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Abstract29

Brief epochs of beta oscillations have been implicated in sensorimotor control in the basal ganglia30

of task-performing healthy animals. However, which neural processes underlie their generation and31

how they are affected by sensorimotor processing remains unclear. To determine the mechanisms32

underlying transient beta oscillations in the local field potential (LFP), we combined computational33

modeling of the subthalamo-pallidal network for the generation of beta oscillations with realistic34

stimulation patterns derived from single unit data. The single unit data were recorded from35

different basal ganglia subregions in rats performing a cued choice task. In the recordings we36

found distinct firing patterns in the striatum, globus pallidus and subthalamic nucleus related37

to sensory and motor events during the behavioral task. Using these firing patterns to generate38

realistic inputs to our network model lead to transient beta oscillations with the same time course39

as the rat LFP data. In addition, our model can account for further non-intuitive aspects of beta40

modulation, including beta phase resets following sensory cues and correlations with reaction time.41

Overall, our model can explain how the combination of temporally regulated sensory responses42

of the subthalamic nucleus, ramping activity of the subthalamic nucleus, and movement-related43

activity of the globus pallidus, leads to transient beta oscillations during behavior.44

Significance Statement45

Transient beta oscillations emerge in the normal functioning cortico-basal ganglia loop during46

behavior. In this work we employ a unique approach connecting a computational model closely47

with experimental data. In this way we achieve a simulation environment for our model that48

mimics natural input patterns in awake behaving animals. Using this approach we demonstrate49

that a computational model for beta oscillations in Parkinson’s disease can also account for complex50

patterns of transient beta oscillations in healthy animals. Therefore, we propose that transient51

beta oscillations in healthy animals share the same mechanism with pathological beta oscillations52

in Parkinson’s disease. This important result connects functional and pathological roles of beta53

oscillations in the basal ganglia.54

Introduction55

Exaggerated cortico-basal ganglia oscillations in the beta band (15 to 30 Hz) are a common56

feature of Parkinson’s disease (PD; Brown et al., 2001; Hammond et al., 2007; Levy et al., 2002).57

However, beta oscillations are not always pathological. Brief epochs of beta oscillations have been58

implicated in sensorimotor control in the healthy basal ganglia (Berke et al., 2004; Leventhal et59

al., 2012; Courtemanche et al., 2003; Feingold et al., 2015). These studies indicate that temporally60

regulated transient beta oscillations are important for normal functioning of the motor system.61

The origin of beta oscillations in the cortico-basal ganglia system remains unknown. However,62

interactions between subthalamic nucleus (STN) and globus pallidus externa (GPe) can generate63

beta oscillations as has been shown in experimental (Bevan et al., 2002; Tachibana et al., 2011)64

and computational (Terman et al., 2002; Kumar et al., 2011, Pavlides et al., 2015; Wei et al., 2015)65

studies. Anatomically, STN and GPe are densely and reciprocally inter-connected (Shink et al.,66

1996). STN cells excite neurons in GPe (Kitai and Kita, 1987), which in turn receive inhibitory67

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/136879doi: bioRxiv preprint 

https://doi.org/10.1101/136879


input from GPe (Smith et al., 1990; Parent and Hazrati, 1995). Such recurrent excitation-inhibition68

can generate oscillations (Plenz and Kitai, 1999; Brunel, 2000), which may then propagate to other69

regions in the cortico-basal ganglia loop.70

Beta oscillations have been proposed to play a functional role in maintaining the status quo in71

the motor system (Engel and Fries, 2010; Gillbertson et al., 2005). This idea has been supported72

by increased cortical beta-band activity during maintenance of a static position (Baker et al.,73

1997), active suppression of movement initiation (Swann et al., 2009), and post-movement hold74

periods (Pfurtscheller et al., 1996). Accordingly, beta power decreases in the cortico-basal ganglia75

loop during movement preparation and execution (Sochurkova and Rektor, 2003; Pfurtscheller et76

al., 2003; Alegre et al., 2005; Kuhn et al., 2004). However, recent studies have indicated a more77

complex picture in which beta oscillations affect behavior through motor adaptation (Tan et al.,78

2014) and modulation of task performance (Feingold et al., 2015).79

Supporting a more complex picture of beta oscillations, we provided evidence that basal ganglia80

beta oscillations are involved in sensorimotor processing and the utilization of cues for behavior81

(Leventhal et al., 2012). In particular, we found that beta power increases following the sensory82

cues and movement initiation depended on how fast the animals reacted to a sensory cue. For83

short reaction times, LFP beta emerged after movement initiation, whereas for long reaction times,84

two separate beta epochs occurred, one before and one after movement initiation. In addition85

to modulation of beta power, we also observed that beta phases were affected by task events86

differently. Sensory cues, but not movement initiation, lead to a short-latency phase reset in the87

beta band (Leventhal et al., 2012).88

Understanding these complex dynamics of beta oscillations is important to identify the underly-89

ing mechanisms that generate beta oscillations in the cortico-basal ganglia system. Currently, it is90

unknown whether pathological beta oscillations in Parkinson’s disease share the same mechanisms91

with transient beta oscillations in healthy animals. If this is the case, computational models for92

beta oscillations should be able to account for the complex beta dynamics in both healthy and93

Parkinsonian animals. Recent network models of beta oscillations in Parkinson’s disease have em-94

phasized that besides structural changes (e.g. connection strengths), also changes in spiking activity95

of external inputs can promote beta oscillations (Kumar et al., 2011), which might drive transient96

beta oscillations. Here we exploit this property by directly using activity patterns recorded in97

healthy rats during task performance (Schmidt et al., 2013; Mallet et al., 2016) as input to our98

computational model to study the resulting impact on the beta dynamics. Employing this novel99

approach we find that our model can account for the complex beta dynamics in the healthy rat100

LFP. Our results support overlapping mechanisms for pathological and healthy beta oscillations101

and provide the basis for studying the functional role of beta oscillations in network models.102

