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Abstract

Spatially-explicit approaches have been widely recommended for various applications
of ecosystem management. In practice, the quality of the data involved in the manage-
ment decision-making, such as presence/absence or habitat maps, affects the manage-
ment actions recommended, and therefore it is a key to management success. However,
available data is often biased and incomplete. Although previous studies have advanced
ways to effectively resolve data bias and missing data, there still remains a question
about how we design the entire ecological survey to develop a dataset through field sur-
veys. Ecological survey may inherently have multiple spatial scales to be determined
beforehand, such as the spatial extent of the ecosystem under concern (observation
window), the resolution to map the individual distributions (mapping unit), and the
area of survey within each mapping units (sampling unit). In this paper, we develop a
theory to understand ecological survey for mapping individual distributions applying
spatially-explicit stochastic models. Firstly, we use spatial point processes to describe
individual spatial placements drawn using either random or clustering processes. An
ecological survey is then introduced with a set of spatial scales and individual de-
tectability. Regardless of the spatial pattern assumed, the choice of mapping unit
largely affects presence detection rate, and the fraction of individuals covered by the
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presence-detected patches. Tradeoffs between these quantities and the resolution of
the map are found, associated with an equivalent asymptotic behaviors for both met-
rics at sufficiently small and large mapping unit scales. Our approach enables us to
directly discuss the effect of multiple spatial scales in the survey, and estimating the
survey outcome such as the presence detection rate and the number of individuals
the presence-detected patches hold. The developed theory may significantly facilitate
management decision-making and inform the design of monitoring and data gathering.

1 Introduction

Understanding the spatial characteristics of ecosystems is one of the central challenges in
ecology [1]. Such knowledge forms a prerequisite for effective ecosystem management due to
an increasing need for spatially explicit approaches in fisheries and wildlife management [2—4]
and for the establishment of terrestrial and marine protected areas [5-7].

In ecosystem management, the quality of the data involved in the management decision-
making, such as presence/absence or habitat maps, affect the management actions recom-
mended [8-10]. Therefore, creating an ecologically and statistically adequate dataset is key
to management success. However, available data is often biased and incomplete [8,9], due
to, for example, different accessibility to sites [8], existence of the favored study sites [8], and
imperfect detectability of individuals [11,12]. These biases hinder the effective implemen-
tation of management actions, and may lead to perverse outcomes or wasted management
resources. Hence it is important to discuss and benchmark the quality of the spatially explicit
data that underlies management decisions.

There is a body of literatures to tackle the challenges of data gathering, including sam-
pling designs for effectively allocating the survey effort under the time and budgetary con-
straints [13-15], methods for reducing the bias of occurrence data by estimating the de-
tectability of species [12,16-18], and mathematical theory for ecological sampling [19, 20].
Although these researches have significantly advanced our insight into ecosystem monitoring
and ecological survey, there still remains a question about how we actually design the entire
ecological survey to systematically develop dataset through a field survey, as the spatial scale
issue, such as how to chose the resolution of a map, is often omitted. This is perhaps because
many existing studies consider the space to be sampled implicitly. Presence/absence or habi-
tat map is widely used in ecosystem management [16], where at least three different spatial
scales may exist; the spatial extension of the ecosystem under concern, resolution to map
the individual distributions, and minimum size of survey units. To systematically gather
the spatial data, manager should explicitly take into consideration these three spatial scales,
because the manner of the sampling and management outcomes depend on the resolution of
a map. For example, in fisheries management, finely implemented fishing quota allocations
may result in better management outcomes [7,21], and this can be done with the distri-
bution map with a high degree of resolution. However, surveying an area at a fine spatial
scale is often impractically expensive in the large scale survey, and the choice of resolution
itself faces a budgetary constraint. Hence, quantitatively estimating the performance of a
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sampling method in advance facilitates survey decision-making.

In this paper, we develop a theory of ecological survey method for systematically mapping
individual distributions by making use of the spatial point processes (SPPs), a spatially
explicit stochastic model. The SPPs is widely applied to the study of plant community
[22-25], and also applied to coral community [26]. Therefore, they are potential target species
of the developed theory. In this study, the SPPs describes individual spatial locations by two
different processes accounting random or clustering patterns. An ecological survey is then
introduced with a set of spatial scales and detectability of individuals. Our spatially-explicit
approach is capable of revealing a series of questions important for ecological survey, such
as effect of the choice of the spatial scales and spatial distribution patterns of individuals on
accuracy of the distribution map. This knowledge enables one to determine the design of an
ecological survey beforehand given accuracy of a map required. The developed theory may
significantly facilitate management decision-making and give solid bases of data gathering.

