
 

1 

Managing the analysis of high-throughput sequencing data 

 

Javier Quilez1,2*, Enrique Vidal1,2, François Le Dily1,2, François Serra1,2,3, Yasmina Cuartero1,2,3, Ralph 

Stadhouders1,2, Guillaume Filion1,2, Thomas Graf1,2, Marc A. Marti-Renom1,2,3,4 and Miguel Beato1,2 

 

*Correspondence: javier.quilez@crg.eu 

1Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The 

Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain 

2Universitat Pompeu Fabra (UPF), Barcelona, Spain 

Full list of author information is available at the end of the article 

 

Abstract 

In the last decade we have witnessed a tremendous rise in sequencing throughput as well as an 

increasing number of genomic assays based on high-throughput sequencing (HTS). As a result, the 

management and analysis of the growing amount of sequencing data present several challenges with 

consequences for the cost, the quality and the reproducibility of research. Most common issues include 

poor description and ambiguous identification of samples, lack of a systematic data organization, 

absence of automated analysis pipelines and lack of tools aiding the interpretation of the results. To 

address these problems we suggest to structure HTS data management by automating the quality 

control of the raw data, establishing metadata collection and sample identification systems and 

organizing the HTS data with an human-friendly hierarchy. We insist on reducing metadata field entries 

to multiple choices instead of free text, and on implementing a future-proof organization of the data on 

storage. These actions further enable the automation of the analysis and the deployment of web 

applications to facilitate data interpretation. Finally, a comprehensive documentation of the procedures 

applied to HTS data is fundamental for reproducibility. To illustrate how these recommendations can be 
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implemented we present a didactic dataset. This work seeks to clearly define a set of best-practices for 

managing the analysis of HTS data and provides a quick start guide for implementing them into any 

sequencing project. 

Keywords: high-throughput sequencing; management and analysis best practices; bioinformatics 

  

Background 

DNA sequencing is the process of reading the nucleotides that comprise a DNA molecule. In the last 

decade we have witnessed a tremendous increase in sequencing throughput coupled with dropping 

costs per base [1], as well as the development of an increasing number of genomic assays based on 

HTS (see [2] for a comprehensive list). As a result, sequencing experiments have become cost-effective 

and faster to perform and they have countless applications, explaining why HTS is being rapidly adopted 

in the life sciences, from basic research to medical applications. 

This causes the accelerated accumulation of sequencing datasets, numbering in the thousands. For 

instance, the number of sequences deposited in the Sequence Read Archive (SRA) [3], a major 

repository for HTS data, has skyrocketed from ~2 Terabases in 2009 to ~9,000 Terabases (the size of 

approximately 3 million human genomes) at the beginning of 2017 (Additional file 1: Fig. S1). Moreover, 

this is surely an underestimation of the actual amount given that only sequencing experiments eventually 

included in a publication are deposited. Although data-intensive projects like TCGA [4], 1000 Genomes 

Project [5] and ENCODE [6] are the top HTS data generators [7], such a boost in the number of existing 

sequences reflects a pervasive use of HTS. For instance, while sequencing data for >90,000 studies 

have been submitted to the SRA, the top 10 and 100 contributors in terms of number of bases represent 

~30% and ~60% of the archive, respectively (Additional file 1: Fig. S2a). Similarly, while ~80% of SRA 

data derive from Homo sapiens and Mus musculus, the central organisms in large sequencing projects, 

the remaining 20% come from a diverse number of organisms (~50,000) (Additional file 1: Fig. S2b). 