Results103

To determine whether a computational model for pathological beta oscillations in the STN-104

GPe network (Kumar et al., 2011) can account for complex beta dynamics during behavior in105

healthy animals, we devised realistic stimulation patterns for the network model based on single106

unit recordings in rats performing a cued choice task (Schmidt et al., 2013; Mallet et al., 2016). At107

the beginning of each trial, the rat entered one of three center nose ports in an operant chamber108

(“Nose-in” event; Figures 1A, B). The rat was trained to then hold its position for a variable time109
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interval (“Holding time”; 500-1200 ms) until a Go cue instructed the rat to quickly move its head110

to the adjacent left or right side port (“Nose-out” event; Figures 1A, B). Correct performance of111

the task was rewarded with a sugar pellet. While the animals performed the task we recorded112

in the striatum, GPe and STN to determine activity patterns of single units during the time of113

the Go cue and during movement initiation. Then we used these activity patterns to construct114

realistic input patterns for our network model. The network model we use here is a large-scale115

spiking network model consisting STN and GPe populations with conductance based synapses116

(Kumar et al., 2011; see Methods). Stimulating the network model via the realistic stimulation117

patterns allowed us to compare the resulting oscillatory dynamics in the model with properties of118

oscillations in the rat LFPs.119

Brief, short-latency sensory responses in STN. 27% (75/276) of STN units responded to the120

Go cue with an increase in firing rate (Figure 1C; shuffle test, p<0.01; see Methods). In line121

with our previous reports on a subset of the same data (Schmidt et al., 2013), this included units122

with a very short latency (around 10-30 ms), and responses of individual units were typically very123

brief (see Figure 1C, top panel). In addition, some units responded with a longer latency (around124

40-100 ms), so that the overall distribution of peak response latencies had a bimodal shape (Figure125

1D). To mimic this STN response pattern to salient sensory stimuli, we simulated the Go cue in126

our model simulations below by using brief excitatory pulses with the same latency distribution.127

These pulses were then used as input to 27% randomly chosen STN model neurons (“sensory”128

STN neurons) to match the fraction of responding STN units in our single unit data.129

Movement-related activity in striatum and GPe. 30% (100/320) of putative medium spiny130

neurons (MSNs) in the striatum increased their activity during contralateral movements (Figure131

1E; see Methods; also see Schmidt et al., 2013). We focused here on contralateral movements132

as most neurons typically responded more during contralateral than ipsilateral movements (Gage133

et al., 2010; Schmidt et al., 2013). In GPe, 40% (61/149) of the units decreased their activity134

during contralateral movements (Figure 1F; shuffle test, p<0.05; see Methods), possibly reflecting135

input from indirect pathway MSNs. Therefore, we assumed in the network model that striato-136

pallidal inhibition drives the GPe firing rate decreases during movement. We implemented this by137

generating inhomogeneous Poisson spike trains with a rate modulation following the MSN firing138

pattern during movement (Figure 1E). These spike trains were then used as inhibitory inputs to139

40% of the network model GPe neurons (“motor” GPe neurons) to match the fraction of GPe units140

with movement-related firing rate decreases in the single unit data. Note that we restricted our141

analysis of GPe units to putative prototypical neurons (Mallet et al., 2016) because they receive142

input from MSNs and project to STN, while arkypallidal GPe neurons probably receive different143

inputs and do not project to STN (Mallet et al., 2012; Dodson et al., 2015).144

Ramping activity in STN and GPe while rats wait for the Go cue. In addition to single unit145

responses that could be classified as sensory or motor, in STN and GPe we found many units146

which exhibited a firing pattern that resembled a “ramp”, a continuous change in firing rate.147

A ramping pattern was present in the activity of 80% (216/276) of the STN units with either148

significantly increasing (positive ramp) or decreasing (negative ramp) firing rate while the animal149

was waiting for the Go cue (Figures 2A, B). Among the 216 ramping STN units, 44% (96/216)150

showed positive ramps (Figure 2A), whereas 56% (120/216) showed negative ramps (Figure 2B).151

However, the mean firing rate increase for the positive ramp units was four times as high as the152

mean firing rate decrease for the negative ramp units (4 Hz increase vs. 1 Hz decrease; inset in153

Figure 2B, bottom). The positive ramp was also observed in the average firing rate of the whole154
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STN population starting 500 ms before the Go cue (data not shown). Functionally, these ramps155

may correspond to a brake signal, preventing premature movement initiation (Frank, 2006).156

We found a similar pattern in the GPe with 71% (106/149) of the units exhibiting a significant157

ramping activity before the Go cue (Figures 2C, D). Among these, 47% (50/106) showed positive158

ramps (Figure 2C) and 52% showed negative ramps (Figure 2D). As for the STN units, on average,159

the amplitude of the positive ramp in GPe was four times as high as the amplitude of the negative160

ramp, resulting in a net positive ramp in the population activity (data not shown). One property of161

the positive ramp STN and GPe units was that in long reaction time trials their activity remained162

elevated after the Go cue (Figures 2A, C, bottom panels). This property played a key role for the163

beta dynamics in the model below.164

Based on these ramping patterns in STN and GPe, we designed inputs to the model STN165

neurons that lead to similar activity ramps (see Methods). Due to the excitatory drive from STN166

to GPe, in the model the ramps in STN activity resulted in corresponding ramps in GPe.167

Sensorimotor model inputs modulate time course of beta oscillations. As a previous modeling168

study demonstrated that excitatory input to STN or inhibitory input to GPe can induce transient169

beta oscillations (Kumar et al., 2011), we hypothesized that the sequence of ramp, Go cue and170

movement-related activity patterns (Figures 3A, B) accounts for the complex beta dynamics in171

the LFP (Leventhal et al., 2012). First, we reproduced the time course of beta power modulation172

during movement initiation (Leventhal et al., 2012) using an extended data set of GPe recordings173