2 Methods

2.1 Models of spatial distribution of individuals

To develop a theory of ecological survey to map individual distributions, we explicitly model
the spatial distribution patterns of individuals. Spatial point processes (SPPs) [22,25] pro-
vide models to describe such patterns with high flexibility and analytical tractability [24].
Here, we apply the homogeneous Poisson process and the Thomas process, a family of the
Neyman-Scott process (Fig. 1).

One of the simplest SPPs is the homogeneous Poisson process where the points (i.e.
individuals) are randomly distributed and the number of points of a given region A, N(A),
is according to the Poisson distribution with an average fi:

k
Prob(N(A) = k) = /;—‘?e_“"‘, (k=0,1,...) (1)
where, 4 is also regarded as the intensity measure [22,25] described as
pa = Av(A), (2)

where, A = (total points)/(area of concerned region A) is the intensity in the given region,
and v(A) is the area of A.

The Neyman-Scott process [22,25] provides us more general framework to analyze spa-
tial ecological data and characterize the clustering pattern of individuals [22-25]. By the
following three steps, the Neyman-Scott process is obtained:

e Parents are randomly placed according to the homogeneous Poisson process with an
intensity A,.

e Each parent produces a random discrete number ¢ of daughters, realized independently
and identically for each parent.
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e Daughters are scattered around their parents independently with an identical spatial
probability density, f(y), and all the parents are removed in the realized point pattern.

The intensity of the Neyman-Scott process is [25]
A =G\, (3)

where, ¢ is the average number of daughters per parent. The probability generating functional
(pgfl) of the number of daughters within a given region of the Neyman-Scott process is [22,25]

6oy = (<3, [ 1= ([ otxrwisniy )] ix). )

where, G, ( Jrav(x+y)f (y)dy) is the probability generating function (pgf) of the random
number ¢, the number of daughters per parent.

The Thomas process is a special case of the Neyman-Scott process, where f(y) is an
isotropic bivariate Gaussian distribution with the variance o2 [25]. We also assume that the
number of daughters per parent follows the Poisson distribution with the average number, ¢.
The pgfl of the Thomas process, Eq. (4), within a given region A is obtained by substituting
the pgf of the number of daughters per parent GG, in Eq. (4). It is obtained, by the given
assumptions, as

6o ([ vixeiroiy) = 3 ([ vty —xiiy) e 5)

— exp {—c (1 —[Rdv(y)f(y—X)dyﬂ :
= exp {—5(14) (/Af(y—X)dyﬂa

where, to obtain the last line, v(y) = 1—(1—1)14(y) is used, and here 1 4(y) is the indicator
function. Therefore, the pgfl of the number of daughters within the region A of the Thomas
process is

60 = (-3, [ [1-eo{-aa—0 ([ kix-yhay) }] ax), Q

where, k(|]|x — y||) is an isotropic bivariate Gaussian distribution with variance o2,

! I~ vl
e o )

In order to reasonably compare the results of Thomas process with those of the homo-
geneous Poisson process, we chose the intensity of the Thomas process so as to have, on
average, the same number of points within the concerned region. Namely, the parameters
A, and ¢ satisfy

CAp = A, (8)
where, the left hand side (lhs) is the intensity of the Thomas process and the right hand side
(rhs) is the intensity of the homogeneous Poisson.
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Figure 1: Example of point patterns within a observation window 1024m x 1024m. (a)
Homogeneous point process with the intensity A = 1073; (b) Thomas process with the
same intensity value as the homogeneous Poisson process \,¢ = A, where \, = 107* and

¢ = 10. The variance of the bivariate normal distribution o2 = 100. See the text for the
interpretations of the parameters.