Managing and analyzing the growing amount of sequencing data presents several challenges (Table 

1). Some of these are not new or exclusive to HTS data (e.g. metadata availability), but their impact are 
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nonetheless exacerbated by the pervasiveness of HTS experiments. For instance, working groups that 

are relatively small and/or have a limited computational infrastructure are more prone to suffer from 

them. In contrast to large-scale data-intensive projects, which are more likely to allocate resources to 

anticipate, avoid and fix such issues; for instance, the 4DNucleome Project has established formal 

working groups employing tens of scientists responsible for the data standards and analysis protocols 

[8]. Similarly, in cross-sectional population studies, samples are normally collected at the same time and 

analyzed jointly, which may make more obvious the need to define sample naming schemes and to 

systematically collect the metadata that will be later required in the analysis. Conversely, in most 

research groups, sequencing experiments are performed independently by several people, accumulate 

over longer periods of time and are not initially meant to be analyzed together. 

Here we first describe the challenges associated to the rapid accumulation of HTS data; we note that 

these issues are not trivial and may have a negative impact in terms of money, time and scientific 

quality/reproducibility. We then present recommendations for mitigating these issues and aiding in the 

management and analysis of HTS data. To illustrate how these recommendations can be readily 

implemented we accompany them with a didactic dataset including 7 HTS samples (2 RNA-seq, 1 ChIP-

seq and 4 Hi-C samples). Specifically, for each sample we provide FASTQ files with 1,000 reads for the 

single-end sample (ChIP-seq) and 2x1,000 reads for paired-end samples (RNA-seq and Hi-C). The 

didactic dataset as well as an accessory suite of scripts are available at 

https://github.com/4DGenome/conseq. 

 

Challenges and considerations 

Mislabelled raw sequencing data 

In HTS, the molecules of DNA in a sample are used as a template to generate millions of sequence reads 

of the original molecules. Because of the high yield of current sequencing technologies (in the order of 

tens to hundreds of gigabase pairs) [1], unless extremely high coverage is needed, a common practice is 

loading multiple biological samples into the sequencing instrument; the DNA from each sample is 
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labeled with a different sequence index so that the reads generated can be assigned to the biological 

sample from which they originate (Additional file 1: Fig. S3). 

As a result of sequencing errors, a relatively small proportion of the reads of a sequencing run will 

contain none of the indexes used to label the different DNA samples included in the run. On the other 

hand, a relatively high number of such undetermined reads can be indicative of problems during the 

library preparation or hint a wrong relationship between the biological sample and the sequencing index, 

which may result in lower sequencing yields and/or interpretation errors in the downstream analysis. 

Detecting such anomalies when extracting the sequencing reads from each sample is necessary to 

recover reads that would be overlooked otherwise. Early detection of indexing problems can save a 

considerable amount of time and computing resources, as compared to finding out later after aligning 

the reads onto the genome sequence – a time consuming and computationally demanding step. 

Therefore, we recommend automatically inspecting the number of unassigned reads as well as 

comparing the expected and observed index sequences (Table 1). 

 

Poor sample description 

FASTQ files should not be the only data making a HTS experiment. Metadata describe and provide 

information about the sequenced DNA sample (Additional file 1: Fig. S4). Metadata are important in 

many ways. For one, some metadata values are required for the initial processing of the data. For 

instance, the species is needed in order to align the reads to the corresponding reference genome 

sequence, and the restriction enzyme applied in the Hi-C experimental protocol is used in the 

computational analysis. Other metadata are used for quality control (e.g. sequencing facility and/or date 

for detecting batch effects or rescuing swapped samples using the correct index) or in the downstream 

analysis (e.g. cell type, treatment). Finally, some information is necessary to reproduce the experiment 

and analysis, a critical point considering the relatively high personnel turnover in academia and the 

concerns about reproducibility in biomedical research [9, 10]. Not surprisingly, submitting HTS data and 

the associated metadata to public repositories (e.g. GEO, ENA, SRA) when submitting a manuscript or 
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before publication is required by a growing number of journals and should be done even when not 

required. The commitment to meet the standards of international data repositories is an efficient way to 

rise the quality of the metadata. In addition, data is typically more visible, better organized and better 

backed up on a data server than on the storage of a single laboratory. Beyond publication, metadata are 

also important internally when sharing data with researchers involved in a project. Despite their 