(Schmidt et al., 2013; Mallet et al., 2016). In the rat LFPs beta power started to increase before174

the time of movement initiation and then showed a pronounced peak just after movement onset175

(Figure 3C, top). The time course of beta power in the network model exposed to our single-unit176

stimulation patterns (Figure 3B) matched the experimentally observed results (Figure 3C, bottom),177

including the pre-movement beta power increase, the pronounced beta peak during movement, and178

the second beta peak related to the movement out of the side port (see Methods). The network179

model beta time course was in this case determined by the STN ramping activity, combined180

with the sensory responses of the STN neurons and the striato-pallidal motor inputs (Figure 3B).181

This is an important result because it connects single unit activity during task performance with182

oscillatory network dynamics.183

Here, we compared the experimental LFP data with the model population firing rate (Figure184

3C). However, the origin of the LFP and its relation to spiking activity are not well understood in185

the basal ganglia. It seems that the LFP mostly reflects synchronized postsynaptic currents (Nie-186

dermeyer and Lopez da Silva, 1998; Nunez and Srinivasan, 2005; Jensen et al., 2005; McCarthy et187

al., 2011). However, we found that the time course of beta oscillations was very similar, irrespec-188

tive of whether we used the population firing rate or the summation of inhibitory or excitatory189

postsynaptic currents to represent the experimental LFP data (data not shown). Therefore, to stay190

consistent with previous models (e.g. Kumar et al., 2011; Pavlides et al., 2015; Nevado-Holgado191

et al., 2014), we continue to use the population firing rate in the model to determine the presence192

of beta oscillations.193

Sensory responses in STN lead to a beta phase reset. In addition to the described changes in194

beta power, the phases of beta oscillations can be modulated by specific events in the behavioral195

task. Sensory cues (like the auditory Go cue) that did not lead to a distinctive increase in beta196

power were nevertheless followed by a short-latency phase reset in the LFP (Leventhal et al.,197
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2012). By contrast, beta power increases during movement were not accompanied by a phase198

reset in the beta band (Leventhal et al., 2012). Here, we confirm this result for GPe recording199

sites using an extended data set (Figures 4A, E; Schmidt et al., 2013; Mallet et al., 2016). To200

determine which properties of the neural signal lead to a phase reset or to a power increase in the201

beta band, we calculated grand averages of raw LFP traces (Figure 4C). We found that briefly202

after the Go cue a single beta cycle was visible. This short oscillation was rather weak and could203

only be visible when looking at the mean of the LFP data over many trials (Figure 4C). This204

brief beta epoch was associated with beta phase reset in the LFP data, following the Go cue205

(Figure 4A). Interestingly, providing brief stimulation to the “sensory” STN neurons in the model206

leads to a brief low-amplitude beta oscillation, which also only became visible when inspecting207

the mean population firing rate over many stimulations (Figure 4D). Similar to the experimental208

data, “sensory” stimulation of the model STN leads to beta phase reset in the ongoing activity209

of the network model (Figure 4B). Therefore, we conclude that brief excitatory inputs to STN210

can induce weak and brief, phase-locked beta oscillations in the STN-GPe network, mimicking the211

experimentally observed results.212

Beta elevation around the time of movement onset was not accompanied by a phase reset in213

both the rat LFP data and in the model (Figures 4E, F). It might seem counterintuitive that214

a strong stimulation leading to a clear increase in beta power, did not reset the phase, whereas215

a weaker stimulation did. However, STN neuronal responses to the Go cue are brief, compared216

to the longer movement-related increases in the activity of MSNs (Figures 1C-E). Therefore, we217

hypothesized that the duration of neural responses to sensory and motor events might be the key218

difference. To test this, we systematically varied the duration of the inputs to the model “sensory”219

STN neurons and “motor” GPe neurons (note that the inputs are inhomogeneous Poisson spike220

trains with firing rate patterns of a half cosine wave; see Methods). We found that for brief inputs221

(leading to brief changes in the neuronal activity) there was a phase reset in the ongoing activity222

of the network model (Figure 5). Longer stimulations of “motor” GPe neurons elevated the beta223

power without phase reset (Figures 5C, D). For stimulation durations longer than a single beta224

period in the model (i.e. about 50 ms), we only observed beta power elevation without phase225

reset (Figures 5C, D). In fact, the maximal phase reset in the network model occurred when226

the stimulation duration was 25 ms, equaling half the beta cycle (Figures 5B, D). For the short227

stimulation duration the time to get to the maximum of the half cosine firing rate pattern in short228

(i.e. the slope is larger). This effectively leads to no trial-to-trial variability because all realizations229

of the Poisson process with such a brief firing rate pattern are very similar (with respect to the230

spike times). This similarity in the input then leads to a similar response in the network model231

and therefore a phase reset across trials. In contrast, for longer stimulation the time to get to the232

maximum of the half cosine firing rate pattern is longer (with smaller slope). This leads to more233

trial-to-trial variability with respect to the spike times in the realization of the Poisson process.234

Correspondingly, this translates into trial-to-trial variability in the response of the network model235

to the long stimulation and therefore a random phase across trials.236

Longer stimulations of the “sensory” STN neurons did not elevate the beta power in the network237

model (Figure 5A). This is because “sensory” STN units made up a smaller fraction (27%) of238

the STN population in our model compared to 40% “motor” GPe units (see above). The long239

stimulation of a small fraction of the STN neurons was not sufficient to bring the network model240

into the oscillatory state. In general, for a certain stimulation strength, the fraction of stimulated241

neurons in the network model is an effective parameter to determine the amount of evoked beta242

power (Kumar et al., 2011).243
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Disentangling the complex relationship between reaction time and beta dynamics. The time244

course of beta oscillations depends on how fast the animal initiates movement in response to the245

