	differences	in	experimental	methodologies	25.	Here,	we	used	elastic-net	
penalized	regression,	implemented	using	the	cv.glmnet	function	within	the	R	glmnet	package	64	
with	an	alpha	value	of	.99	and	nlambda	=	100.	The	regression	model	for	each	ephys	parameter	
(EphysProp)	was	fit	using	the	following	formula:	

EphysProp	=	NeuronType	+	Species	+	JxnPotential	+	ElectrodeType	+	bs(log10(AnimalAge))	+	
bs(RecTemp)	

where	bs	indicates	the	use	of	bsplines	with	5	degrees	of	freedom.	Here,	NeuronType,	Species,	
JxnPotential,	and	ElectrodeType	each	indicate	nominal	metadata	types.	AnimalAge	and	
RecTemp	refer	to	animal	age	and	slice	recording	temperature	and	reflect	continuous	
parameters.	For	example,	ElectrodeType	indicates	the	use	of	patch-clamp,	perforated	patch,	or	
sharp	electrodes	whereas	JxnPotential	indicates	whether	the	liquid	junction	potential	was	
explicitly	corrected,	not	corrected,	or	unmentioned	within	the	article’s	methods	section.	The	
ephys	properties,	Rin,	Tau,	APhw,	Cm,	Rheo,	FRmax,	were	log10-transformed	prior	to	metadata	
modeling.	

We	used	the	filtered	NeuroElectro	dataset	to	fit	regression	models	to	model	study-to-study	
variability	in	ephys	measurements.	After	fitting	these	models,	we	then	used	the	models	to	
adjust	ephys	data	for	the	influence	of	major	differences	in	experimental	conditions	between	
studies.		

To	summarize	electrophysiological	measurements	per	each	unique	cell	type	(defined	in	
Supplemental	Table	2),	we	first	averaged	measurements	reported	within	a	single	paper	and	then	
calculated	the	median	ephys	value	across	papers	characterizing	each	cell	type.	

Harmonizing	cell	types	across	NeuroExpresso	and	NeuroElectro	

Because	it	was	uncommon	for	a	single	study	to	characterize	both	a	cell	type’s	transcriptomic	
and	electrophysiological	parameters,	we	developed	a	strategy	for	pairing	gene	expression	and	
ephys	datasets	from	different	studies	based	on	common	cell	type	identity.	

We	first	manually	re-annotated	the	cell	type	identity	of	each	transcriptomic	sample	from	
NeuroExpresso	using	a	descriptive	semantic	label	(shown	in	Supplemental	Table	2),	defined	by	a	
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minimally	sufficient	number	of	defining	features	(including	brain	region	and	marker	gene	
expression	or	projection	pattern	65).	For	example,	the	transcriptomic	samples	corresponding	to	
cerebellar	granule	cells	in	NeuroExpresso	were	purified	using	the	L10a-Neurod1	mouse	line,	
where	GFP	is	specifically	expressed	in	the	ribosomes	of	these	cells	66.	Here,	we	merely	
annotated	these	samples	using	the	label,	“cerebellar	granule	cells”	(CB	gran).	We	next	
identified	all	curated	electrophysiological	data	within	NeuroElectro	corresponding	to	this	same	
major	cell	type,	making	use	of	the	manual	annotations	for	each	electrophysiological	sample’s	
cell	type	identity	(n	=	9	articles	for	CB	granule	cells).	We	note	that	subtle	differences	between	
how	CB	granule	cells	are	labelled	in	the	L10a-Neurod1	mouse	line	and	how	CB	granule	cells	are	
targeted	by	lamina	and	morphology	for	ephys	recordings	would	tend	not	to	be	preserved	after	
this	data	harmonization	step.		

To	pair	transcriptomic	to	ephys	datasets	explicitly	defined	by	different	ages	(e.g.,	P7	and	P25),	
we	matched	animal	ages	+/-	2.5	days.	For	example,	the	samples	corresponding	to	“Ctx	G42	
P15”	reflect	neocortical	parvalbumin-positive	interneurons	labeled	by	GFP	in	the	G42	mouse	
line	aged	P15	+/-	2.5	days.	Because	we	tended	to	have	fewer	data	points	after	subsetting	the	
cortical	G42	cells	into	different	age	groups,	for	one	ephys	property,	APthr,	we	excluded	APthr	
values	from	these	cells	since	they	varied	widely	(~10mV)	across	studies	from	the	same	time	
point.		

Allen	Institute	for	Brain	Sciences	Cell	Types	dataset	

Single	cell	transcriptomic	samples	

We	made	use	of	an	Allen	Institute	for	Brain	Sciences	(AIBS)	Cell	Types	dataset	employing	single-
cell	RNAseq	to	characterize	diversity	of	cells	in	adult	mouse	visual	cortex	labelled	by	different	
mouse	cre-lines.	Specifically,	we	obtained	data	originally	reported	in	26	from	GSE71585,	
representing	data	from	1809	single-cells.	We	made	use	of	the	summary	data	file	where	
expression	for	each	gene	was	summarized	as	reads	per	kilobase	sequenced	per	million	(TPM)	
with	24,057	genes	quantified	per	cell.		