importance we have observed that very often metadata are scattered, inaccurate, insufficient or even 

missing, and that there is a decay in the availability of metadata for older sequencing samples. Factors 

contributing to this situation include (i) disconnection between the experiment and the analysis (in other 

words, the experimenter may not be aware of the information needed for the analysis), (ii) short-term 

view of the experiment (performed just for a specific ongoing project without considering its potential 

future use), (iii) the initial investment required for establishing a metadata collection system as well as the 

subsequent inertia of filling the form, and (iv) high turnover of people. Altogether, this results in a poor 

description of sequencing samples and can affect performance (Table 1). 

Therefore, we propose collecting the metadata of a HTS experiment at some point between the 

preparation of the experiment and the beginning of the data processing. A good metadata collection 

system should be (i) relatively short and easy to complete by the experimenters themselves, (ii) instantly 

accessible by authorized members of the project and (iii) easy to parse for a human as for a computer. 

We implemented a system consisting of a Google Form with which metadata is filled in sample-wise and 

automatically transferred to a Google Spreadsheet as well as to a SQL database stored in a computing 

cluster (Fig. 1a, Additional file 1: Fig. S5 and Didactic dataset). We are aware that the use of third-party 

software for collecting metadata may not be an option for projects sensitive with data privacy issues, 

especially those collecting data from human subjects. In Additional file 2: Table S1 we propose several 

features required to achieve the properties mentioned above. As an example, the metadata collected for 

our Didactic dataset are described in Additional file 2: Table S2. Foreseeing the information that may 

be needed is key and we advise defining early in the project the metadata fields that will be collected; 
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otherwise, continuous addition of metadata fields will add substantial amount of work, as metadata 

values will need to be searched retrospectively, or result in patchy metadata databases. 

 

Unsystematic sample naming 

Very often sequencing samples and the associated files (e.g. FASTQ files) are identified with names that 

describe the HTS experiment or that are familiar and easy to remember for the person who performed it. 

However, this practice has several undesired consequences. Identical or similar identifiers referring to 

different HTS experiments as well as vague sample names, especially if there is no associated metadata, 

can preclude any analysis or lead to errors. Moreover, such unsystematic sample naming undermines 

the capability to process samples programmatically (e.g. search for data, parallelize scripts), which 

impairs automation and may also lead to errors. 

We therefore strongly recommend establishing a scheme to uniquely identify sequencing samples 

(Table 1). A first approach we have explored is defining a unique sample identifier (ID) that encapsulates 

some recognizable information (e.g. user, HTS application) (Fig. 2a). This approach has at least two 

caveats: first, sample IDs are assigned manually, which is suboptimal unless the number of samples is 

small; second, from our experience, determining whether samples are biological or technical replicates 

may not be straightforward from the interpretation of the metadata. With these caveats in mind we also 

sought to generate sample IDs in an automated manner and based on a selection of fields from the 

metadata that uniquely points to a sequencing experiment (Fig. 2b). Despite the apparent non-

informativeness of this sample ID approach, it easily allows identifying biological replicates and samples 

sequenced in the same batch since they will share, respectively, the first and second 9-mer. While the 

specific fields used to generate the sample ID can vary, it is important that they unambiguously define a 

sequencing sample (otherwise duplicated identifiers can emerge) and that they are always combined in 

the same order to ensure reproducibility. Indeed, another advantage of this naming scheme is that the 

integrity of the metadata can be checked, as altered metadata values will lead to a different sample ID. 

Whatever the choice of the sample ID scheme is, in addition to the critical feature of being unique, we 
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recommend trying to make it as computer-friendly as possible by using a fixed length and pattern (in this 

sense anticipating the number of samples that can be reached is key) as well as not mixing lower and 

upper case letters to avoid mistakes. 

 

Untidy data organisation 

Collecting metadata and labelling HTS experiments efficiently is useless if data cannot be located. 