Go cue (Leventhal et al., 2012). For short reaction times, the mean LFP beta power shows a single246

peak after movement initiation. For long reaction times, the mean LFP beta power shows two247

peaks, with the first peak before and the second peak after movement initiation (see highlighted248

300 ms epochs preceding and following Nose Out in Figure 6A, right; see also Leventhal et al.,249

2012). The bimodal shape of the mean beta power for long reaction time trials is also visible when250

aligned to the Go cue (Figure 6A, left). A straightforward idea would be that the first peak of the251

mean beta power for long reaction time trials is mostly driven by the Go cue or, alternatively, by252

the upcoming movement. However, if the beta peak was driven by the Go cue, we would expect253

a higher peak for the data aligned to the Go cue than for the data aligned to movement onset.254

Accordingly, if the beta peak was related to the movement, we would instead expect a higher255

peak for the data aligned to the movement onset. In contrast, despite variability in reaction time,256

this peak had a similar shape and amplitude for both alignment to the Go cue and to movement257

onset. Therefore, this beta peak does not seem to be simply driven by a sensory or motor event.258

With the help of our network model, we disentangle the mechanisms underlying these reaction259

time-dependent complex features of beta.260

Using our stimulation patterns based on single unit recordings, we studied how different reaction261

times affect the time course of beta power. We found a strikingly similar effect of reaction time262

on the time course of beta power in the network model (Figure 6B). For long reaction time trials263

the model exhibited two separate peaks in the mean beta power with the same time course as the264

experimental LFP data (Figure 6B). Furthermore, the peak of the mean beta power in the model265

after movement onset for short reaction time trials had a higher amplitude than in long reaction266

time trials, similar to the experimental LFP data (see right panels in Figures 6A and 6B). The267

ability of the model to capture the fine details of the complex beta power modulation became268

visible even at the single-trial level (Figures 6C, D). As in the experimental data, changes in mean269

power modulation were reflected as a change in the probability of a transient beta oscillation,270

rather than as only a gradual increase in the oscillation amplitude.271

To understand the mechanisms underlying the complex relationship between beta and reaction272

times, we can now use our network model to determine the contribution of each stimulation273

component. Before the Go cue, ramping activity of the STN neurons in the model causes a274

gradual increase in beta power (mostly because of an increase in probability of beta), starting275

almost 600 ms before the Go cue (Figures 6B, D and Figure 7). At the time of the Go cue the276

sensory responses of the STN neurons generate a weak and brief beta oscillation in the model277

(green traces in Figure 7). In short reaction time trials this brief beta oscillation overlaps with278

beta oscillations driven by “ramp” and “motor” inputs (as sensory and motor events are temporally279

close). This overlap results in an interaction of ongoing beta (driven by “ramp” input) with beta280

driven by “motor” input, leading to high beta power around the time of movement onset (Figures281

6B and 7, top). For long reaction time trials, after the Go cue, but before movement initiation, the282

“sensory” and “ramp” inputs determine the beta dynamics in the model. The interaction between283

the “sensory” and “ramp” inputs leads to the first, high-amplitude beta peak for long reaction284

time trials (Figures 6B and 7, bottom). As Go cue and Nose Out events are temporally distant285

for long trials, this high-amplitude beta power starts to decay before the time of movement onset.286

This is followed by another beta epoch due to “motor” input which leads to the second peak of287

beta power, after the time of movement onset, for long reaction time trials (Figures 6B, D and288
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7). The amplitude of this second peak is smaller, compared to the peak after movement onset for289

short reaction time trials (Figure 6B, right), because it lacks the interaction with STN excitation290

due to the Go cue (Figure 7). Functionally, the first beta peak in long reaction time trials may be291

linked to the prolongation of movement initiation in high beta states (Levy et al., 2002; Brown et292

al., 2001; Chen et al., 2007; Pogosyan et al., 2009). Thereby our model connects “ramp” activity293

in STN with the generation of beta oscillations and potential functional roles as a “brake” (Frank,294

2006).295

Our results are robust to the STN-STN recurrent connectivity in the network model. In the296

network model we used, the STN neurons received excitatory synaptic inputs from other STN297

neurons with a connection probability of 2% (Kumar et al., 2011). However, several experimental298

studies indicate that the STN-STN recurrent connectivity is very rare or do not exist (Hamond299

and Yelnik, 1983; Sato et al., 2000; Parent and Parent 2007; Koshimizu et al., 2013). Therefore,300

we modified the network model parameters to test if the model without STN-STN connections301

is also able to capture the behaviorally relevant dynamics of the LFP beta oscillations. Indeed,302

with slight modifications of parameters (see Methods), all key results, including the time course of303

beta around the time of movement preparation and execution (Figure 8A), the beta phase reset304

(Figures 8B, C), and the complex relationship between beta and reaction time (Figures 8D, E),305

were reproduced. This demonstrates that our model account of transient beta oscillations does306

not depend on STN-STN recurrent connectivity.307

In summary, our results show that the combination of 1) sensory responses of STN neurons,308

2) movement-related inhibition of GPe neurons, and 3) ramping activity in STN, account for the309

complex properties of beta power modulation over time, beta phase reset and correlations with310

reaction time of rat electrophysiological recordings in the basal ganglia. Thereby, the model allows311

us to make clear predictions about the underlying mechanisms and provides the basis for studying312

functional consequences on neural processing and behavior.313

Discussion314

Oscillations in the LFP often reflect sensory, cognitive and motor aspects of neural processing,315

but can be difficult to interpret due to a lack of understanding how and why network oscillations316

emerge. Furthermore, we currently face a gap between firing patterns of single neurons and larger317

scale network dynamics. Here we addressed this by a combination of experimental data with318

computational modeling to study how firing patterns in single unit recordings of task-performing319

healthy rats affect basal ganglia network dynamics. Although our computational model was orig-320

inally used to describe beta oscillations in Parkinson’s disease, we found that this model can also321

account for many properties of beta oscillations in healthy animals. Thereby, we are able to char-322

acterize potential neuronal mechanisms underlying oscillations, relate healthy to pathological beta323

oscillations, and provide avenues for studying functional roles of beta oscillations in behavior.324