Single	cell	electrophysiological	samples	

We	made	use	of	the	AIBS	Cell	Types	dataset	employing	in	vitro	patch	clamp	electrophysiology	
to	characterize	mouse	visual	cortex	cellular	intrinsic	electrophysiology	using	standardized	
protocols.	For	each	cell	in	the	AIBS	Cell	Types	database	(http://celltypes.brain-map.org/),	
representing	847	single	cells	as	of	December	2016,	we	downloaded	its	corresponding	raw	and	
summarized	ephys	data	(summary	measurements	included	input	resistance	and	resting	
potential).	For	all	spiking	measurements	except	maximum	firing	rate	and	spike	frequency	
adaptation,	we	used	the	voltage	trace	corresponding	to	the	first	spike	at	rheobase	stimulation	
level.	For	a	few	ephys	properties,	like	action	potential	half	width,	we	calculated	these	from	the	
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raw	ephys	traces,	as	these	were	not	available	in	the	pre-calculated	summarized	data.	
Membrane	capacitance	was	defined	as	the	ratio	of	the	membrane	time	constant	to	the	
membrane	input	resistance.	Maximum	firing	rate	and	spike	frequency	adaptation	were	
calculated	using	the	voltage	trace	corresponding	to	the	current	injection	eliciting	the	greatest	
number	of	spikes.	Spike	frequency	adaptation	(SFA)	was	defined	as	the	ratio	between	the	first	
and	mean	inter-spike	intervals	during	this	maximum	spike-eliciting	trace	(i.e.,	neurons	with	
greater	SFA	will	show	values	closer	to	0).		

Data	summarization	and	harmonization	

We	summarized	single	cell	transcriptomic	and	ephys	data	to	the	level	of	cell	types	by	averaging	
measurements	within	the	same	cre-line	(i.e.,	defining	cell	types	by	unique	cre-lines).	We	
filtered	cre-lines	that	were	sampled	by	at	least	10	cells	in	each	of	the	transcriptomic	and	ephys	
data,	leaving	a	total	of	12	cell	types	/	cre-lines.	We	also	filtered	single	cell	transcriptomic	
samples	to	include	only	those	corresponding	to	neuronal	cells	(i.e.,	removing	glial	cells	
erroneously	labelled	by	the	cre-line).	We	did	not	further	attempt	to	make	use	of	the	novel	
transcriptomics-based	cellular	subtypes	as	defined	in	26,	since	we	cannot	make	a	
correspondence	between	these	subtypes	(defined	on	the	basis	of	multivariate	gene	expression	
in	the	absence	of	ephys	or	morphological	characterization)	with	individual	cells	sampled	in	the	
ephys	data.	We	matched	genes	across	the	AIBS	and	NeuroExpresso/NeuroElectro	datasets	
using	NCBI	entrez	gene	identifiers.	Of	the	total	2694	genes	present	in	the	discovery	dataset	
after	expression	level-based	filtering,	there	were	2603	total	genes	in	common	with	the	AIBS	
scRNAseq	dataset.	

Data	availability	

The	harmonized	and	processed	cell	type-specific	data	for	the	discovery	and	validation	datasets	
has	been	made	publically	available	at	http://hdl.handle.net/11272/10485.		

Statistical	analysis	and	methodology	

Gene-electrophysiological	property	correlation	analysis	

For	each	gene	in	the	filtered	NeuroExpresso/NeuroElectro	data	matrix,	we	calculated	its	rank	
correlation	and	uncorrected	p-value	(two-sided	test)	with	each	the	11	ephys	properties,	using	
the	function	cor.test	from	the	R	stats	package,	with	‘method=”spearman”’.	We	also	calculated	
the	Spearman	correlation	(rs)	for	each	gene	and	ephys	property	in	the	AIBS	validation	dataset.		

Corrections	for	multiple	comparisons	

We	used	the	Benjamini-Hochberg	correction	for	False	Discovery	Rate	(FDR)	to	correct	for	
comparisons	performed	across	multiple	genes67,	implemented	using	the	function	p.adjust	from	
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the	R	stats	package.	Here,	for	ease	of	interpretation,	we	refer	to	the	Benjamini-Hochberg	FDR	
as	padj.	Because	of	ephys	property	correlations,	we	did	not	further	correct	for	multiple	
comparisons	across	ephys	properties.	