2.2 Design of ecological survey
2.2.1 Survey rules and basic properties

Let us consider the situation where an ecological survey takes place for the purpose of creating
a presence/absence map of a given region. A presence/absence map is characterized by its
various spatial resolutions: the spatial scale of the mapping unit defines the resolution of the
map, and the spatial scale of the sampling unit determines the sampling density within each
mapping unit (Fig. 2). We assume the following three key sampling rules.

e There are three spatial scales to consider in the conceptual design of a survey program.
The spatial scale of ecological survey conducted W, the resolution of map M (i.e., scale
of the mapping unit), and unit scale of survey in each mapping unit, S, are arbitrary
determined by the managers, but single resolutions are allowed for each of the spatial
scales.

e Every mapping unit is assessed.

e The whole region of a mapping unit is recorded as presence if at least one individual
is detected, otherwise recorded as absence (Fig. 3).

Through the second and third assumptions, changing the scale of the mapping unit af-
fects the presence detection rate (Fig. 3). Although using a larger mapping unit could
improve the probability a mapping unit with individual recorded as presence, accuracy of
presence/absence map decreases due to its large resolution.
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Figure 2: Multiple spatial scales in ecological survey. Each scale is arbitrary determined by
managers.

2.2.2 Modeling the ecological survey

Here, we model the ecological survey with the three main assumptions listed above. Let,
on average, N individuals of a species be distributed over a given window W, which is
the region under concern. The manner of individual distribution is according to either the
homogeneous Poisson process or the Thomas process. The resolution of the presence/absence
map is defined by the scale of mapping unit M, and every mapping unit is sampled with
the sampling density, S (Fig. 2). The survey is associated by the sampling error for each
individual at a rate v := 1— /3, which is the rate at which individuals are not detected despite
being present, and where, (3 is the detectability of an individual. The areas of each mapping
unit is 1, 2, 4,...,or 2" times smaller than the area of a given window W, to assure the
first assumption above. Let v(X) be the area of a region X. With the definitions detailed
above, we obtain

v(M)=v(W)/2™, (m=0,1,...,n) (9)

where, the superscript m represents the number of subdivisions of the window W. From Eq.
(9), the number of mapping units within a given window W, is

[Number of mapping units] = v(W)/v(M) = 2™. (10)
As the record for each mapping unit is based on an survey within the mapping unit, we
obtain
v(S)=av(M)<v(M), (0<a<l) (11)
where, « is the sampling density within a mapping unit. Combining Eq. (9) and Eq. (11),
we obtain
v(S) <v(M) <v(W). (12)
Let the intensity of the points within a given window W be [22,25]
N
A= : 13
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Figure 3: Ecological survey scheme within the observation window W. (a) Survey with
a small mapping unit M; (b) Survey with a larger mapping unit M’. Although the same
individual distribution (left panel) and distributions of sampling units (center panel) are
used, obtained presence/absence maps resulted in the survey (right panels) can be different
since the probability to detect a presence patch varies with the size of mapping unit.

As we noted above, the parameters for the Thomas process are chosen so as to satisfy Eq.

(8).

3 Assessing the accuracy of presence/absence map

Given the spatial point pattern, sampling density, «, detectability of an individual, 8, and
scale of mapping unit, M, we calculate two main quantities of the ecological survey. That is,
the presence detection rate (PDR), and the fraction of individuals covered within presence-
detected patches (FIC). The presence detection rate reflects the accuracy of the obtained
map, and the FIC holds information that connects the presence detection rate with pop-
ulation abundance. Hence, later may also be important for conservation. The presence
detection rate is obtained by

E[PDRS.S.M] = A< (14)
L=p(0]M) *

where, ¢ indicates the underlying point pattern. Since the FIC is not easy to derive analyt-
ically for the Thomas process, we only provide an analytical expression of the FIC for the
homogeneous Poisson process, and give numerical results for the Thomas process.
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3.1 Ecological survey with individual distributions based on the
homogeneous Poisson process

Where individuals are distributed in space based on the homogeneous Poisson process, pres-
ence detection rate from Eq. (14) is

1— e—ﬁ)\u(S) 1— e—a/BAV(M)
1 _ e — T _ g

E,.[PDR|8, S, M] = (15)
where, equality v(S) = av(M) is used. Eq. (15) has rather simple form and, thus, we can
easily see the parameter dependence. The intensity of the points A (Eq. 13) defines the
average number of individuals existing within a given the observation window, W, and since
dE,,/d\ > 0, E,,[PDR] increases as the average number of individuals increase, and vice
versa. Especially, when the intensity becomes A — oo, E,,[PDR] becomes 1 regardless of the
scale of mapping units. Intuitively, as the sampling density a and detectability [ increase,
E,.[PDR] increases, and vice versa. The asymptotic behaviors of Eq. (15) are easily obtained

as:
Al/}gloEPO[PDR“Bu Su M] = aﬂa (16>
A}ILHWEPO[PDR|5737 M] = 17 (17)

where, W needs to be large enough to satisfy e~ (W)

agreement with the numerical results (Fig. 4a).
For the homogeneous Poisson process, we can derive an analytical form of the average
number of individuals covered within presence-detected patches (IC) as follows:

