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Abstract 

A comprehensive map of the structural connectome in the human brain has been a coveted resource for 

understanding macroscopic brain networks. Here we report an expert-vetted, population-averaged atlas 

of the structural connectome derived from diffusion MRI data (N=842). This was achieved by creating a 

high-resolution template of diffusion patterns averaged across individual subjects and using 

tractography to generate 550,000 trajectories of representative white matter fascicles annotated by 80 

anatomical labels. The trajectories were subsequently clustered and labeled by a team of experienced 

neuroanatomists in order to conform to prior neuroanatomical knowledge. A multi-level network topology 

was then described using whole-brain connectograms, with subdivisions of the association pathways 

showing small-worldness in intra-hemisphere connections, projection pathways showing hub structures 

at thalamus, putamen, and brainstem, and commissural pathways showing bridges connecting cerebral 

hemispheres to provide global efficiency. This atlas of the structural connectome provides 

representative organization of human brain white matter, complementary to traditional 

histologically-derived and voxel-based white matter atlases, allowing for better modeling and simulation 

of brain connectivity for future connectome studies.  

Keywords: structural connectome, tractography atlas, connectogram, diffusion MRI 
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Introduction 

The organization of the structural connections in the human brain determines how neural networks 

communicate, thereby serving as a critical constraint on brain functionality and providing potential 

etiology for clinical pathology (Bota et al., 2015; Sporns, 2014). Characterizing this structural 

organization has relied on either histological slides or neuroanatomically-validated atlases based on 

individual subjects (Amunts et al., 2013; Ding et al., 2016); however, a comprehensive 

population-averaged 3-dimensional (3D) structural connectome at the macroscale level has yet to be 

constructed. A population-averaged connectome is critical for demonstrating representative topological 

interconnectivity in the general population, a stated objective of the national investment in the Human 

Connectome Project (Setsompop et al., 2013; Van Essen et al., 2013). If achieved, such a map of the 

structural connectome could augment existing histological and single-subject atlases, thus allowing for 

robust modeling and simulation in both empirical and theoretical studies. 

To date, diffusion MRI is the only non-invasive tool for mapping the 3D trajectories of human 

macroscopic white matter pathways (Fan et al., 2016; McNab et al., 2013), with preliminary success at 

resolving the normative pattern of several major white matter pathways (Catani et al., 2002; Guevara et 

al., 2012; Mori et al., 2009; Mori et al., 2008; Peng et al., 2009; Thiebaut de Schotten et al., 2011). This 

has been realized by resolving local fiber orientations at the voxel level and delineating entire axonal 

trajectories by implementing a stepwise tracking algorithm (Basser et al., 2000; Mori et al., 1999; 

Wedeen et al., 2012). Nonetheless, there are several caveats to the success of diffusion MRI fiber 

tracking, including the identification false tracts and suboptimal coverage of small pathways or those 

with complex geometry (Reveley et al., 2015; Thomas et al., 2014). Indeed, the validity of tractography 

can range from 3.75% to 92% due to differences in reconstruction methods and tracking algorithms 

(Maier-Hein et al., 2016). Improving the quality of resolved fiber pathways using diffusion MRI can be 
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achieved by high-angular-resolution modalities (Glasser et al., 2016), a template averaged across a 

large number of subjects to facilitate fiber tracking (Yeh and Tseng, 2011), and neuroanatomical 

expertise to resolve errors in the automated fiber tracking process (Meola et al., 2015). Template-based 

approaches have been shown to reliably capture the morphological characteristics of several major 

white matter fascicules when validated against cadaver microdissection approaches 

(Fernandez-Miranda et al., 2015; Meola et al., 2016a; Meola et al., 2015; Meola et al., 2016b; Wang et 

al., 2016; Wang et al., 2013; Yoshino et al., 2016). Yet building a comprehensive tractography atlas of 

major and minor white matter pathways is still challenged by the problem of false fiber pathways, even 

when relying on high angular resolution data.  

Here we constructed a population-averaged structural connectome, including both major and minor 

pathways, using an expert-vetted approach. We employed high-angular-resolution diffusion MRI data 

(n=842) from healthy subjects in the Human Connectome Project (HCP) database (Van Essen et al., 

2012) and aggregated them into an averaged template of diffusion distributions that can inform the 

orientations of underlying fiber architectures. The averaged diffusion pattern of the entire sample is thus 

representative of non-pathological structural characteristics within healthy subjects. Based on this 

template, a total of 550,000 tracks were generated using a tracking method that was shown to achieve 

the highest number of valid connections in an open competition (Maier-Hein et al., 2016). Generated 

tracks were subsequently clustered and then labeled by a team of clinical neuroanatomists, capitalizing 

on their previous experience in both cadaveric white-matter and comparative tractography techniques 

(Fernandez-Miranda et al., 2015; Wang et al., 2016). Furthermore, the tracks were categorized into the 

projection, association, and commissural pathways to generate multi-level connectograms illustrating 

network topology at the macroscopic level. The strategy of this approach allowed us to compile a 

comprehensive atlas of the structural connectome in the human brain at the population level, allowing 
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for taxonomical identification of pathways that together comprise the full macroscopic structural 

connectome. 

Methods 

Diffusion MRI acquisitions 

We used the preprocessed data from Human Connectome Projects (Q1-Q4 release, 2015) acquired by 

Washington University in Saint Louis and University of Minnesota. A total of 842 subjects (372 males 

and 470 females, age 22 ~ 36) had diffusion MRI scanned on a Siemens 3T Skyra scanner using a 2D 

spin-echo single-shot multiband EPI sequence with a multi-band factor of 3 and monopolar gradient 

pulse. The spatial resolution was 1.25 mm isotropic. TR=5500 ms, TE=89.50 ms. The b-values were 

1000, 2000, and 3000 s/mm2. The total number of diffusion sampling directions was 90, 90, and 90 for 

each of the shells in addition to 6 b0 images. The preprocessed data were corrected for eddy current 

and susceptibility artifact. The matrices for gradient nonlinearity distortion correction were used in the 

following diffusion MRI reconstruction. 