Comparing	results	across	discovery	and	validation	datasets	

To	evaluate	the	consistency	between	discovery	and	validation	datasets,	we	defined	two	
separate	measures.	First,	to	obtain	a	measure	of	the	overall	consistency	per	ephys	property,	we	
calculated	the	rank	correlation	across	the	set	of	2603	genes	in	common	to	both	datasets	(after	
filtering	genes	for	expression	levels	based	on	the	discovery	dataset).	Second,	to	specifically	
focus	on	gene-ephys	correlations	meeting	our	threshold	for	significance	in	the	discovery	
dataset	(padj	<	0.05),	we	defined	consistent	correlations	as	those	with	matching	correlation	
directions	and	also	with	the	absolute	value	of	the	gene-ephys	rank	correlation	in	the	validation	
dataset	exceeding	0.3	(i.e.,	|rs,	validation|	>	0.3).	For	both	criteria,	we	obtained	p-values	through	
randomly	shuffling	cell	type	labels	in	the	validation	dataset	between	ephys	and	gene	expression	
data.	We	obtained	an	expected	p-value	null	distribution	through	performing	1000	random	
shuffles	and	recalculating	gene-ephys	correlations	per	shuffle.	Our	final	list	of	gene-ephys	
correlations	are	those	that	are	significant	in	the	discovery	dataset	(i.e.,	padj,	discovery	<	0.05)	that	
further	validated	in	the	AIBS	dataset	(|rs,	validation|	>	0.3).		

Gene	lists	

To	obtain	specific	gene	sets,	we	made	use	of	Gene	Ontology	annotations	(as	of	August	2016).	
We	used	the	GO	term	0005216	corresponding	to	“ion	channel	activity”	to	identify	ion	channels;	
the	term	0015075	corresponding	to	“ion	transmembrane	transporter	activity”	in	addition	to	
Nkain1	to	identify	ion	transporters;	the	term	0007010	corresponding	to	“cytoskeleton	
organization”	to	identify	cytoskeletal	genes;	the	term	0007399	corresponding	to	“nervous	
system	development”	to	identify	developmental	genes;	and	the	term	0034765	to	identify	
“regulation	of	ion	transport”	in	addition	to	the	genes	L1cam,	Slmap,	and	Ank1.	To	obtain	a	
comprehensive	manually	curated	listing	of	transcription	factors,	we	used	the	Transcription	
Factor	Checkpoint	resource	68.	

Ion	channel	focused	literature	search	

Literature	search	methodology	

We	performed	a	systematic	literature	search	to	identify	causal	experiments	consistent	or	
inconsistent	with	the	individual	gene-ephys	correlations	reported	here.	Specifically,	we	started	
with	a	set	of	23	ion	channel	genes	identified	by	our	analysis	(defined	by	GO	term	0005216)	that	
further	validated	in	the	AIBS	dataset.	
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For	each	gene,	we	manually	searched	for	articles	where	these	genes	had	been	perturbed,	either	
using	genetic	approaches	to	knockout	or	knockdown	the	gene’s	expression	or	using	channel-
specific	pharmacology.	When	searching	for	individual	genes,	we	made	use	of	common	gene	
name	synonyms,	for	example,	that	Kv1.1	is	a	synonym	for	the	gene	Kcna1.	We	further	searched	
for	papers	where	the	individual	ephys	properties	suggested	by	our	correlative	analysis	(e.g.,	
APhw,	rheobase)	had	been	explicitly	measured.	To	this	end,	we	used	Google	Scholar	with	the	
gene	name	or	gene	name	synonym	and	the	associated	ephys	property	as	search	terms.	When	
the	name	of	a	pharmacological	blocker	of	an	ion	channel	was	known	it	was	included	in	search	
terms.	We	also	checked	the	top	40	papers	related	to	a	gene	on	its	NCBI	Gene	page	for	those	in	
which	the	gene	was	manipulated	and	ephys	properties	of	interest	were	measured.	For	some	
widely	studied	ion	channel	genes,	such	as	Kcna1/Kv1.1	and	Kcnd2/Kv4.2,	we	did	not	attempt	to	
systematically	review	each	article	studying	these	genes	and	typically	ended	our	search	after	3-5	
relevant	articles	were	identified.	We	further	limited	our	assessment	to	perturbations	involving	
mammalian	neurons.	

When	our	search	yielded	pertinent	articles,	we	annotated	relevant	information,	including:	the	
kind	of	manipulation	(e.g.,	genetic	manipulation	and	type;	pharmacological	compound	used,	
etc.);	cell	type;	and	direction	and	magnitude	of	effect.	To	categorize	effects,	we	assessed	
whether	the	perturbation	resulted	in	an	increase	or	decrease	in	the	value	of	the	ephys	property	
and	whether	this	change	was	further	either	statistically	significant	or	non-significant.	In	a	small	
number	of	cases,	there	was	effectively	no	change	or	a	negligible	change	between	the	control	
and	perturbed	condition	that	were	curated	as	“negligible	changes”.	