Neuronal mechanisms of beta oscillations325

Both computational and experimental studies have implicated the STN-GPe network in beta326

oscillations in Parkinson’s disease (Brown et al., 2001; Magill et al., 2001; Terman et al., 2002;327

Bevan et al., 2002; Rubin and Terman, 2004; Brown and Williams, 2005; Mallet et al., 2008a;328
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Tachibana et al., 2011; Stein and Bar-Gad, 2013; Nevado-Holgado et al., 2014; Pavlides et al.,329

2015; Wei at al., 2015). Moreover, it has been proposed that cortico-subthalamic excitation as well330

as striato-pallidal inhibition can generate beta oscillations in a network model of the subthalamo-331

pallidal loop (Gillis et al., 2002; Kumar et al., 2011; Nevado-Holgado et al., 2014; Pavlides et al.,332

2015; Wei at al., 2015; Ahn at al., 2016). In line with this we show that a combination of temporally333

regulated subthalamic excitation and pallidal inhibition reproduces the dynamics of transient beta334

oscillations observed in the healthy basal ganglia during behavior. Therefore, our findings support335

the idea that the same network that is responsible for beta oscillations in Parkinson’s disease may336

also be involved in the generation of healthy beta oscillations in the basal ganglia.337

Alternative to the STN-GPe network, also other mechanisms for the generation of beta oscilla-338

tions have been proposed, including networks of striatal MSNs (McCarthy et al., 2011), feedback339

projections from GPe back to striatum (Corbit et al., 2016), or spread of cortical beta to STN.340

However, our model supports the role of the STN-GPe network in the generation of beta oscil-341

lations due to the close correspondence between single unit activity patterns and the resulting342

complex time course of beta oscillations. To what degree other models for the generation of beta343

would be able to account for the complex time course and behavioral correlates of beta remains344

to be shown. While increased striatal spiking increases beta oscillations in several models (Mc-345

Carthy et al., 2011; Kumar et al., 2011; Corbit et al., 2016), our model emphasizes in addition346

the role of excitatory inputs to STN for the transient dynamics of beta oscillations. Overall, as347

beta oscillations are a heterogeneous phenomenon with different frequency and behavioral corre-348

lates (Szurhaj et al., 2003; Kilavik et al., 2012; Feingold et al., 2015), it is likely that cortical and349

subcortical circuit contain several circuits and mechanisms for the generation of beta oscillations,350

e.g. to permit long range communication (Fries, 2005). Therefore, these different models are not351

necessarily exclusive and a key future challenge will be to disentangle the different circuits and352

their interaction. Nonetheless we have shown that the STN-GPe network is sufficient to explain353

many features of beta oscillations in awake behaving animals.354

Concurrent activation of direct and indirect MSNs during movement355

Activity of direct pathway MSNs (striato-nigral) promote actions while indirect pathway MSNs356

(striato-pallidal) suppress actions (Albin et al., 1989; Alexander and Crutcher, 1990; Kravitz et al.,357

2010; Freeze et al., 2013; Schmidt et al., 2013; Roseberry et al., 2016). However, here we considered358

movement-related increases in MSN activity (Figure 1E) as inhibitory input to the model GPe359

(Figures 3A, B), without knowing whether the recorded MSNs are part of the direct or indirect360

pathway. This model assumption is supported by evidence that direct and indirect pathway MSNs361

are concomitantly active during movement preparation and execution (Cui et al., 2013; Isomura et362

al., 2013). Nevertheless, there might be important activity differences between direct and indirect363

pathway neurons coordinating behavior. Whether co-activation of indirect pathway MSNs during364

movement reflects the suppression of alternative actions (Hikosaka et al., 2006; Redgrave et al.,365

2010) or is also important to activate specific neural assemblies in motor cortex (Oldenburg and366

Sabatini, 2015) remains unclear. Furthermore, almost 60% of direct pathway MSNs, possess367

collateral terminal fields in GPe (Cazorla et al., 2014). Therefore, it seems likely that during368

movements GPe receives increased inhibitory input from striatal MSNs as incorporated in the369

model.370
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STN as a brake in the motor system371

We found that many STN neurons exhibited a ramp in their firing rate while the animal was372

waiting for the Go cue. During this time it is essential for the animal not to initiate premature373

movements in order to receive the food reward (error trials were not rewarded). Building on374

previous models of STN providing a “hold-your-horses” signal (Frank, 2006), these ramps might375

prevent or delay the execution of movements. Correspondingly, in our experimental data the376

ramps reached a plateau after the Go cue, which was linked to the reaction time (i.e. the plateau377

persisted longer in trials with a long reaction time; Figure 2A, bottom). Therefore, these ramps378

might modulate the readiness for movement initiation exerted on downstream structures. However,379

we also observed (data not shown) that the population activity of the STN ramps did typically last380

until the time of movement initiation or even briefly longer, indicating that the offset of this STN381

ramp does not provide a motor command itself. Instead, high STN activity might ensure that only382

coordinated movement commands (potentially signaled by striatal output), but not premature383

movement impulses, lead to motor output.384

Conceptually, our model provides an important link between putative “hold-your-horses” ramp-385

ing activity in STN, beta oscillations and reaction times. The ramping activity (Figures 3A and386

3B) increased spiking activity of the STN neurons and, consequently, lead to also more beta os-387

cillations in the model (Kumar et al., 2011). This was key in accounting for the experimentally388

observed bimodal shape of the mean beta power for long reaction time trials in the model (more389

specifically, to generate the first peak of the mean beta power for long reaction time trials; Figure390