Super-resolution q-space diffeomorphic reconstruction 

The diffusion data for each subject was reconstructed into the ICBM-152 space (ICBM: International 

Consortium for Brain Mapping) using the q-space diffeomorphic reconstruction (QSDR)(Yeh and Tseng, 

2011), a method that conserved the diffusible spins after nonlinear transformation and could be applied 

to DTI, DSI, and multishell data. QSDR calculated the spin distribution function (SDF), , an 

orientation distribution function defined as the density of spins that have diffusion displacement oriented 

at direction  during the diffusion time: 

( )ûψ

û
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  (1) 

Where φ is a diffeomorphic mapping function that maps standard space coordinates r to the subject’s 

space.  is the Jacobian matrix of the mapping function, whereas  is the Jacobian determinant. 

 are the diffusion signals acquired at . bi is the b-value, and  is the direction of the 

diffusion sensitization gradient.  is the diffusion sampling ratio controlling the detection range of the 

diffusing spins. D is the diffusivity of water, and Z0 is the constant estimated by the diffusion signals of 

free water diffusion in the brain ventricle (Yeh and Tseng, 2011). The nonlinearity of diffusion gradients 

was corrected using the nonlinear terms of the magnetic field obtained from gradient coils. The HCP 

dataset includes a 3-by-3 gradient deviation matrix for each voxel to estimate the effective gradient 

direction and strength. This matrix was applied to the diffusion sensitization gradient,  in Eq. (1) to 

correct the effect of gradient nonlinearity. 

To achieve super-resolution reconstruction, we modified a nonlinear registration algorithm that used 

Fourier basis as the deformation function (Ashburner and Friston, 1999) to boost the registration 

accuracy. The original setting used a set of 7-by-9-by-7 Fourier basis at x-y-z directions for 2-mm 

resolution, and the computation and memory bottleneck was at the inverse of a 1327-by-1327 matrix 

(not a sparse matrix). We increased the resolution of the Fourier basis by 4-fold to 0.5-mm resolution (i.e. 

28-by-36-by-28 Fourier basis), which required solving an 84676-by-84676 matrix for each optimization 

iteration. Here instead of solving the large matrix using a standard Gauss-Jordan method (a complexity 

of O(n3)), which would increase the computation time by a factor of (4x4x4)3=262,144, we used the 

Jacobi method that allowed for parallel processing and could utilize solutions from the previous iteration 
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to speed up the processing. This greatly reduced the computation complexity to O(n) and only increased 

the computation time by a factor of 4x4x4=64. The parallel processing further reduced the computation 

time, allowing us to reconstruct the data using multi-thread resources. The final SDFs were generated at 

1-mm resolution in the template space.  

The registration accuracy was evaluated by the coefficient of determination (i.e., R2) value between each 

subject and template image. The distribution of the R2 values, as shown in Suppl. Figure 1, is skewed 

with a leftward tail. We therefore looked at subjects with the lowest R2 values at this tail for identification 

of outliers. This allowed us to identify two problematic datasets (#173132 and #103515) that were then 

reported to the HCP Consortium. It is noteworthy that we did not use the existing HCP alignment in our 

spatial normalization. The alignment has good point-to-point matching in the gray matter surface; 

however, it does not constrain or penalize large rotation of the Jacobian matrix in the white matter tissue. 

Consequently, the fiber architecture in the white matter can be heavily distorted to match gyral foldings. 

The Fourier basis used here intrinsically limits the largest possible rotation and allows for fiber tracking in 

the template space. 

Construction of an SDF template 

Since there is no pre-existing SDF template, we first used the FMRIB 58-subject fractional anisotropy 

(FA) template (FMRIB, FSL) as a guiding template to normalize diffusion data of subjects. The FA map 

of each 842 subject was nonlinearly normalized to the FMRIB FA template to obtain the diffeomorphic 

mapping function. The spatial mapping functions were then used by QSDR to compute the SDFs in the 

standard space. The SDFs of all subjects were then averaged, voxel-by-voxel, to obtain an SDF 

template termed HCP-842. The computation was conducted using the cluster at Center for the Neural 
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Basis of Cognition, a joint Institute of Carnegie Mellon University and the University of Pittsburgh. The 

cluster had 24 nodes and 320 CPUs. The 842 subjects took a month of computation time to complete.  

Whole-brain tractography 

We used a deterministic fiber tracking algorithm that leverages information in the SDF (Yeh et al., 2013). 

Each of the streamlines generated was automatically screened for its termination location. A white 

matter mask created by applying DSI Studio’s default anisotropy threshold to the SDF’s anisotropy 

values. The mask was used to eliminate streamlines with premature termination in the white matter 

region. We did not use ICBM T1W images as the mask because of its misalignment with FSL’s FA 

template. 

To determine the adequate seeding density, one study showed that on average, there are around 3 fiber 

populations in a 2.4-mm cubic voxel (Jeurissen et al., 2013). This indicated that at least 3 seeds points 

are needed for each voxel with a volume of 2.4-by-2.4-by-2.4 mm3, which is 0.2 seeds per mm3. To meet 

the minimal requirement, we obtained 500,000 whole-brain streamlines in addition to 50,000 streamlines 

to cover the spinal cord connections eliminated by the white matter mask. The total number of 

streamlines achieved an average seeding density of 1.0 seed per mm3, which is 5 times of the minimum 

requirement.  

The fiber tracking was conducted using angular thresholds of 40, 50, 60, 70, and 80 degrees. Each 

angular threshold generated 100,000 streamlines, and a total of 500,000 streamlines were obtained. 