Unfortunately, we have observed that the raw and processed sequencing data as well as the results 

derived from them tend to be stored in a rather untidy fashion (Table 1). Such situations may happen if 

files are stored without anticipating additional sequencing runs and analyses, processed and analysed 

on the fly or managed by several people with different or missing perceptions of organizing data (the 

latter is a frequent case when people leave and must be replaced). Difficulties to find data are 

aggravated by the existence of duplicated sample names and lack of recorded metadata. 

Alternatively, we suggest a structured and hierarchical organisation that reflects the way in which 

sequencing data are generated and analyzed. In general, experiments are sequenced in different multi-

sample runs separated in time, so it is convenient storing the raw data from the sequencing samples 

grouped by the run in which they were generated (Fig. 1b). Sequencing run directories can contain not 

only the FASTQ files with the sequencing reads but also information about their quality (e.g. FastQC [11] 

reports). Conversely, we discourage storing herein modified, subsetted or merged FASTQ files to ensure 

that analyses start off from the very same set of reads.  

In our experience, HTS data goes through two types of sequential analyses. First, raw data (i.e. 

FASTQ files) are processed sample-wise with relatively standard but tunable analysis pipelines (“core 

analysis pipelines” in Fig. 1b) which generate a variety of files, some of them largely shared by most HTS 

applications (e.g. alignments in SAM format [12]) while others are more specific of the HTS assay (e.g. 

binding sites in ChIP-seq, expression quantifications in RNA-seq). Considering this, we recommend 

storing the processed data resulting from core analysis pipelines with (i) one directory for each 

sequencing sample; (ii) subdirectories for the files generated in the different steps of the analysis pipeline 
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(e.g. alignments, peaks) as well as for the logs of the programs used and the file integrity verifications; 

(iii) subdirectories that accommodate variations in the analysis pipelines (e.g. genome assembly version, 

aligner) so that these do not overwrite existing data. 

In a second step, processed data from one or more samples are combined in order to perform 

downstream analyses (Fig. 1b), and finding effortlessly what, when and how they were performed is 

crucial. With this in mind we suggest: (i) name the analysis directory with a timestamp plus a descriptive 

tag from a controlled vocabulary (e.g. ‘differential_expression_analysis’)’; (ii) include well-defined 

subdirectories where the output of the analysis is saved; (iii) document thoroughly the analysis; and (iv) 

group analysis directories under a directory with the name of the user who requests the analyses. While 

saving the downstream analyses grouped by projects is also a sensible option, this may be 

straightforward only for analyses under the umbrella of a well-defined broad project. Moreover, very 

often the name initially given to a project when its directory is created may become imprecise as the 

project evolves, analyses are unrelated to any existing project or a given analysis is used in many 

projects. In Additional file 2: Table S3 and in the Didactic dataset we provide further details about the 

proposed structured and hierarchical data organisation system. 

 

Yet another analysis 

Analysing HTS data is hardly ever a one-time task. At the core analysis level, samples are sequenced at 

different time points (Fig. 1b) so core analysis pipelines have to be executed for every new sequencing 

batch. Also, samples may need to be re-processed when analysis pipelines are modified substantially 

(for instance, by including new programs or changing key parameter values) to ensure that data from 

different samples are comparable in the downstream analysis. At the downstream level, repeating 

analyses with different datasets or variables, just to name a few variations, is a common task. We 

therefore identified four desired features for the code used in the analysis. 

Firstly, it needs to be scalable, that is, effortlessly executed for a single sample or for hundreds. 

