Abstract
The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability. Despite its central role in preserving the fidelity of mitosis, the strength of the SAC varies widely between cell types. How the SAC is adapted to different cellular contexts remains largely unknown. Here we show that both cell size and cell fate impact SAC strength. While smaller cells have a stronger SAC, cells with a germline fate show increased SAC activity relative to their somatic counterparts across all cell sizes. We find that enhanced SAC activity in the germline blastomere P1 requires proper specification of cell fate downstream of the conserved PAR polarity proteins, supporting a model in which checkpoint factors are distributed asymmetrically during early germ cell divisions. Our results indicate that size scaling of SAC activity is modulated by cell fate and reveal a novel interaction between asymmetric cell division and the SAC.