Since the white matter mask also removed streamlines connecting to/from the spinal cord, an additional 

set of whole brain tracking was conducted to allow streamlines terminates at the lowest section of the 

brainstem. The fiber tracking was also conducted using angular thresholds of 40, 50, 60, 70, and 80 
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degrees. Each angular threshold generated 10,000 streamlines, and a total of 50,000 streamlines were 

obtained. We used different parameter combinations because different fiber trajectories are best 

resolved by different tractography schemes. For example, a larger angular threshold is needed for 

tracking fiber pathway with abrupt turning (e.g. Meyer’s loop at the optic radiation), whereas some 

projection pathways do not have sharp turning (e.g. corticospinal tracts) and thus can rely on lower 

angular thresholds. The angular threshold of 40~80 allows degrees us to capture all possible pathways. 

Initial clustering using Hausdorff distance 

The tractography was clustered using single-linkage clustering. We measured the Hausdorff distance 

between a pair of streamlines X and Y as 

���X, Y�  �  max� max
���

min
���

d�x, y� , max
���

min
���

d�x, y�  � 

X is a set of coordinates, i.e. X={x}, whereas Y is another set of coordinates, i.e. Y={y}. d(x,y) calculates 

the Euclidian distance between two coordinates x and y, and the dH(X,Y) calculates the Hausdorff 

distance between set X and Y. Different Hausdorff distances were tested, and we chose 2-mm as the 

merging threshold to avoid over-segmentation (shorter distance) and over-merging (longer distance). 

The 500 largest clusters, in terms of track counts, were selected because the remaining clusters 

contained less than 0.01% of the total streamlines (i.e. < 50 streamlines). The same cluster selection 

strategy was applied to our second set of the 50,000 streamlines (i.e. the streamlines connecting to/from 

spinal cords), and the first 50 largest clusters were collected. Since each cluster may contain 

streamlines with repeated trajectories, we removed redundant trajectories that are substantially close to 

the one another using a Hausdorff distance of 1 mm.  
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Expert labeling and examination 

The 550 clusters were manually labeled by our neuroanatomy teams, including four senior 

neuroanatomists (JFM, AM, MY, FY) and junior neuroanatomists (DF and SP). The labeling was based 

on evidence from publicly available white matter atlases, existing literature, microdissection evidence, 

and neuroanatomy books (Table S1). The first examination round was the manual labeling conducted by 

3 neuroanatomists (FY, DF, and SP). Each of the neuroanatomists independently inspected the 

termination locations and connecting routes of each of the 550 clusters using the 3D interface provided 

by DSI Studio. The anatomical label of each cluster was independently assigned and subsequently 

compared to identify inter-observer differences, including the naming of the cluster and whether the 

cluster is a false one. The inter-observer differences were found in 20 clusters (3.6% of the clusters), 

mostly involving the branches and segments of fiber pathways, and resolved in a joint discussion 

between two junior (DF, SP) and two senior neuroanatomists (FY, JFM). The clusters with the same 

neuroanatomy name were grouped together to form major fiber bundles. The merged bundles 

underwent a second round of inspection by both senior and junior neuroanatomists to identify missing 

branches and remove false connections. The inspection identified missing branches in anterior 

commissure (olfactory and occipital connections), corticothalamic tract (temporal connections), 

corticostriatal tract (occipital connections), corticobulbar tract, corticopontine tract (temporal and 

occipital connections), and tapetum of the corpus callosum. These branches were specifically tracked by 

a region-based approach by placing regions of interest at the target area. The final fiber bundles were 

subsequently categorized into the projection, association, commissural, cerebellar, brainstem, and 

cranial nerve pathways. 
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The next examination round further checked for other missing minor pathways that require a dense 

sampling to form a bundle. This was done by projecting the fiber bundles back to the white matter and 

looking for areas without track coverage. Using a region-based approach, the senior neuroanatomists 

(MY, AM, and FY) tracked missing minor pathways including acoustic radiation, posterior commissure, 

brainstem pathways such as rubrospinal tract (RST), spinothalamic tract (STT), dorsal longitudinal 

fasciculus (DLF), lateral lemniscus (LL), medial lemniscus (ML), and cranial nerves such as CN VII, CN 

VIII, and CN X. These pathways were tracked according to previous microdissection studies 

(Fernandez-Miranda et al., 2015; Wang et al., 2016). The course of the posterior column sensory 

pathway, running within the fascicles gracile and cuneatus toward the primary sensory cortex, was 

manually terminated at the level of the thalamus and labeled as ML. This segment in the brainstem 

corresponds to the second order neurons running from the nucleus gracile and cuneatus to the 

thalamus. 

Connectivity matrix, connectogram, and network measures 

A weighted connectivity matrix was quantified using a cortical parcellation based on regions derived 

from the AAL atlas (Table S2). It is noteworthy that our tractography atlas can be readily applied to any 

cortical parcellation atlas, and currently there is no consensus on how network nodes should be defined. 

Here we used only one of the most popular parcellation from the AAL atlas to illustrate the network 

characteristics. 

The average of along-track SDF values was used as the connectivity value. The connectograms of each 

fiber bundle and whole brain tracks were generated using CIRCOS 

(http://mkweb.bcgsc.ca/tableviewer/visualize/). The network measures such as network characteristic 
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path length, global efficiency, local efficiency, clustering coefficient were calculated using the definition 

formulated in Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/). The influence of the 

projection, association, and commissural pathways was calculated by calculating the change of network 

measures (quantified by percentage of the original) after removing the tracks. 

The University of Pittsburgh Institutional Review Board reviewed and approved the study by the 

expedited review procedure authorized under 45 CFR 46.110 and 21 CFR 56.11 (IRB#: 

PRO16080387). 

Data and Code Availability 

The processing pipeline (DSI Studio), SDF data of all 842 subjects, and HCP-842 template are available 

at http://dsi-studio.labsolver.org. The SDF template can be reproduced using the HCP data and 

documentation on the website. The atlas data, including the track trajectories and connectograms, are 

available at http://brain.labsolver.org. 