Processing hundreds of samples sequentially is impractical so, secondly, code has to be parallelizable 
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to exploit multi-core computing architectures in order to process multiple samples simultaneously and 

speed up the individual steps within the analysis. Third, automatic configuration of the variable values is 

necessary so that these need not to be set for each sample. Finally, we found very convenient breaking 

down analysis pipelines into modules that can be executed individually. In Additional file 1: Fig. S6 we 

show how such features can be incorporated. Briefly, (i) scalability is achieved by having a submission 

script that generates as many pipeline scripts as samples in a configuration file; (ii) parallelisation is 

obtained by submitting each sample pipeline script as an independent job in the computing cluster, if 

there is one, and adapting the pipeline code to be suitable for running in multiple processors; (iii) each 

pipeline script is automatically configured by retrieving the pipeline variable values (e.g. species, read 

length) from the metadata SQL database; and (iv) the pipeline code is grouped into modules that can be 

executed all sequentially or individually by specifying it in the configuration file. More details about the 

implementation can be found in the Didactic dataset. 

 

Undocumented procedures 

From the moment HTS data are generated, they go through several procedures (e.g. compression, 

alignment, statistical analysis) that will eventually generate results, typically in the form of text, tables and 

figures. Very often the details of how these are generated are absent or vaguely documented, which may 

result in little understanding of the results, irreproducibility and hampers the identification of errors. 

On the contrary, we recommend to document as much as possible all the parts involved in the 

analysis: (i) write in README files how and when software and accessory files (e.g. genome reference 

sequence, gene annotation) are obtained; (ii) allocate a directory (Additional file 2: Table S3c) for any 

task, even for those as simple as sharing files; (iii) code core analysis pipelines so that log files monitor 

the progress of the pipeline and the output of the programs used as well as check the integrity of 

important files like those containing the raw reads, the genome reference sequence and the alignments 

(Additional file 2: Table S3); (iv) use Markdown [13], Jupyter Notebook [14], RStudio [15] or alike to 

document procedures; and (v) specify the non-default variable values used. 
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Data overflow 

HTS analysis workflows generate a great number of files; for instance, our analysis pipeline for Hi-C data 

generates ~70 files per sample. However, such files can be useless for some users, if for instance they 

do not have access to the computer where the data are stored, files are too big to be opened with text 

editors and/or users lack the skills to manipulate them with the right tools (e.g. Unix, BEDtools [16], 

SAMtools [12]). Even if this is not the case, as the number of samples increases, better ways to visualize 

the data than inspecting files individually are essential. 

Therefore, we suggest to implement interactive web applications that display the processed data and 

allow performing specific analyses in a user-friendly manner. As an example, we take advantage of our 

structured and hierarchical data organisation as well as the available metadata to deploy a web 

application to visualise processed Hi-C data using Shiny [17] (Additional file 1: Fig. S7). In the same 

direction, platforms for exploring HTS datasets are being built [18–20]. We recommend defining the 

specific features of such web applications with its potential users, because implementing them requires 

effort and attempting to comprehend unnecessary functions may lead to a loss of time. 

 

Discussion 

Here we identified seven challenges associated to the increasing use of HTS data in the life sciences 

(Table 1). These span from the moment sequencing data are generated to their interpretation and have 

an important impact on the management and analysis of the data. 

In our view these challenges partly reflect suboptimal habits (e.g. poor description of samples, 

unsystematic sample naming, untidy data organisation and undocumented procedures) that have just 

been aggravated by the rapid spread of HTS. In addition, the arrival of a technology that requires 

informatics skills into a historically wet lab-based field often generates situations in which those who 

perform the experiments are not aware of the computational challenges of the analysis. We think that the 

solutions proposed here can alleviate such problems and are therefore very timely. 
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We developed these considerations in the context of a large-scale sequencing project involving 

around 40 people, but we believe the challenges reported here do not affect exclusively this niche. 

Higher up, the problems we list are present to some extent in larger scale initiatives too. For instance, in 

the SRA repository there are ~30,000 experiments (32 Terabases) with an ‘unspecified’ instrument 

(Additional file 2: Table S4). Also in the SRA repository, only for the top 25 submitter institutions there 

are several Petabases of data assigned to multiple entries probably referring to the same submitter 

(Additional file 2: Table S5). Altogether, this represents a large amount of data that will be overlooked in 

many searches, which could have been avoided by enabling mandatory fields with predefined 

vocabulary. For another example, the ENCODE consortium published mislabelled or failed experiments 

[21], and approximately 20% of the uploaded ChIP-seq profiles correlate more with a negative control 

than with their replicate (unpublished observation). On the other hand, these issues also concern 

relatively smaller groups dealing with a more modest volume of samples. Therefore, we think that the 

considerations presented here will be applicable by a broad community.  