When	scoring	whether	an	individual	gene-ephys	correlation	was	either	consistent	or	
inconsistent	with	literature	evidence,	we	assessed	the	direction	effect.	For	example,	for	an	ion	
channel	gene	that	our	analysis	found	as	positively	correlated	with	Vrest,	we	would	expect	that	
knocking	out	the	gene	would	make	Vrest	to	become	more	negative	and	more	hyperpolarized,	all	
else	being	equal.	Similarly,	applying	an	agonist	of	the	ion	channel	should	make	Vrest	more	
positive	and	depolarized.	In	cases	with	multiple	lines	of	evidence	linking	specific	ion	channel	
perturbations	to	ephys	changes	(e.g.,	both	pharmacological	and	genetic	changes),	we	
aggregated	these	along	the	following	categories:	consistent,	inconsistent,	mixed,	and	no	effect.	
Gene-ephys	correlations	supported	by	both	consistent	and	inconsistent	literature	evidence	
were	marked	as	“mixed”.	Those	with	consistent	evidence	and	also	some	evidence	for	a	
negligible	change	but	no	inconsistent	evidence	were	marked	as	“consistent”,	and	similarly	for	
inconsistent	evidence.		
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Supplemental	Tables	

Supplemental	Table	1.	Description	of	electrophysiological	properties	used	in	this	study.	

Property	name	 Abbreviation	 Definition	 Units	
AHP	amplitude	 AHPamp	 Amplitude	of	voltage	difference	between	spike	

threshold	and	trough.	
mV	

spike	amplitude	 APamp	 Height	of	action	potential,	between	spike	
threshold	and	peak.	

mV	
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spike	half-width	 APhw	 Spike	duration	measured	halfway	between	spike	
threshold	and	peak.	

ms	

spike	threshold	 APthr	 Voltage	at	which	spike	is	initiated	 mV	

cell	capacitance	 Cm	 Whole-cell	membrane	capacitance	 pF	

maximum	firing	rate	 FRmax	 Maximum	observed	spike	discharge	rate	 Hz	

rheobase	 Rheo	 Minimum	current	injection	required	to	evoke	
action	potential	

pA	

input	resistance	 Rin	 Membrane	resistance	measured	at	steady-state	
voltage	response	to	current	injection	

MΩ	

spike	frequency	
adaptation	

SFA	 Ratio	of	durations	between	early	and	late	spike	
inter-spike	intervals	in	an	spike	train.	

ratio	

membrane	time	
constant	

Tau	 Time	constant	for	membrane	to	repolarize	after	
small	current	injection	

ms	

resting	membrane	
potential	

Vrest	 Membrane	potential	at	the	onset	of	whole-cell	
recording	

mV	

	
Supplemental	Table	2:	Description	of	cell	types	composing	the	combined	
NeuroExpresso/NeuroElectro	dataset.		

Abbrev
iation	

Neuron	Type	 Neuron	Matching	
Criteria	

Expression	
References	

Ephys	References	

BF	ACh	 Basal	forebrain	
cholinergic	cells	

in:basal	forebrain,	
neurotransmitter:cho

linergic	

Doyle	et	al.,	2008	 Matthews	et	al.	(1999),	
Bengtson	et	al.	(2000),	

Henderson	et	al.	(2004),	Arrigoni	
et	al.	(2006),	Hedrick	et	al.	

(2010),	Kalmbach	et	al.	(2012),	
Unal	et	al.	(2012),	McKenna	et	
al.	(2013),	Yi	et	al.	(2015),	

Dannenberg	et	al.	(2015),	Rosati	
et	al.	(1999)	

BLA	Pyr	 Basolateral	
amygdala	

pyramidal	cells	

in:basolateral	
amygdala,	

morphology:pyramid
al	

Sugino	et	al.,	
2006	

Wu	et	al.	(2007),	Kaneko	et	al.	
(2008),	Jasnow	et	al.	(2009),	

Ehrlich	et	al.	(2012),	Daftary	et	
al.	(2012),	Motanis	et	al.	(2014),	
Ferreira	et	al.	(2015),	Maiya	et	
al.	(2015),	Rau	et	al.	(2015)	

BS	ACh	 Brain	stem	
cholinergic	cells	

in:brainstem,	
neurotransmitter:cho

linergic	

Doyle	et	al.,	2008	 Brown	et	al.	(2006),	Leijon	et	al.	
(2014),	Kamii	et	al.	(2015)	

CB	
Golgi	

Cerebellum	Golgi	
cells	

in:Cerebellum,	
morphology:Golgi	

Doyle	et	al.,	2008	 Robberechts	et	al.	(2010),	
Hirono	et	al.	(2012)	