 

Results 

A high spatial and angular resolution diffusion template of the human brain 

Diffusion MRI data from 842 participants were reconstructed in a standard space to calculate the 

SDF(Yeh and Tseng, 2011; Yeh et al., 2010) within each voxel (Fig. 1a). The goodness of fit between 

the normalized image and the template was reported as an R2 (Fig. S1). These values ranged from 0.73 

to 0.86, and the quantiles were 0.81 (25%), 0.82 (50%), and 0.83 (75%), suggesting that the distribution 

of R2 values were mostly centered around 0.82, and more than 75% subjects had R2 values greater than 
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0.80. An SDF is an empirical distribution of the density of diffusing water orientations, calculated for each 

voxel to reveal the underlying fiber architectures (Fig. 2a). The SDFs of all subjects were averaged to 

build the HCP-842 SDF template, which represents an average diffusion pattern within a normal 

population (Fig. 1b and Fig. 2a). Figure 2b shows the peak orientations of fibers in each voxel, resolved 

from the group-averaged SDFs, near the corpus callosum crossing at central semiovale (red: left-right, 

green: anterior-posterior, blue: inferior-superior). The SDF peaks reflect the local orientation of 

underlying fiber bundles, whereas the magnitudes measured at the peaks provide estimates of the 

density of each bundle, which is used by the tractography algorithm determine the whether or not to 

terminate the tracking process. These two features offer the necessary information for a fiber-tracking 

algorithm to delineate long-distance white matter trajectories.  

Although the group-averaged SDFs appear smoother due to the averaging effect, they are still capable 

of resolving major crossing architectures. The number and percentage of voxels that contain more than 

one fiber orientations are listed in Table 1. These results were obtained by re-gridding the template at 

different resolutions to aggregate information about underlying fiber pathways in each voxel. The table 

shows that after re-gridding at 2-mm3 and 2.5-mm3 resolution, more than 80% of the white-matter voxels 

in the HCP-842 template had more than one distinct fiber orientation. These percentage values are 

consistent with previous estimates of 60~90% of voxels having multiple fiber orientations when sampled 

and reconstructed at a 2.4mm3 resolution (Jeurissen et al., 2013). It is noteworthy that the percentage of 

multi-fiber voxels dropped substantially at 1.5-mm3 and 1-mm3 resolutions. This can be explained by the 

fact that at a smaller voxel sizes, turning, and branching configurations can be spatially resolved into one 

single fiber orientation and the number of voxels containing multiple fiber orientations drops 

dramatically. 
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Qualitatively, the HCP-842 appears to resolve underlying neuroanatomical architecture with high fidelity 

in spatial resolution. Comparing a coronal slice of the HCP-842 (1-mm resolution, Fig. 2c) with a similar 

section from the BigBrain histology image (the 200-micron resolution version, Fig. 2d), we see that 

HCP-842 clearly delineates subcortical structures such as the hippocampus (HIP), substantia nigra (SN), 

red nucleus (RN), and thalamus (TH). The high spatial resolution of the orientation map is even more 

apparent at the anterior commissure (AC) (Fig. 2e), a small left-right connecting pathway clamped by the 

pre-commissural (PreC) and post-commissural (PostC) branches of fornix that run in the vertical 

direction (color-coded by blue). The clamping structure formed between AC and fornix is a benchmark 

for examining the spatial resolution of the template. Figure 2e resolves AC from the PreC and PostC 

branches, whereas Figure 2f shows the averaged SDFs at the same region depicting the structural 

characteristics of AC with the PreC and PostC branches of the fornix. The ability to resolve branches of 

fornix from AC reveals the intricate sensitivity of the HCP-842 to map detailed brain connections. 

 

Supervised labeling and segmentation of major pathways 

To isolate major and minor white matter fascicles, we applied whole-brain fiber tracking to the HCP-842 

group-average template, producing a total of 550,000 fiber trajectories in the standard space to achieve 

an average density of 1 track per voxel (Fig. 1c). A white matter mask was used to remove tracks that 

have premature terminations in the core white matter. The remaining whole-brain tracks were then 

automatically clustered by a single-linkage clustering algorithm, generating unique clusters of fiber 

bundles (Fig. 1d). The trajectories that were proximally close to one another were grouped. Each cluster 

could subsequently contain a different number of trajectories based on the anatomical proximity of the 

tracks. Figure 3 shows the largest 40 out of the 550 clusters as an example, where the size of a cluster 
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is determined by the number of its containing tracks. Shorter pathways, such as the uncinate fasciculus, 

will receive less seeding counts in the tracking process and thus be estimated to have a smaller size. 

Many track bundles were also represented by more than one cluster component. For example, cluster 

#1 and #38 are both labeled as the corpus callosum. A team of clinical neuroanatomists then examined 

and labeled the clusters according to neuroanatomical nomenclature. Table S1 lists all labels used in 

naming the clusters and the relevant neuroanatomy literature used for examination. Label “X” indicates a 

false track, which may arise due to false continuations (Fig. 4a) or premature termination (Fig. 4b). Only 

the 550 largest clusters were used because the false rate (either false continuation or premature 

termination) increased substantially in clusters with a smaller size (Fig. 4c). The labeled clusters were 

subsequently merged according to their neuroanatomical label. Missing components of the large fiber 

bundles were tracked separately and merged to ensure completeness as per the literature (Fig. 1e).  

The high-angular-resolution quality of the atlas can be appreciated in the corticospinal and corticobulbar 

tracts generated from our pipeline (Fig. 5a). These show a fanning projection pathway from the 

precentral (motor) cortex along the cortical surface that is consistent with the anatomical evidence (right, 

modified from Gray’s Anatomy). In addition, the coronal view of the corpus callosum (Fig. 5b) also shows 

a widespread fanning pattern, not otherwise trackable using lower angular resolution methods. The 

midline portion of the corpus callosum tracks (Fig. 5c) shows matching volume with the ICBM-152 

T1-weighted images, suggesting that the atlas can also provide volumetric measurements. Thus, the 

atlas appears to capture more complete portions of major pathways that are typically lost using 

traditional approaches. 