Finally, we illustrate how to implement these considerations. While some of them are very 

straightforward, like checking the concordance of the sequencing indexes, others will need to be 

adapted to the specific needs (e.g. establishing a metadata collection system). More than providing 

golden solutions that work for all cases, we aim to foster the discussion in the community as to how we 

face the management and analysis challenges posed by the current explosion of projects using HTS. 

Beyond sequencing, we predict that many of the challenges and considerations presented here are 

common to other high-throughput technologies (e.g. spectrometry or microscopy). 
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Figures 

Figure 1. Framework for the management and analysis of HTS data. (a) Metadata are collected via 

an online form and stored both online and in a local database. (b) The stages of HTS data. 

Figure 2. Examples of sample identifier strategies. (a) The sample ID contains several bits of 

information separated by “_” and each defined manually based on the information present in the 

metadata. (b) After defining two sets of either biological or technical fields that unequivocally define a 

sequencing sample, for a given sample the values of the biological fields treated as text are 

concatenated and computationally digested into a 9-mer, and the same procedure is applied to the 

technical fields. The two 9-mers are combined to form the sample ID. In the Didactic dataset we provide 

a script that generates this type of sample ID from the metadata. 
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Tables 

Table 1. Challenges associated to the accelerated accumulation of HTS data. 

Challenge Impact Consideration 

Mislabelled raw sequencing 

data 

� Underpowered analysis 

� Erroneous results 

� Loss of data, time and resources 

Check unassigned reads and 

sequencing index concordance 

Poor sample description � Prevents data processing and 

quality control 

� Incorrect analysis and results 

� Lack of reproducibility 

� Delays publication 

Metadata collection 

Unsystematic sample naming � Duplicated or similar names 

� Ambiguous identification 

� Precludes computational 

treatment 

� Data disclosure 

Sample identifier scheme 

Untidy data organisation � Data cannot be found 

� Time consumption 

� Inability to automate searches 

Structured and hierarchical data 

organisation 

Yet another analysis � Repeated manual execution  of 

analyses 

� Incapability to deconvolute 

analysis producing different 

results 

� Compulsory linear execution 

Scalability, parallelization, 

automatic configuration and 

modularity 

Undocumented procedures � Poor understanding of results 

� Irreproducibility 

� Hampers catching errors 

Documentation 

Data overflow � No access to data 

� Size and number of files make 

individual inspection inefficient 

Interactive web applications 
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Additional Files 

Additional file 1 - Supplemental Figures 

Figure S1. Rapid accumulation of HTS data. (a) Accumulated volume of sequences in the SRA since 

2007, expressed both in terms of bases and bytes (data accessed from 

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi on 2017-04-06). Tera and Peta thresholds are shown as 

reference. 

Figure S2. Diversity of the SRA datasets. (a) Cumulative number of bases (bp) in the SRA repository 

deposited by the top 100 contributors. (b) Number of bases per organism for the 25 organisms with 

most bases deposited in the SRA. 

Figure S3. Overview of the sequencing process. A sequencing index is typically a 6-bp pre-defined 

nucleotide sequence that is added to the fragments generated from a single DNA sample. The source of 

the sequenced sample can be very diverse, e.g. cell populations from single (blue) or pooled individuals 

(green) [22], microbial communities (orange) [23] or, since more recently, single cells (red) [24]; in 

addition, current HTS applications go beyond genomic DNA sequencing (e.g. ChIP-sequencing, RNA-

sequencing, Hi-C) (see Goodwin et al. for a recent review [1]). The fragments of indexed DNA are pooled 

and loaded into the sequencer so that each fragment occupies a specific spot. The sample sequencing 

index and the spot position are used to translate the images generated by the sequencer into sample-

specific sequences stored in FASTQ files [25]. Image of the sequencer courtesy of Illumina, Inc. 