~ (. These results show good

o0 ]/ k
E,[IC|3,S, M] = 2™ 2{1 —(1- aﬂ)k}km%»eA”(M), (18)

- 2mA;(M) {1—(1—ap)e @Dy

where, on the first line of rhs, 2 is the number of mapping units within the given window
W, inside of the curly brackets is the probability that none of k points are detected by a
survey given a mapping unit M, and the remaining term is the expected number of points
within the mapping unit. The FIC is obtained by dividing Eq. (18) by the intensity measure
Eq. (2) of the observation window, pyy,

E,o[FIC|3,S, M] =1 — (1 — af)e *PAID), (19)

The dependences of the parameters A, a, and S are qualitatively the same as those of Eq.
(15). In addition, the asymptotic behaviors of Eq. (19) are equivalent to Egs. (16) and (17).
Fig. (4b) confirms the analytical evaluations of E,,[FIC].
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Figure 4: (color online) Analytical and simulated (candlestick) values of (a) the presence
detection rate (PDR); and (b) the fraction of individuals covered within presence-detected
patches (FIC) across mapping unit scales. r-axis is the area of mapping unit (m?). Each
candlestick shows, from the bottom, 5, 25, 50, 75, and 95 percentile values of 1000 simulation
trials. The values of the sampling density and detectability are & = 0.5 and g = 0.9,
respectively. The other parameter values are the same as in Fig. (1).

3.2 Ecological survey with individual distributions based on the
Thomas process

Here we consider the situation where individuals are distributed according to the Thomas
process. By Eq. (14), we calculate the presence detection rate for the Thomas process:

1— pth(0|ﬁ7 S)

Eth[PDR|ﬁ7 57 M] = 1 _pth(0|M) )

(20)

where, the probability of each event of the Thomas process is obtained by the pgfl Eq. (4):
pin(n|A) = 1/nl(d"G(t)/dt")|,_,- Therefore, py,(0|A) is

P (0] A) = exp (—Ap /R {1 —exp {—a (/A e (-%) dx> H dy) 1)

Specifically, the second term inside the square brackets for py, (0|3, S) becomes
exp(—afe [, 525 exp(—||x — y||?/20?)dx), due to the sampling density and the detectabil-
ity. Although Eq. (20) and (21) are not easy to interpret, we can calculate its asymptotic
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behaviors as

Al/[imo E.[PDR|S, S, M| ~ af, (22)
—>
lim By [PDR|B, S, M] ~ 1, (23)

They are equivalent to the asymptotic behaviors of the homogeneous Poisson process Eqgs.
(16) and (17). Fig. (4a) plots both analytical and numerical results. Analytical values show
the good agreement with numerical results.

To obtain an explicit form for FIC of the Thomas process is cumbersome as the pgfl of
the Thomas process Eq. (6) is rather complex. Therefore, we only show the numerical value
for the FIC of the Thomas process (Fig. 4b). The FIC for the Thomas process increases
faster than Eq. (15) as the mapping scale increases. The asymptotic behavior shows similar
trends to the other results.

4 Discussion

By explicitly accounting for the spatial distribution patterns of individuals through spatial
point processes (SPPs) and multiple spatial scales of field survey, we develop a theory for
ecological survey to map individual distributions. The theory quantifies two metrics, the
presence detection rate (PDR) and the fraction of individuals covered by the presence-
detected patches (FIC), and thus allows us to predict the outcome of an ecological survey
under certain survey designs. When both the sampling density o and the detectability within
mapping unit § are not equal to 1, we find a tradeoff between the value of the PDR/FIC
and the resolution of the map. The PDR and FIC show the equivalent asymptotic behaviors
for both the homogeneous Poisson process and the Thomas process where a8 and 1 are the
outcomes of the small and large limit of mapping units, M, respectively. The fine limit of
all these asymptotic behaviors are understood as follows: as the mapping unit scale goes to
sufficiently small, each mapping unit can hold at most one individual. In such a situation, the
probability to detect the single individual is clearly af. The asymptotic behavior suggests
that there is a certain scale of the mapping unit above or below which the performance
of an ecological survey does not change. Thus, in practice, we need to choose a scale of
the mapping unit between these limits. Since the SPPs we applied does not account for
the active migration of individuals, the theory is most relevant for species with a relatively
sessile life history, such as plants or marine sessile invertebrate species.