A population-averaged atlas of macroscopic structural connectome 
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The full atlas of the structural connectome is shown in Fig. 6 (abbreviation listed in Table S1) and 

includes the most comprehensive map of white matter pathways yet reported. This includes the 

projection pathways that connect cortical areas with subcortical nuclei and brainstem. Acoustic radiation 

has not been previously reported in tractography due to the complicated crossing pattern of the pathway. 

The association pathways connect disparate cortical areas, including a set of U-fibers (U). The 

commissural pathways connect the two hemispheres and include the corpus callosum, anterior 

commissure, and posterior commissure. Posterior commissure has not been previously reported in 

tractography. The cerebellar pathways include the cerebellar tracts (CB) and peduncles (SCP, MCP, 

ICP), and they provide the major input, output, and internal connectivity of the cerebellum. We were 

even able to resolve several brainstem pathways, such as central tegmental tract (CTT), dorsal 

longitudinal fasciculus (DLF), lateral lemniscus (LL). Finally, we discovered a limit of the current spatial 

resolution, where a set of cranial nerves including CN III, CN VII, and CN VIII were successfully 

identified, but CN I, IV, VI, and IX could not be identified due to insufficient spatial resolution. The 

detailed connective routes of the structural connectome atlas are presented in Supporting Information, 

including projection pathways (Fig. S2), association pathways (Fig. S3), commissural pathways (Fig. S4), 

cerebellar pathways (Fig. S5), brainstem pathways (Fig. S6), and cranial nerves (Fig. S7). It is worth 

noting that several cranial nerves cannot be found in the HCP-842 template due to the limitation of its 

spatial resolution. The full atlas, including the track trajectories and connectograms, is publicly available 

at http://brain.labsolver.org. 

Neuroanatomical constraints on connective topology 

The atlas of the structural connectome from the HCP-842 addresses a critical need in connectivity 

estimates that suffer from a high false positive error rate (Maier-Hein et al., 2016; Thomas et al., 2014): 
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the atlas enables estimation of normative region-to-region connectivity that is anatomically constrained. 

Figure 7 shows region-to-region connectivity matrix weighted by the SDF magnitude along the fiber 

pathways, segmented into the projection, association, and commissural pathways. The abbreviations for 

brain region are listed in Table S2. Higher intensity (white) indicates greater SDF magnitude along the 

pathway. This anatomically-constrained view of structural connectivity between gray matter targets 

highlights how specific classes of white matter pathways define unique connective topologies. For 

example, commissural pathways have a generally symmetrical topology of connections between the 

hemispheres, with greater homotopic connectivity than heterotopic connectivity, whereas the 

association pathways are more uniform in their intra-cortical connections.  

Finally, the connectograms of the structural connectome are illustrated in a multi-level approach (Fig. 8). 

The connectogram of the whole brain pathways illustrates the first level of the gross network topology 

(Fig. 8a, the high-resolution version shown in Fig. S8). The overall figure shows a dense network 

topology, and its network characteristics cannot be readily visualized due to the high complexity of the 

brain network at this level. The connectograms of the projection, association, and commissural 

pathways in Fig. 8b, 8c, and 8d depict the second level of the network topology (high-resolution details 

in Fig. S9), and within this level, the connectograms start to reveal important network features. The 

projection pathway in Fig. 8b indicates hub structures at thalamus, putamen, and brainstem, illustrating 

the role of these regions in integrative sensorimotor function between the cerebral cortex and 

corresponding peripheral systems. The association pathway, as shown in Fig. 8c, forms clusters within 

each hemisphere and contributes a substantial amount of clustering coefficient and local efficiency 

(Table 2), elucidating its small-worldness that involves multiple relevant gray matter regions. The 

commissural pathways, as shown in Fig. 8d, serve as a bridge connecting both hemispheres and 

provide global efficiency (Table 2) to integrate information across cerebral hemispheres. In Fig. 8e, the 
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connectograms of each fiber bundle are further divided to show the third level of the network topology in 

much more detail, and the illustration reveals a consistent hub formation for different fiber bundles, albeit 

with an alternative connectivity pattern to the cerebral cortex. Fig. 8f also shows clustering topology 

within different cortical areas, whereas Fig. 8g shows bridge-like symmetric structures of 

inter-hemisphere connections. Together, these unique topologies based on the class of fiber pathway 

highlights the rich taxonomy of structural connectome in the human brain that reflects unique information 

processing constraints. 

Discussion 

Here we present the first complete population-level atlas of the human structural connectome and its 

network topology, delineating fiber pathways within the cerebrum, cerebellum, brainstem, and a subset 

of cranial nerves. The fiber trajectories were generated from a group-averaged template of 842 subjects 

using a fiber tracking algorithm that has been shown to minimize tracking errors relative to other 

methods (Maier-Hein, 2016). Using an automated clustering approach, tracks were grouped into small 

bundles and subsequently labeled by a team of clinical neuroanatomists and vetted according to their 

neuroanatomic nomenclature. This combination of optimizing strategies allowed us to construct a 

high-quality, group-averaged structural connectome atlas of the human brain, and this HCP-842 atlas 

and its associated data set will be made publicly available (http://brain.labsolver.org) to promote future 

connectomic studies and assist neuroscientists to gain insight into the structural topology of the human 

brain. 