Figure S4. Sequencing (meta)data. The description of a sequencing experiment is impaired unless 

sequencing reads are coupled with biological, technical and logistics information (metadata). 

Unambiguous sample identifiers provide a link between metadata and sequencing data.   
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Figure S5. Metadata SQL database schema. Depicted are the tables in the metadata SQL database, 

each with its name (top) and a subset of its fields; primary unique keys highlighted in orange. The 

metadata collected by the user is dumped into the “input_metadata” table, which can be associated 

through the “SAMPLE_ID” to other information generated from the analysis of the sequencing data. For 

instance, the “quality_control_raw_reads” stores information related to the quality of the reads reported 

by FastQC [11] . As many tables as analysis pipelines can be added to collect parameters used and 

metrics generated by these (e.g. “chipseq”, “rnaseq”). Because the latter will store information for the 

last time a pipeline is executed for a given sample, including a table, like in ‘jobs’, to keep track of 

different executions may be useful (e.g. benchmarking of pipelines or parameters). 

Figure S6. Scalability, parallelization, automatic configuration and modularity of analysis pipelines. 

Analysis pipelines can be simultaneously run on multiple samples with a single command (gray 

rectangle). The configuration file (‘*.config’) contains the list of samples to be processed as well as the 

hard-coded parameters shared by all samples (e.g. number of processors or genome assembly version). 

The submission script (‘*submit.sh’) wraps the pipeline code (‘*seq.sh’) and generates, for each sample, 

a pipeline script with sample-specific variable values obtained from the SQL metadata database, and 

this will be submitted to the queuing system of the computing cluster where it will be queued (orange) 

and eventually executed (green). Selected metadata generated by the pipeline (e.g. running time, 

number of aligned reads) will be recorded into the database. For more flexibility, the pipeline modules to 

be executed are specified in the configuration file. 

Figure S7. Workflow of the Hi-C visualisation tool. Metadata and processed data are fed to the 

‘app.R’ written for Shiny [17]. 
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Additional file 2: Supplemental Tables 

Table S1. Proposed features for a metadata collection system.  

Table S2. Description of metadata fields. 

Table S3. Example of structured and hierarchical data organisation. (a) Raw data, (b) processed 

data and (c) analysis results. 

Table S4. Number of SRA deposited bases grouped by instrument name.  

Table S5. Number of SRA deposited bases grouped by the submitter. For the top 25 contributors in 

terms of number of bases submitted, we searched for instances of multiple entries probably referring to 

the same submitter (e.g. ‘ncbi’ and ‘NCBI’). 
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>PROJECT 
>APPLICATION 
>SAMPLE_ID 
>SAMPLE_NAME 
… 

Google Form Google Spreadsheet

SQL 
database

ONLINE CLUSTER

Timestamp PROJECT APPLICATION SAMPLE_ID SAMPLE_NAME
02/08/2016 12:28:35 BEATO_LAB RNA-seq fd_005_01_01_rnase T47D R6
06/30/2016 11:05:44 BEATO_LAB RNA-seq fd_005_02_01_rnase T47D R6
04/06/2016 15:55:31 BEATO_LAB ChIP-seq gv_066_01_01_chip T47D PR T60
06/21/2016 17:21:57 4DGENOME INHIC 0f24b004c_0e31e17 MB_6_5
09/21/2015 11:45:55 4DGENOME INHIC 0f24b004c_95a8cd5 T47D_R60_DRB
11/09/2015 17:28:50 4DGENOME INHIC 66950b082_c478f1d MCF-7 T0
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Fig. 2

fd_005_02_01_rnaseq
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application
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