6B).391

The STN ramps might be due to cortical drive. For example, in the motor cortex of monkeys392

similar ramping activity has been observed while the animals anticipated sensory cues and needed393

to prevent premature movements (Confais et al., 2012). Furthermore, other cortical areas includ-394

ing right inferior frontal cortex and the pre-supplemental motor area project to STN and have395

been implicated in motor suppression (Wessel and Aron, 2017). In general, cortico-subthalamic396

excitation has previously been proposed to be important for the generation of beta oscillations397

(Tachibana et al., 2011; Pavlides et al., 2015). Importantly, the STN ramps during the hold period398

increased the probability of transient beta oscillations in our model. This fits well with anti-kinetic399

aspects of beta oscillations (Brown and Williams, 2005), and with STN activity correlating with400

slowness of movement observed during the progression of Parkinson’s disease (Bergman et al.,401

1994; Remple et al., 2011).402

Behavioral relevance and model predictions403

Beta oscillations seem to comprise a heterogeneous phenomenon with potentially different func-404

tions and mechanisms depending on the brain region (Szurhaj et al., 2003; Kilavik et al., 2011;405

Feingold et al., 2015). Here we extend this view by proposing that transient, non-pathological406

basal ganglia beta oscillations can be driven by two distinct inputs. Firstly, beta oscillations can407

be driven by excitatory inputs to STN, including the ramping firing rate increases that might be408

linked to preventing premature movements (see above). Secondly, in the model, beta oscillations409

were also driven by increased striato-pallidal inhibition during movement. Therefore, our model410

provides an explanation for why beta oscillations in some cases can be “antikinetic” (Brown and411

Williams, 2005), but in other cases can also appear during movement (Leventhal et al., 2012).412
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Whether and how these two different modes of beta oscillations make functional contributions,413

e.g. by differential communication and signaling with other brain regions (Fries, 2005), is an open414

question.415

Based on our model we make several experimentally testable predictions. Firstly, the two modes416

of beta generation, via inhibition of GPe and excitation of STN, might have different signatures417

in LFP recordings. If the beta oscillation is generated by striatal inhibition of GPe, the beta418

oscillation begins with a decrease in GPe activity. If the beta oscillation is generated by STN419

excitation (e.g. by cortical input), then the beta oscillation begins with an increase in STN and a420

subsequent increase in GPe activity. Although we do not know yet how spiking in the STN and421

GPe relates to patterns in the LFP, these two modes could e.g. translate into different onset phases422

of beta oscillations. Therefore, we presume that transient beta oscillations could be classified based423

on their onset phase, and that this is indicative of whether the oscillation was driven by input to424

GPe or STN. Despite practical challenges, such as detecting the exact onset phases of beta in noisy425

LFPs, this might provide valuable insights into whether the two modes of beta generation have426

distinct behavioral correlates.427

Secondly, our model makes specific predictions about the relation between activity of MSNs428

projecting to GPe and the timing of beta oscillations (McCarthy et al., 2011). In recordings of429

identified direct and indirect pathway MSNs, our model predicts that the activity of the D2 MSNs430

predicts the timing of beta oscillations more accurately than the activity of the D1 MSNs. One431

complicating factor is that this distinction does not apply to beta oscillations driven by cortical432

excitation of STN.433

Another model prediction arises from our observation that the duration of excitatory inputs to434

STN determines whether a phase reset occurs in the LFP or not. Sensory neuronal responses (like435

the auditory responses in STN; Figures 1C, D) are typically brief. We propose that sensory cues436

from other modalities have the same effect, so that e.g. visual cues that lead to brief excitations437

of STN also lead to a phase reset in the LFP signal. Furthermore, in addition to sensory cues,438

brief optogenetic stimulation of STN might yield the same effect. Whether these cue-induced beta439

phase resets play also a functional role, e.g. in the temporal coordination with inputs from other440

regions, remains to be shown.441

Finally, we predict that changes in the structure of the STN ramping activity affects the prob-442

ability of beta oscillations. If the STN ramps indeed reflect a “hold your horses” signal (Frank,443

2006), changes in the behavioral paradigm that manipulate the readiness for movement initiation444

should directly affect the ramping activity. For example, if the cost for the animal of a premature445

response is increased, the corresponding ramping activity might change its time course and ampli-446

tude. In the model this would directly translate into changes in the time course and probability447

of transient beta oscillations.448

In conclusion, the direct combination of our computational model with experimental data pro-449

vides a connection between single unit activity and network oscillations. This helps us to study the450

functional contributions of transient beta oscillation during sensorimotor processing in a behavioral451

context.452
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Materials and methods453

Network model. The basic model structure and the parameter settings are the same as in Kumar454

et al. (2011). Briefly, the model includes 1000 excitatory STN neurons, and 2000 inhibitory GPe455

neurons. Neurons were implemented as leaky-integrate-and-fire neurons. Synaptic input was456

modeled as transient exponential conductance changes. All model neurons receive uncorrelated457

Poisson spike trains as inputs so as to achieve previously reported baseline activities for STN (15458

Hz) and for GPe (45 Hz; Bergman et al., 1994; Raz et al., 2000). All network simulations were459

written in python using pyNN as an interface to the simulation environment NEST (Gewaltig and460

Diesmann, 2007).461

For the model variant without recurrent connections in STN (Figure 8), we used slightly different462

parameters for the connection probabilities, synaptic weights and transmission delays (Table 1).463

Furthermore, the background Poisson input to the model neurons was adjusted so that the neurons464

had a broader distribution of baseline firing rates that closer matched the firing rate distribution465

in the rat data (Schmidt et al., 2013; Mallet et al., 2016).466

Table 1: Comparison of model parameters in Kumar et al. (2011) and the modified model without recurrent STN
connections.