CB	gran	 Cerebellum	granule	 in:Cerebellum,	 Doyle	et	al.,	2008	 Brickley	et	al.	(2001),	Cathala	et	
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cells	 morphology:granule	 al.	(2003),	Gall	et	al.	(2003),	
Goldfarb	et	al.	(2007),	Prestori	et	
al.	(2008),	Osorio	et	al.	(2010),	

Usowicz	et	al.	(2012),	
Delvendahl	et	al.	(2015),	
D'Angelo	et	al.	(1998)	

CB	Purk	
P14	

Cerebellum	
Purkinje	cells,	P14	

in:Cerebellum,	
morphology:Purkinje,	

age:	P14	

Paul	et	al	2012	 Swensen	et	al.	(2005),	McKay	et	
al.	(2005),	Zhu	et	al.	(2006),	

Takeuchi	et	al.	(2008)	

CB	Purk	
P3	

Cerebellum	
Purkinje	cells,	P3	

in:Cerebellum,	
morphology:Purkinje,	

age:	P3	

Paul	et	al	2012	 McKay	et	al.	(2005)	

CB	Purk	
P56	

Cerebellum	
Purkinje	cells,	P56	

in:Cerebellum,	
morphology:Purkinje,	

age:	P56	

Paul	et	al	2012	 McKay	et	al.	(2005),	Torashima	
et	al.	(2006),	Hoxha	et	al.	(2012)	

CB	Purk	
P7	

Cerebellum	
Purkinje	cells,	P7	

in:Cerebellum,	
morphology:Purkinje,	

age:	P7	

Paul	et	al	2012	 McKay	et	al.	(2005)	

DG	
gran	

Dentate	gyrus	
granule	cells	

in:Dentate	gyrus,	
morphology:granule	

Perrone-
Bizzozero	NI	et	al.	

2011	

Scharfman	et	al.	(2000),	Joëls	et	
al.	(2001),	Romo-Parra	et	al.	

(2003),	Kobayashi	et	al.	(2003),	
Scharfman	et	al.	(2003),	Patel	et	
al.	(2004),	Dietrich	et	al.	(2005),	
Podlogar	et	al.	(2006),	Patrylo	et	
al.	(2007),	Zhan	et	al.	(2009),	

Epsztein	et	al.	(2010),	Powell	et	
al.	(2012),	Zhang	et	al.	(2012),	
Kim	et	al.	(2012),	Swijsen	et	al.	
(2012),	Lopez	et	al.	(2012),	

Cabezas	et	al.	(2013),	Dieni	et	al.	
(2013),	Yarishkin	et	al.	(2014),	

Nenov	et	al.	(2015),	Pourbadie	et	
al.	(2015),	Gao	et	al.	(2015),	

Mott	et	al.	(1997),	Lübke	et	al.	
(1998)	

ORB	L5	
Pyr	

Frontal	cortex	layer	
5	pyramidal	cells	

in:frontal	cortex,	
morphology:pyramid

al,	layer:layer	5	

Sugino	et	al.,	
2006	

Lavin	et	al.	(2001),	Noaín	et	al.	
(2006),	Orozco-Cabal	et	al.	
(2008),	Zhong	et	al.	(2008),	

Gulledge	et	al.	(2009),	van	et	al.	
(2009),	Yan	et	al.	(2011),	Winters	
et	al.	(2011),	Hirai	et	al.	(2012),	
Sepulveda-Orengo	et	al.	(2013),	
Wang	et	al.	(2013),	van	et	al.	

(2015),	Yang	et	al.	(2013),	Zhong	
et	al.	(2014),	Stephens	et	al.	
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(2014),	Sceniak	et	al.	(2016),	
Song	et	al.	(2015),	de	et	al.	

(1996)	

CA1	Pyr	 Hippocampus	CA1	
pyramidal	cells	

in:hippocampus	CA1,	
morphology:pyramid

al	

Sugino	et	al.,	
2006	

Karnup	et	al.	(1999),	Kirson	et	al.	
(2000),	Beier	et	al.	(2000),	

Jahromi	et	al.	(2000),	Staff	et	al.	
(2000),	Pike	et	al.	(2000),	Fraser	
et	al.	(2001),	Sanabria	et	al.	

(2001),	Foster	et	al.	(2001),	Su	et	
al.	(2001),	Gusev	et	al.	(2001),	
Thibault	et	al.	(2001),	Ireland	et	
al.	(2002),	Castro	et	al.	(2002),	
Vreugdenhil	et	al.	(2002),	

Martina	et	al.	(2003),	Kamal	et	
al.	(2003),	Oh	et	al.	(2003),	

Scammell	et	al.	(2003),	Carrer	et	
al.	(2003),	van	et	al.	(2003),	

McDermott	et	al.	(2003),	Li	et	al.	
(2004),	Fujiwara-Tsukamoto	et	
al.	(2004),	Yue	et	al.	(2004),	

Barbaro	et	al.	(2004),	Martina	et	
al.	(2005),	Golding	et	al.	(2005),	
McCloskey	et	al.	(2005),	Yue	et	
al.	(2005),	Avignone	et	al.	(2005),	
Otto	et	al.	(2006),	Grabauskas	et	
al.	(2006),	Pandis	et	al.	(2006),	
Gant	et	al.	(2006),	Cao	et	al.	