Spatial extension of the ecosystem that SPPs accounting individual aggregations de-
scribes could be large enough to cover a wide range of spatial scales. For example, Azaele et
al. [24] showed that a Thomas model fitted to the distribution map of British rare vascular
plant species (see the detailed description of the data set [27]) with three coarse resolutions
(40000, 10000, and 2500 km?) can outperform many existing spatially-implicit models in
terms of the down-scaling predictions of the species occupancy probability. In addition,
Grilli et al. [28] showed that a special case of the Poisson clustering processes, a group of the
point processes where parents locations are followed by a Poisson process [25] such as the
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Neyman-Scott process, recovers the species-area relationship at a local scale to continental
scale as predicted by various existing models (e.g., [29]). Hence, even though we used a ob-
servation window v(WW) = 1024m x 1024m as an example, it can be generalized by changing
its scale and the sampling intensity. In addition, it is worth noting that albeit individuals
of most species are typically aggregated [30,31] the Thomas process could be approximated
by the homogeneous Poisson process under a certain condition: when the intensity of indi-
viduals is large, the PDR of the Thomas process comes close to that of the homogeneous
Poisson process (cA, = {1072, 107} in Fig. A.1). This is due to increased parent intensity
decreasing spatial heterogeneity over the region concerned, suggesting potential applicability
of the simpler model to an abundant ecosystem.

For simplicity, we consider a situation where each mapping unit is sampled with the same
sampling density, «, and detectability, 8, and the location of the sampled unit within a map-
ping unit is chosen randomly. These are rather idealized assumptions and may be further
generalized. For example, it may be reasonable to assume that the sampling density, o, and
the detectability, 3, become almost 1 at a certain fine scale of the mapping unit. Although
such a fine scale may not be achieved because of budgetary constraints, explicitly taking into
account the spatial effect on a and 3 gives us better understanding about the fine scale of
asymptotic behavior. In practice, the location of the sampling unit may be determined by
more strategic manner depending on ones purpose. Indeed, previous studies had proposed
several sampling strategies which emphasize, for example, a spatially contiguous placement
of the sampling units to correctly capture ecological patterns (e.g. [32]), a systematic place-
ment to efficiently reflect spatially structured ecological processes [33,34], or a representative
design for major environmental gradients to maximize per effort information of organism’s
distribution [35,36]. While these strategies have been compared empirically using actual
dataset (e.g. [34]), the developed theory in this paper may provide a theoretical base to
evaluate the effectiveness and efficiency of such purpose-dependent sampling strategies.

In practice, the developed theory for ecological survey should be, to an extent, comple-
mented by an estimation of the existing number of individuals within given the observation
window, W since the intensity affects PDR and FIC (Fig. A.1). An estimation of the
population abundance could be done by using historical or surrogate data. Statistical and
theoretical methods such as species distribution modeling [37] estimating the occurrence of
plant species across scale [24,38] or predicting the population abundance in a coral reef envi-
ronment [39] may complement these methods. Conducting a pilot survey is one alternative
way to estimate the population abundance with a required estimation accuracy. Takashina et
al. [40] recently developed a framework for the pilot sampling providing a required minimum
sampling effort to satisfy the required accuracy. Complemented by these steps, the theory
developed here has a potential to significantly improve survey frameworks.
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Figure A.1: Effect of the intensity (A, ¢\,) in the observation window, W, on the theoretical
presence detection rate (PDR), Egs. (15), (20). The intensity of the Thomas process is ma-
nipulated by changing the parent intensity \,. Individual distribution patters are according
to the (a) Homogeneous Poisson process and (b) Thomas process. For the Thomas process,
the PDR curves converge as the intensity becomes small, and come close to the corresponding
curve of the homogeneous Poisson process as the intensity of the Thomas process increases.
This is an effect that the increased parents intensity decreases spatial heterogeneity over the
concerned region. For both panels, the order of the intensity monotonically decreases from
left to right.
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