We should note that several human white matter atlases have been previously released. These include 

voxel segmentations on individual subjects that label the core of major pathways (Mori et al., 2009; Mori 

et al., 2008; Peng et al., 2009; Zhang et al., 2011) or tractography atlases based on tracking individual 
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subjects data (Catani et al., 2002; Guevara et al., 2012; Thiebaut de Schotten et al., 2011; Zhang et al., 

2008).Our atlas expands on these currently available resources by providing a comprehensive 

characterization of normative major and minor white matter fascicles constructed from a large sample of 

842 individuals who were imaged using high angular and high spatial resolution diffusion acquisitions, 

allowing for the resolution of multiple fiber populations within a white matter region to delineate the 

intertwining architecture of human white matter. This novel population-level description of the structural 

connectome characterizes both the normative 3D trajectories of white matter fascicles and delineates 

how gray matter regions in the cerebrum, cerebellum, and brainstem are physically connected by nearly 

all macroscopic white matter pathways. For the first time, this atlas offers structural detail and network 

topology of both large and small pathways, such as the clamping structure between the fornix and the 

anterior commissure that cannot be discerned from individual studies due to lower resolution and 

signal-to-noise ratio of conventional diffusion MRI.  

While overcoming many challenges, our current approach still has its limitations. First, our atlas does not 

address the variability of the fiber pathways across subjects. While it is entirely feasible to repeat the 

fiber tracking procedures for each of the HCP subjects, the labeling of 550 clusters of all 842 subjects 

may require a substantial amount of expert efforts. This labor-intensive approach would require several 

years worth of human labor to complete. Thus an automated approach to replace expert labeling would 

better assist this future endeavor, but developing such an automated classifier is well beyond the scope 

of the current study. In addition to individual variability, there could be errors in manual labeling of the 

clusters, and thus there should be better ways to address the inter-observer differences, as we only 

resolved differences by a group discussion with the goal of reaching a consensus on every track. This 

would save some time, but not enough to make this feasible and extensible enough to use in applied 

studies. Of course, there are also controversies in neuroanatomical structures (Meola et al., 2015) that 
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can be further complicated by individual differences. Thus, we have made all of the clusters data, their 

labels, and the entire atlas publicly available, thereby allowing for future modifications to improve the 

atlas as well as the development of better tools for automated segmentation.  

Moreover, the fiber tracking algorithm used in this study could still have false positive and false negative 

results. While expert assistance may address part of this issue, it cannot handle the false negative 

problem, and there could be missing tracks in our atlas. For example, several cranial nerves that are 

smaller than 1-mm in width were not detected by our method. These can only be tracked using images 

acquired at a much higher resolution. In addition, the expert examination may have its own errors, 

especially for identifying minor pathways and branches. It is also possible that the branching patterns of 

the white matter pathways differ person from person. Finally, the atlas reveals only three levels of the 

network topology, as more recent studies have focused on detailed subcomponents of the fiber bundles 

(e.g. SLF I, II, and III)(Fernandez-Miranda et al., 2015; Wang et al., 2016). Although the spatial 

resolution of the atlas can be improved, it provides a macroscopic framework for future connectomic 

studies to explore microscopic connections under its categorical system.  

Despite these limitations, a vetted atlas of the population-level structural connectome has many benefits 

for clinical, scientific, and educational applications.The atlas can be used to derive a representative 

pattern of network measures to assist graph theoretical analysis of clusters and hubs in the brain 

connectome. It can be used to confirm or explore potential cortical connections from functional 

measures (e.g., functional connectivity), augmenting current functional-structural correlative inferences 

or supplementing prior anatomical connectivity expectations in studies that do not have access to 

individual dMRI data. This, for example, may enable future investigations into the correlation of 

white-matter lesions with known gross-white matter structures. Another advantage of the current atlas is 
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that it includes a normative template of diffusion distribution across the brain. This may allow for future 

efforts comparing normal diffusion patterns with those from the neurological or psychiatric pathologies. 

Finally, in science education, the atlas is a novel resource superseding conventional 2D slice-based 

histological atlases. The trajectory information provides panoramic views on the relative location of each 

white matter bundle, allowing for an in-depth understanding of the white matter structure. 
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Fig. 1 Flow chart of the processing steps used to construct a population-averaged structural connectome 

of the human brain. (a) A total of 842 subjects’ diffusion MRI data were reconstructed in a common 

standard space to calculate the spin distribution function at each imaging voxel. (b) The spin distribution 

functions were averaged to build a template of the diffusion characteristics of the normal population. (c) 

The template was used to guide a fiber tracking algorithm and generate a total of 550,000 trajectories. (d) 

Automatic track clustering was applied to cluster trajectories into fiber bundles. (e) A team of 

experienced neuroanatomists manually labeled each cluster and identified false pathways according to 

the neuroanatomy evidence. The clusters with the same labeled were grouped together as an atlas of 

structural connectome. An additional quality check was conducted to ensure complete coverage. (f) The 

atlas was then used to build the connectogram showing the connections between brain regions. 
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Fig. 2 (a) Diffusion MRI allows for quantifying, for each imaging voxel, the orientation distribution of t

water diffusion (termed spin distribution function, SDF) to reveal the underlying structural characteris

of axonal fiber bundles in a color-coded surface (red-blue-green indicates the orientation at the x-y-z

axis, respectively). The protruding points of the SDFs indicate the orientation of fiber bundles. (b) Th

color sticks represent the peak orientations on SDFs. The coronal view shows that SDF can resolve 

crossing fibers at central semiovale, a white matter region where the corpus callosum crosses vertica

passing fibers. The SDFs averaged from a total 842 subjects provide orientations of the local axonal

connections. The information can be used to drive a fiber tracking algorithm to delineate white matte

connections. (c) The SDF template of the human brain averaged from 842 diffusion MRI scans (term

the HCP-842 template) shows structural characteristics of the human brain. The magnitude map of t
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HCP-842 template reveals structures such as hippocampus (HIP), thalamus (TH), red nucleus (RN), and 

substantia nigra (SN), which are consistent with the histology image from BigBrain slides (d). (e) The 

orientation map of the HCP-842 template allows for delineating the complicated structures, such as the 

clamping structure between the anterior commissures (AC) and the pre-commissural (PreC) and 

post-commissural (PostC) branches of the fornix. The structural characteristics are also illustrated by the 