(2006),	Shelbourne	et	al.	(2007),	
Lamsa	et	al.	(2007),	Derchansky	
et	al.	(2008),	López	et	al.	(2007),	
Yang	et	al.	(2008),	Yan	et	al.	
(2008),	Pilpel	et	al.	(2009),	

Maggio	et	al.	(2009),	Lopantsev	
et	al.	(2009),	Routh	et	al.	(2009),	
Patino	et	al.	(2009),	Tartar	et	al.	
(2010),	Gamelli	et	al.	(2011),	
Zemankovics	et	al.	(2010),	
Chevaleyre	et	al.	(2010),	

Roggenhofer	et	al.	(2010),	Dasari	
et	al.	(2011),	Scorza	et	al.	(2011),	
Gant	et	al.	(2011),	Sinning	et	al.	

(2011),	Drew	et	al.	(2011),	
Edelmann	et	al.	(2011),	Kaphzan	
et	al.	(2011),	Malik	et	al.	(2012),	
Zhou	et	al.	(2011),	None	et	al.	
(2012),	Farmer	et	al.	(2012),	

Marcelin	et	al.	(2012),	Kim	et	al.	
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(2012),	Graves	et	al.	(2012),	
McLeod	et	al.	(2013),	McKay	et	
al.	(2013),	Oh	et	al.	(2013),	San	
et	al.	(2014),	Borel	et	al.	(2013),	
Booth	et	al.	(2014),	Groen	et	al.	

(2014),	Pillai	et	al.	(2014),	
Johnson	et	al.	(2014),	Springer	et	
al.	(2014),	Novkovic	et	al.	(2015),	
Hall	et	al.	(2015),	Hooper	et	al.	
(2016),	Royeck	et	al.	(2015),	
Cembrowski	et	al.	(2016),	

Hackert	et	al.	(2016),	Fraser	et	
al.	(1996),	Spigelman	et	al.	

(1996),	Baraban	et	al.	(1997),	
Miller	et	al.	(1997),	Rempe	et	al.	
(1997),	Vida	et	al.	(1998),	Gulyás	

et	al.	(1998)	

HIP	GIN	 Hippocampus	GIN	
(SST)	interneurons	

in:hippocampus,	
mouse_line:GIN	

Sugino	et	al.,	
2006	

Griguoli	et	al.	(2009),	Maisano	et	
al.	(2012),	Kim	et	al.	(2012),	

McKay	et	al.	(2013)	

HY	
orexin	

Hypothalamus	
hypocretinergic	

cells	

in:Hypothalamus,	
expresses:Hcrt	

Dalal	et	al	2013	 Yamanaka	et	al.	(2010),	Schöne	
et	al.	(2011),	Tsunematsu	et	al.	

(2011)	

LC	
NAdr	

Locus	cereuleus	
noradrenergic	cells	

in:Locus	Cereuleus,	
neurotransmitter:nor

adrenaline	

Sugino	et	al.	2014	 Jedema	et	al.	(2004),	Chang	et	
al.	(2006),	Taneja	et	al.	(2009),	
Zhang	et	al.	(2010),	de	et	al.	

(2010),	de	et	al.	(2011)	

MB	5HT	 Midbrain	
serotonergic	cells	

in:midbrain,	
neurotransmitter:ser

otonin	

Dougherty	et	al	
2013	

Li	et	al.	(2001),	Kirby	et	al.	
(2003),	Beck	et	al.	(2004),	

Crawford	et	al.	(2010),	Shikanai	
et	al.	(2012)	

Ctx	CStr	
Pyr	

Neocortex	
corticostratial	
pyramidal	cells	

in:neocortex,	
morphology:pyramid

al,	
projection:corticostri

atal	

Schmidt	et	al	
2012	

Hattox	et	al.	(2007),	Groh	et	al.	
(2010),	Suter	et	al.	(2013),	

Oswald	et	al.	(2013),	Guan	et	al.	
(2015)	

Ctx	
CThal	
Pyr	

Neocortex	
corticothalamic	
pyramidal	cells	

in:neocortex,	
morphology:pyramid

al,	
projection:corticothal

amic	

Sugino	et	al.,	
2006	

Hattox	et	al.	(2007),	Kumar	et	al.	
(2008),	Llano	et	al.	(2009),	

Tanaka	et	al.	(2011),	Hirai	et	al.	
(2012),	Oswald	et	al.	(2013)	

Ctx	G42	
P10	

Neocortex	G42	(PV)	
interneurons,	P10	

in:neocortex,	
mouse_line:G42,	age:	