  

CP
STN-STN

 = 0.02 CP
STN-STN

 = 0

CP
STN-GPe

 = 0.02 CP
STN-GPe

 = 0.022

CP
GPe-STN

 = 0.02 CP
GPe-STN

 = 0.035

CP
GPe-GPe

 = 0.02 Cp
GPe-GPe

 = 0.02

J
STN-STN

 = 1.2 J
STN-STN

 = -

J
STN-GPe

 = 1.2 J
STN-GPe

 = 1.2

J
GPe-STN

 = -1.135 J
GPe-STN

 = -0.8

J
GPe-GPe

 = -0.725 J
GPe-GPe

 = -0.725

d
STN-STN

 = 2 d
STN-STN

 = -

d
STN-GPe

 = 5 d
STN-GPe

 = 6

d
GPe-STN

 = 5 d
GPe-STN

 =6

d
GPe-GPe

 = 2 d
GPe-GPe

 = 3

Kumar et al., 2011 Modified model

CP: Connection Probability, J: Synaptic weight, d: Delay (in ms) 

Electrophysiological data. We combined previously recorded data sets of tetrode recordings in467

different basal ganglia subregions of rats performing a stop-signal task (for details see Leventhal468

et al., 2012; Schmidt et al., 2013; Mallet et al., 2016). In total we recorded 276 STN units469

from overall 44 recording sessions in 5 different rats, 149 putative prototypical GPe units from470

41 recording sessions in 4 different rats, and 326 putative MSNs from 97 recording sessions in 9471

different rats. Between two recording sessions tetrodes were typically moved by at least 80µm, and472

we therefore considered units recorded in different sessions as different units. Animals performed473
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a stop-signal task, but here we only analyzed the subset of correct Go trials in which the animal474

moved contralateral to the recording site.475

Analysis and modeling of sensory and motor responses. To identify STN neurons responding to476

the Go cue instructing contralateral movement (Figures 1C, D), we used a shuffle test to determine477

whether neural activity significantly increased within 150 ms after the Go cue. The time of each478

spike within -500 ms to +200 ms relative to the Go cue was changed to a random spike time479

within the same time window. Then we compared the number of actual spikes with the number of480

shuffled spikes in small time windows after the Go cue (15 non-overlapping 10 ms windows from481

0 to 150 ms after the Go cue). We repeated this procedure 10000 times and used the fraction of482

shuffles in which the number of shuffled spikes exceeded the number of actual spikes as the p-value483

to estimate statistical significance. STN neurons showing a p-value less than 0.01 for at least one484

bin after the time of the Go cue were considered as sensory responsive. We performed the same485

shuffling method on GPe neurons to select movement responsive GPe neurons (Figure 1F), using486

all spikes within -1s to +1s relative to movement onset to detect firing rate changes for 50 ms487

time windows from 0 to 250 ms after movement onset (i.e. 5 non-overlapping time bins). GPe488

neurons showing a p-value less than 0.05 for at least one bin after movement onset were considered489

as movement responsive.490

To simulate sensory responses of STN neurons to the Go cue (Figures 1C, D), we used inho-491

mogeneous Poisson generators, each of which targeted one STN neuron in the model. The firing492

rate modulation of each inhomogeneous Poisson generator was a half sine wave with a duration of493

20 ms and maximum amplitude of 200 Hz. The latency of the sensory stimulation for each STN494

neuron in the model was considered as the time interval between the peak of the half sine wave495

and the time of the Go cue, which was taken randomly from the latency distribution of the sensory496

STN neurons in our experimental data (Figure 1D). Since in our single unit data 27% of the STN497

neurons responded to the Go cue, for each simulation we targeted 27% of randomly chosen STN498

neurons (as “sensory” STN neurons) in the network model.499

Average firing rates of MSNs in our data were sorted based on their peak time within the interval500

from one second before to one second after movement initiation. MSNs with a peak firing rate501

between 150 ms before to 150 ms after movement onset were considered as movement-responsive502

MSNs (n = 100; see Figure 1E). Firing rates of the movement-responsive MSNs were summed up503

and used as the firing rate pattern of an inhomogeneous Poisson generator representing striato-504

pallidal movement-related inhibition in the network model. Since 40% of the GPe neurons in our505

experimental data showed movement-related inhibition, for each simulation we targeted randomly506

chosen 40% of the GPe neurons (as “motor” GPe neurons) in the network model.507

Analysis and modeling of firing rate ramps. To determine whether a recorded unit showed a508

ramping firing pattern, we computed the average firing rates of each unit from one subregion over509

trials with a 50 ms sliding time window moving in steps of 10 ms from 1 s before the time of Go cue510

to the time of Go cue. Each resulting average firing rate was then normalized to values between 0511

and 1 and then mean-subtracted before applying principal component analysis. First, we computed512

the corresponding covariance matrix of all normalized zero-mean firing rates. and then performed513

eigendecomposition on the covariance matrix using the eig function of MATLAB. The projection514

p of each normalized zero-mean average firing rate r to the first eigenvector (corresponding to the515

maximum eigenvalue) was then computed as the normalized dot product: pi = 〈ri, v1〉/λ1, where i516

is the unit index and v1 the eigenvector with the largest eigenvalue λ1. This yielded one projection517
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value pi for each recorded unit. As the first eigenvector had a positive ramp over time, positive518

and negative projection values corresponded to positive and negative activity ramps of a recorded519

unit over time, respectively. The standard deviation of the projection distribution from a random520

covariance matrix is 1/
√
n (Anderson, 2003), with n being the number of units. We considered521

neurons with a projection larger than 2/
√
n or smaller than −2/

√
n as positive and negative ramp522

neurons, respectively (Figures 2A, B). This analysis method was applied to determine positive and523

negative ramps in GPe and STN.524

To simulate the positive and negative ramps in the activity of the STN neurons observed before525

the Go cue (Figures 2A, B), for each simulation, we divided STN neurons in the network model526

into two non-overlapping subpopulations. The fraction of STN neurons in each subpopulation in527

the network model was similar to the fraction we obtained from our experimental data (i.e. 34%528

of neurons exhibited a positive ramp, 43% a negative ramp). We used an inhomogeneous Poisson529

generator with a positive ramp firing rate pattern as excitatory input to the positive ramp STN530

subpopulation in the model. The positive ramp in the firing rate of the inhomogeneous Poisson531

generator started 500 ms before the Go cue at 0 Hz and reached 250 Hz at the time of the Go532

cue and stayed constant until the movement onset (Figure 3B). Such a stimulation lead to a 4 Hz533

increase in the activity of the positive ramp STN subpopulation in the network model during the534