SDFs of the HCP-842 template in (f).  
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Fig. 3 The 40 largest clusters (selected from a total of 550 clusters) generated from automatic tr

clustering and their labels assigned by neuroanatomists. False connections are assigned by 

whereas the others assigned by their corresponding neuroanatomy abbreviations. 
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Fig. 4 False connections due to (a) false continuation and (b) premature termination identified by 

neuroanatomists. A false continuation is a common cause of false trajectories and often found in regi

with two fiber population cross on top of each other. Premature termination is often due to a failur

resolving crossing or branching pattern in the white matter. (c) The probability of a cluster labeled

“false” increases substantially with decreased cluster size. This suggests we can discard sma

clusters as there are mostly false connections. 
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Fig. 5 The angular resolution of the structure connectome atlas illustrated. (a) The corticospinal and 

corticobulbar tracks in the structure connectome atlas present a fanning pattern consistent with the 

known neuroanatomy presentation. (b) The coronal view of the corpus callosum mapped by the atlas 

shows a wide spreading fanning pattern, which cannot be achieved using a low angular resolution 

approach. (c) The mid portion of the corpus callosum matches well with the ICBM-152 T1-weighted 

images, suggesting that the track bundles in the atlas have volumes matching the standard template. 
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Fig. 6 Overview of the population-averaged structural connectome atlas categorized into the projection, 

association, and commissural pathways in addition to cerebellum pathways, brainstem pathways, and 
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cranial nerves. Each pathway contains thousands of trajectories showing the representative connections 

of the 842 subjects between brain regions in a standard space. The trajectories are color-coded by the 

local orientation (red: left-right, green: anterior-posterior, blue: inferior-superior). This connectome atlas 

provides normative connection routes between brain regions that can facilitate network analysis, 

simulation and modeling. 
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Fig. 7 The connectivity matrix constructed from the human connectome atlas. The color division shows 

the division of three major track systems—projection (blue), association (green), and commissural 

(red)—in the human brain. The intensity shows the between region connectivity quantified the 

magnitude of the along-track diffusion properties quantified by spin distribution functions.  
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Fig. 8 The multi-level connectograms of the human structural connectome. (a) The first level of the 

overall structural connectome shows a dense connections pattern in the average structure connectome. 

(b) The second level of the connectogram shows the network characteristics in each pathway system. 

The projection pathway forms a hub structure at thalamus, putamen, and brainstem. The association 

pathway is constituted of numerous clusters in the brain networks. The commissural pathway has 

long-range connections between hemispheres that provide global efficiency. (c) The third level of the 

connectogram reveals the network pattern of each fiber pathways under the projection, association, and 
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commissural system. The connection patterns inherit the characteristics of their belonging pathway 

system shown in the second level connectogram. 
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Table 1: Number of voxels with more than on fiber orientations resolved in different resolutions 

Resolution Voxel with more than one 

fiber orientations* 

Total white matter voxels Percentage (%)* 

1 mm 76452 606662 12.60 

1.5 mm 114856 195705 58.69 

2 mm 74283 89306 83.18 

2.5 mm 43551 49050 88.789 

* may include turning, crossing, or branching fibers 
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Table 2: Change of network measures with/without projection, association, and commissural pathways 

Pathway 

System 

Clustering 

Coefficient (%) 

Network 

Characteristic 

Path Length 

(%) 

Global 

Efficiency (%) 

Local 

Efficiency (%) 

Small 

Worldness (%) 

Projection -0.30 -5.38 3.35 4.60 5.08 

Association 62.27 -7.95 6.88 57.90 66.91 

Commissural -18.65 -10.57 8.11 -7.47 -8.24 

A positive value indicates an increase of network measures with the pathways added. 
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SUPPLEMENTARY MATERIALS 

 

Fig. S1 The histogram showing the empirical distribution of the goodness-of-fit values of the spatial 

normalization. The goodness-of-fit was quantified by the R2 value between each subject’s normalized 

anisotropy map and the template. The distribution shows a skewed function with a tail of lower 

goodness-of-fit values, which allowed us to examine datasets with potential quality issues. 
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Fig. S2 The fiber bundles in the projection pathways, including acoustic radiation (AR), corticostriatal 

pathway (CS), corticospinal tract (CST), corticothalamic pathway (CT), fornix (F), frontopontine 

tract(FPT), occipitopontine tract (OPT), optic radiation (OR), parietopontine tract (PPT), and 

temporopontine tract (TPT). 
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Fig. S3 The fiber bundles in the association pathways, including arcuate fasciculus (AF), frontal aslant 

tract (AST), cingulum (C), extreme Capsule (EMC), inferior fronto-occipital fasciculus (IFOF), inferior 

longitudinal fasciculus (ILF), middle longitudinal fasciculus (MdLF), superior longitudinal fasciculus (SLF), 

U-fibers (U), uncinate fasciculus (UF), and vertical occipital fasciculus (VOF). 
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Fig. S4 The fiber bundles in the commissural pathways, including the anterior commissure (AC), corp

callosum (CC), and posterior commissure (PC).  
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Fig. S5 The fiber bundles in the cerebellar pathways, including the cerebellum (CB), superior cerebe

Peduncle (SCP), middle cerebellar peduncle (MCP), inferior cerebellar peduncle (ICP), and vermis (V

  

 

bellar 

(V) 
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Fig. S6 The fiber bundles in the brainstem, including central tegmental tract (CTT), dorsal longitudina

 

inal 
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fasciculus (DLF), lateral lemniscus (LL), medial lemniscus (ML), medial longitudinal fasciculus (MLF), 

rubrospinal tract (RST), and spinothalamic tract (STT). 
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Fig. S7 The cranial nerves included in the atlas, including the visual nerve (CN II), oculomotor (CN II

trigeminal nerve (CN V), facial nerve (CN VII), and auditory nerve (CN VIII).  