Okaty	et	al.,	2009	 Okaty	et	al.	(2009),	Oswald	et	al.	
(2011),	Pangratz-Fuehrer	et	al.	
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P10	 (2011),	Yang	et	al.	(2014)	

Ctx	G42	
P15	

Neocortex	G42	(PV)	
interneurons,	P15	

in:neocortex,	
mouse_line:G42,	age:	

P15	

Okaty	et	al.,	2009	 Okaty	et	al.	(2009),	Oswald	et	al.	
(2011),	Pangratz-Fuehrer	et	al.	
(2011),	Yang	et	al.	(2014),	Sippy	

et	al.	(2013)	

Ctx	G42	
P25	

Neocortex	G42	(PV)	
interneurons,	P25	

in:neocortex,	
mouse_line:G42,	age:	

P25	

Okaty	et	al.,	2009	 Okaty	et	al.	(2009),	Oswald	et	al.	
(2011),	Yang	et	al.	(2014)	

Ctx	G42	
P7	

Neocortex	G42	(PV)	
interneurons,	P7	

in:neocortex,	
mouse_line:G42,	age:	

P7	

Okaty	et	al.,	2009	 Okaty	et	al.	(2009),	Pangratz-
Fuehrer	et	al.	(2011),	Yang	et	al.	

(2014)	

Ctx	GIN	 Neocortex	GIN	
(SST)	interneurons	

in:neocortex,	
mouse_line:GIN	

Sugino	et	al.,	
2006	

Ma	et	al.	(2006),	Halabisky	et	al.	
(2006),	Xu	et	al.	(2006),	

Fanselow	et	al.	(2010),	Fino	et	al.	
(2011),	Levy	et	al.	(2012),	

Kinnischtzke	et	al.	(2012),	Sippy	
et	al.	(2013)	

Ctx	Glt	
Pyr	

Neocortex	Glt25d2-
expressing	

pyramidal	cells	

in:neocortex,	
morphology:pyramid
al,	expresses:Glt25d2	

Schmidt	et	al	
2012	

Groh	et	al.	(2010),	Guan	et	al.	
(2015),	Kim	et	al.	(2015)	

Ctx	
Htr3a	

Neocortex	Htr3a-
expressing	cells	

in:neocortex,	
expresses:Htr3a	

Nakanima	et.	Al	
2014	

Lee	et	al.	(2010)	

Ctx	L2-
3	Pyr	

Neocortex	layer	2-3	
pyramidal	cells	

in:neocortex,	
morphology:pyramid
al,	layer:layer	2-3	

Shrestha	et	al.	
2015	

Sutor	et	al.	(2000),	Aramakis	et	
al.	(2000),	Lambe	et	al.	(2000),	
van	et	al.	(2000),	Castro	et	al.	
(2002),	Karpuk	et	al.	(2003),	

Telfeian	et	al.	(2003),	Abel	et	al.	
(2004),	Bender	et	al.	(2003),	

Tateno	et	al.	(2004),	
Hadjilambreva	et	al.	(2005),	Lee	
et	al.	(2005),	Povysheva	et	al.	
(2006),	Guan	et	al.	(2007),	

Cheetham	et	al.	(2007),	Lee	et	al.	
(2007),	Lemtiri-Chlieh	et	al.	

(2007),	Kobayashi	et	al.	(2008),	
Shruti	et	al.	(2008),	Santini	et	al.	
(2008),	Oswald	et	al.	(2008),	
Andjelic	et	al.	(2009),	Lefort	et	
al.	(2009),	Gulledge	et	al.	(2009),	
Cummings	et	al.	(2009),	Brill	et	
al.	(2010),	Cho	et	al.	(2010),	

Takei	et	al.	(2010),	Tanaka	et	al.	
(2011),	Hirai	et	al.	(2012),	Levy	
et	al.	(2012),	Kinnischtzke	et	al.	
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(2012),	Cruikshank	et	al.	(2012),	
Otis	et	al.	(2013),	Sippy	et	al.	

(2013),	van	et	al.	(2015),	Yang	et	
al.	(2013),	Pillai	et	al.	(2014),	

Cruz	et	al.	(2014),	Rebello	et	al.	
(2014),	Guan	et	al.	(2015),	Neske	
et	al.	(2015),	Tyler	et	al.	(2015),	
Ferreira	et	al.	(2015),	Barnes	et	
al.	(2015),	Lacroix	et	al.	(2015),	
Yang	et	al.	(1997),	Pineda	et	al.	

(1998)	

Ctx	L6	
Pyr	

Neocortex	layer	6	
pyramidal	cells	

in:neocortex,	
morphology:pyramid

al,	layer:layer	6	

Shrestha	et	al.	
2015	

Lambe	et	al.	(2000),	Lavin	et	al.	
(2001),	Brumberg	et	al.	(2003),	
Karayannis	et	al.	(2007),	Lee	et	
al.	(2007),	Kumar	et	al.	(2008),	
Lefort	et	al.	(2009),	Llano	et	al.	