500 ms time interval preceding the Go cue, similar to what we observed in our experimental data535

(Figure 2A).536

Similarly, to simulate the negative ramp in the activity of STN neurons, we used another537

inhomogeneous Poisson generator with a positive ramp firing rate pattern as inhibitory input to538

the negative ramp STN model neuron subpopulation. The positive ramp in the firing rate of the539

inhibitory inhomogeneous Poisson generator started 500 ms before the time of Go cue at 0 Hz and540

reached 350 Hz at the time of the Go cue and stayed constant until the movement onset. Such a541

stimulation pattern lead to a 1 Hz decrease in the activity of the negative ramp STN neurons in542

the network model during 500 ms time interval preceding the Go cue, similar to what we observed543

in our experimental data (Figure 2B).544

Time-frequency analysis. The power spectrogram was computed by convolving the GPe popu-545

lation firing rate in the model with a standard Morlet wavelet (σ = 0.849/f) of integer frequencies546

(f = 1 to 500 Hz), and taking the logarithm of the squared magnitude of the resulting time547

series. To generate Figure 3C, bottom, we computed the mean spectrogram across 400 simulations548

of the model. The same method was used for GPe LFP data to generate Figure 3C, top. For each549

time point in the spectrogram, we summed the power in the beta range (15 to 30 Hz) and divided550

it by the summed power across all frequencies (1 to 500 Hz) to obtain continuous relative beta551

power, shown in Figures 4A, 4B, 4E, 4F, and 6B.552

Mean resultant length. The GPe population firing rate in the network model was convolved with553

the standard Morlet wavelet of each integer frequency in the beta band (15 to 30 Hz). For each554

frequency, the Hilbert transform of the filtered signal was computed to obtain a phase over time.555

The phase spread for each time point was then calculated by computing the length of the mean556

resultant vector over all trials using MRL(t) = 1
n

∑
n
eiθ(n,t), where θ(n, t) is the phase of the nth557

trial at time t (n = 400 for the model). This results in a continuous measure of phase spread for558

each frequency in the beta range. The mean resultant lengths shown in Figure 4 were computed559

by taking the average across all beta frequencies.560
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Figure 1: Single unit responses to sensory and motor events during performance of the behavioral task. A, Sequence
of behavioral events during the experiment. Thick black bars show the position of the animal and thick green bar
shows the occurrence of the sensory cue. Holding time refers to a random time delay (500 to 1200 ms) in which the
animal waits in one of the three central ports for the sensory cue. Reaction time is measured as the time between
the onset of the Go cue and movement initiation (Nose Out). B, Scheme of the operant chamber with five nose
ports in front and a food port in the back. C (top) Normalized mean firing rates of single STN units responding to
the Go cue with an increase in firing rate (sorted by peak latency; each row shows activity of one unit). Bottom,
corresponding mean firing rate of the STN subpopulation. D, Distribution of peak latencies relative to the time
of Go cue for STN neurons shown in C. E (top) Normalized firing rates of single units in the striatum (putative
MSNs) increasing their activity around movement onset (sorted by time of peak activity). Bottom, corresponding
mean firing rate of the subpopulation. F, Same as E, for GPe subpopulation decreasing activity around movement
onset.
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Figure 4: Sensory cues lead to a beta phase reset in both experimental data and in the network model. A, B,
Time resolved beta mean resultant length (left axes, green) and beta power (right axes, gray) of GPe LFP data
during correctly performed contralateral go trials averaged across all rats (A) and of the network model GPe
population firing rate (B; average of 400 simulations). Note that sensory input is associated with a phase reset in
both experimental data and in the model, shown as a brief increase in the value of the mean resultant length after
the Go cue. C, Mean of the raw experimental STN LFP data, over all correctly performed contralateral go trials,
aligned to the Go cue. D, Mean of the STN population firing rates in response to the Go cue in the network model
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Figure 6: Relationship between beta oscillations and reaction time. A, Mean beta power of striatal LFP data
for short (<500 ms) and long (>500 ms) reaction time trials aligned to the Go cue (left) and movement onset
(right), averaged across rats (adapted from Leventhal et al., 2012, with permission from Elsevier). B, Mean relative
beta power of GPe population firing rates in the network model aligned to the Go cue (left), and movement onset
(right), averaged across 400 simulations. C, Single-trial striatal LFP traces from a single recording session, sorted
by reaction time, aligned to the Go cue (left) and movement onset (right) with beta epochs marked in red (adapted
from Leventhal et al., 2012, with permission from Elsevier). D, Same visualization for single-trial model simulations
with each trace showing the population firing rate of GPe neurons in the network model. For simulation of each
trial, the model reaction time was randomly selected from the experimental data.
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Figure 8: The network model without recurrent connections in STN reproduces all key results. A, Mean spectrogram
(over 400 simulations) of GPe average firing rates for simulation of correct Go trials in the modified network model
matching the time course of beta power in the experimental data. B, C, Time resolved beta mean resultant length
(left axes, green) and beta power (right axes, gray) of the GPe population firing rate in the modified network
model, aligned to the movement onset (B) and to the Go cue (C; average of 400 simulations). D, Mean relative
beta power of GPe population firing rates in the modified network model aligned to the Go cue (left), and movement
onset (right), averaged across 400 simulations. E, Single-trial simulations of the modified network model, sorted by
reaction time, with each trace showing the population firing rate of GPe neurons, aligned to the Go cue (left) and
movement onset (right; beta epochs are marked in red).
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