  

 

 III), 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2018. ; https://doi.org/10.1101/136473doi: bioRxiv preprint 

https://doi.org/10.1101/136473
http://creativecommons.org/licenses/by/4.0/


49 

 

Fig. S8 The first level connectogram of the entire human brain connections. The brain is parcellation 

regions, and each region is color-coded as shown in the inset figure to the left upper corner. The left s

of the connectogram corresponds to the left hemisphere, whereas the right side of the connectogram
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corresponds to the right hemisphere. The connectogram of the human brain shows a dense network 

topology between the brain regions, forming a complicated architecture. 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2018. ; https://doi.org/10.1101/136473doi: bioRxiv preprint 

https://doi.org/10.1101/136473
http://creativecommons.org/licenses/by/4.0/


51 

 

Fig. S9 The second level connectograms of the projection, association, and commissural pathways 

showing the network topology of each pathway system. The projection pathway forms a hub structur

thalamus, putamen, and brainstem. The association pathway forms numerous clusters within each 

hemisphere. The commissural pathway provides long ranged communication between the two 

hemispheres. 

  

 

ture in 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2018. ; https://doi.org/10.1101/136473doi: bioRxiv preprint 

https://doi.org/10.1101/136473
http://creativecommons.org/licenses/by/4.0/


 

52 

 

 

Table S1 Abbreviations of the fiber pathways  

Projection Pathways 

Acoustic Radiation (AR)  

Corticospinal Tract (CST)  

Corticostriatal Pathway (CS)  

Corticothalamic Pathway 

(CT) 

 

Fornix (F)  

Optic Radiation (OR)  

Frontopontine Tract(FPT)  

Occipitopontine Tract (OPT)  

Parietopontine Tract (PPT)  

Temporopontine Tract (TPT)  

  

Association Pathways 

Arcuate Fasciculus (AF)  

Frontal Aslant Tract (AST)  

Cingulum (C)  

Extreme Capsule (EMC)  

Inferior Fronto Occipital 

Fasciculus (IFOF) 

 

Inferior Longitudinal 

Fasciculus (ILF) 

 

Middle Longitudinal 

Fasciculus (MdLF) 

 

Superior Longitudinal 

Fasciculus (SLF) 

 

U-fiber (U) 

Uncinate Fasciculus (UF) 

 

Vertical Occipital Fasciculus 

(VOF) 

 

Commissural Pathways 
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Anterior Commissure (AC)  

Corpus Callosum (CC)  

Posterior Commissure (PC)  

  

Cerebellum  

Cerebellum (CB) 

Superior Cerebellar Peduncle 

(SCP) 

Middle Cerebellar Peduncle 

(MCP) 

Inferior Cerebellar Peduncle 

(ICP) 

Vermis 

(V) 

 

Brainstem  

Central Tegmental Tract 

(CTT) 

Dorsal Longitudinal 

Fasciculus (DLF) 

Lateral Lemniscus (LL) 

Medial Lemniscus (ML) 

Medial Longitudinal 

Fasciculus (MLF) 

Rubrospinal Tract (RST) 

Spinothalamic Tract (STT) 

 

Cranial Nerves  
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Table S2 Abbreviations of the brain regions  

Finf_L Frontal Inferior Left 

Fmid_L Frontal Middle Left 

FSp_L Frontal Superior Left 

FSpMd_L Frontal Superior Medial Left 

Of_L Olfactory Left 

C_L Cingulum Left 

Insula_L Insula Left 

Oper_L Oper Left 

SMA_L Supp Motor Area Left 

ParaC_L Paracentral Left 

PreC_L Precentral Left 

PostC_L Postcentral Left 

PInfL Parietal Inferior Left 

PSp_L Parietal Superior Left 

PreCun_L Precuneus Left 

Ag_L Angular Left 

SpMar_L SupraMarginal Left 

Am_L Amygdala Left 

Tinf_L Temporal Inferior Left 

TMd_L Temporal Middle Left 

TSp_L Temporal Superior Left 

Fu_L Fusiform Left 

Hipp_L Hippocampus Left 

Oinf_L Occipital Inferior Left 

Omd_L Occipital Middle Left 

Osp_L Occipital Superior Left 

Cal_L Calcarine Left 

Cun_L Cuneus Left 

Lin_L Lingual Left 

Pu_L Putamen Left 

Th_L Thalamus Left 

CB_L Cerebelum Left 

BS BrainStem 
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CB_R Cerebelum Right 

Th_R Thalamus Right 

Pu_R Putamen Right 

Lin_R Lingual Right 

Cun_R Cuneus Right 

Cal_R Calcarine Right 

Osp_R Occipital Superior Right 

Omd_R Occipital Middle Right 

Oinf_R Occipital Inferior Right 

Hipp_R Hippocampus Right 

Fu_R Fusiform Right 

TSp_R Temporal Superior Right 

TMd_R Temporal Middle Right 

Tinf_R Temporal Inferior Right 

Am_R Amygdala Right 

SpMar_R SupraMarginal Right 

Ag_R Angular Right 

PreCun_R Precuneus Right 

PSp_R Parietal Superior Right 

Pinf_R Parietal Inferior Right 

PostC_R Postcentral Right 

PreC_R Precentral Right 

ParaC_R Paracentral Right 

SMA_R Supp Motor Area Right 

Oper_R Oper Right 

Insula_R Insula Right 

C_R Cingulum Right 

Of_R Olfactory Right 

FSpMdR Frontal Superior_Medial Right 

FSp_R Frontal Superior Right 

Fmid_R Frontal Middle Right 

Finf_R Frontal Inferior Right 
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