(2009),	Ledergerber	et	al.	(2010),	
Winters	et	al.	(2011),	Tanaka	et	
al.	(2011),	Marx	et	al.	(2013),	van	
et	al.	(2015),	Yang	et	al.	(2013),	
Tian	et	al.	(2014),	Proulx	et	al.	
(2015),	de	et	al.	(1996),	Yang	et	
al.	(1997),	Xiang	et	al.	(1998)	

Ctx	
Oxtr	

Neocortex	Oxtr-
expressing	cells	

in:neocortex,	
expresses:Oxtr	

Nakanima	et.	Al	
2014	

Nakajima	et	al.	(2014)	

SSp	TT	
Pyr	

Somatosensory	
cortex	layer	5	
pyramidal	cells	

in:somatosensory	
cortex,	

morphology:thick	
tufted,	

morphology:pyramid
al	

Sugino	et	al.,	
2006	

Le	et	al.	(2007),	Hattox	et	al.	
(2007),	Groh	et	al.	(2010),	Suter	
et	al.	(2013),	Guan	et	al.	(2015),	

Harb	et	al.	(2016)	

Str	ACh	 Striatum	
cholinergic	cells	

in:striatum,	
neurotransmitter:cho

linergic	

Doyle	et	al.,	2008	 Bennett	et	al.	(2000),	Lin	et	al.	
(2003),	Fino	et	al.	(2008),	Gittis	
et	al.	(2010),	Sanchez	et	al.	

(2011)	

Str	
Drd1	
MSN	

Striatum	Drd1-
expressing	medium	

spiny	neurons	

in:striatum,	
expresses:Drd1	

Tan	et	al	2013,	
Maze	et	al	2014,	
Heiman	et	al	
2014,	Doyle	et	

al.,	2008	

Cepeda	et	al.	(2008),	Gertler	et	
al.	(2008),	Planert	et	al.	(2013)	

Str	
Drd2	
MSN	

Striatum	Drd2-
expressing	medium	

spiny	neurons	

in:striatum,	
expresses:Drd2	

Maze	et	al	2014,	
Heiman	et	al	
2014,	Doyle	et	

al.,	2008	

Cepeda	et	al.	(2008),	Gertler	et	
al.	(2008),	Planert	et	al.	(2013)	

SNc	DA	 Substantia	nigra	 in:substantia	nigra	 Chung	et	al.,	 Nedergaard	et	al.	(1999),	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134791doi: bioRxiv preprint 

https://doi.org/10.1101/134791
http://creativecommons.org/licenses/by-nd/4.0/


41	

pars	compacta	
dopaminergic	cells	

pars	compacta,	
neurotransmitter:do

pamine	

2005	 Neuhoff	et	al.	(2002),	Saitoh	et	
al.	(2004),	Foehring	et	al.	(2009),	
Seutin	et	al.	(2010),	Tateno	et	al.	
(2011),	Gantz	et	al.	(2011),	Ding	
et	al.	(2011),	Tucker	et	al.	(2012),	
Branch	et	al.	(2014),	Dufour	et	
al.	(2014),	Richards	et	al.	(1997)	

VTA	DA	 Ventral	tegmental	
area	dopaminergic	

cells	

in:ventral	tegmental	
area,	

neurotransmitter:do
pamine	

Chung	et	al.,	
2005	

Neuhoff	et	al.	(2002),	Saitoh	et	
al.	(2004),	Mathon	et	al.	(2005),	
Smits	et	al.	(2005),	Koyama	et	al.	
(2006),	Margolis	et	al.	(2006),	
Tateno	et	al.	(2011),	Hnasko	et	
al.	(2012),	Liu	et	al.	(2014)	

	

Supplemental	Table	3	Legend	(Table	provided	with	Supplementary	Materials):	List	of	significant	
gene-electrophysiological	correlations.	Column	headers	are	as	follows:	DiscCorr	refers	to	the	
gene-	ephys	rank	correlation	calculated	in	the	NeuroExpresso/NeuroElectro		discovery	dataset	
and	DiscFDR	and	DiscUncorrPval	refers	to	the	Benjamini-Hochberg	FDR	and	uncorrected	p-
value	based	on	this	correlation.	AIBSCorr	refers	to	the	gene-ephys	rank	correlation	in	the	AIBS	
replication	sample	and	AIBSConsistent	refers	to	consistency	of	correlation	direction	between	
the	discovery	and	replication	datasets.	

	

Supplemental	Table	4	Legend	(Table	provided	with	Supplementary	Materials):	Complete	dataset	
of	literature	search	for	ion	channels	predicted	to	be	significantly	correlated	with	
electrophysiological	diversity.		
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