
Submitted 5/12/2017

Easyml: Easily Build and Evaluate Machine Learning Models

Paul Hendricks hendricks.201@osu.edu
Department of Psychology
The Ohio State University
Columbus, OH 43210, USA

Woo-Young Ahn ahn.280@osu.edu

Department of Psychology

The Ohio State University

Columbus, OH 43210, USA

Editor:

Abstract

The easyml (easy machine learning) package lowers the barrier to entry to machine learning
and is ideal for undergraduate/graduate students, and practitioners who want to quickly
apply machine learning algorithms to their research without having to worry about the
best practices of implementing each algorithm. The package provides standardized recipes
for regression and classification algorithms in R and Python and implements them in a
functional, modular, and extensible framework. This package currently implements recipes
for several common machine learning algorithms (e.g., penalized linear models, random
forests, and support vector machines) and provides a unified interface to each one. Impor-
tantly, users can run and evaluate each machine learning algorithm with a single line of
coding. Each recipe is robust, implements best practices specific to each algorithm, and
generates a report with details about the model, its performance, as well as journal-quality
visualizations. The package’s functional, modular, and extensible framework also allows
researchers and more advanced users to easily implement new recipes for other algorithms.

Keywords: machine learning, data science, supervised learning, data mining, visualiza-
tion, R, Python

1. Introduction

Numerous machine learning libraries (or packages) are becoming available in popular pro-
gramming languages, especially R (R Core Team, 2016) and Python (Rossum, 1995). Both
languages are high-level, interpreted, employ functional and object-oriented paradigms, and
have a wide ecosystem of mature machine learning libraries. However, existing machine
learning libraries assume the user has a solid understanding of statistics and machine learn-
ing principles and best practices, strong programming skills, and the knowledge of how to
apply this skillset to their problem. Oftentimes, this is not the case. Individuals without
strong technical background increasingly want to apply machine learning techniques to their
research without having to spend years studying mathematics, statistics, and/or computer
science and there is a critical need to lower the barrier to machine learning or computational
approaches in general (Ahn and Busemeyer, 2016; Ahn et al., 2017). The easyml targets

c©submitted Paul Hendricks and Woo-Young Ahn.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://creativecommons.org/licenses/by/4.0/
http://
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hendricks and Ahn

these individuals and hopes to lower the barrier to entry to machine learning by providing
user-friendly recipes for common machine learning algorithms.

These recipes leverage R and Python’s programming capabilities and their existing ma-
chine learning libraries and breaks down each analysis into steps common to all algorithms
and steps unique to each algorithm. These steps are abstracted from the user by a common
unified framework. Thus, machine learning is like baking a cake; whether one wants to bake
a chocolate cake or a vanilla cake, one still needs eggs, flour, and butter as the core ingredi-
ents. If you mix them in certain steps and add chocolate, a chocolate cake is baked. If you
mix the core ingredients in a certain way and add vanilla, a vanilla cake is baked. Anal-
ogously, though one may run similar steps to build and evaluate a penalized linear model
(Friedman et al., 2010; Simon et al., 2011) and a random forest model (Breiman, 2001), one
will wish to assess the coefficients of the linear model and the variable importances of the
random forest model. easyml (easy machine learning) makes this easy by handling the best
practices for each algorithm but still allows an advanced user the flexibility to customize
each recipe.

2. Project Vision

Maintenance This package is maintained by Paul Hendricks and Woo-Young Ahn.

Availability The easyml source code is available under the MIT license and hosted on
GitHub (https://github.com/CCS-Lab/easyml).

Standardized recipes The package provides standardized recipes for regression and classi-
fication machine learning algorithms in R and Python (see Table 1). Specifically, easyml
provides recipes and unified interface to some of widely used machine learning algorithms
including penalized regression models, random forests, support vector machines (Cortes and
Vapnik, 1995), Group-Lasso interaction model (Lim and Hastie, 2015), and (deep) neural
network models. More advanced users will find it easy to implement new recipes for other
algorithms. To implement the algorithms, we use other R and Python packages including
glmnet (Friedman et al., 2010), randomForest (Liaw and Wiener, 2002), e1071 (Meyer
et al., 2017), glinternet (Lim and Hastie, 2015), nnet (Venables and Ripley, 2002), darch
(Drees, 2013), and scikit-learn (Pedregosa et al., 2011). We also plan to add more algo-
rithms in the future.

Journal-quality visualizations Users will find that easyml can immediately produces journal-
quality visualizations. These visualizations can be easily be modified, if needed, and used
directly in research papers or presentations. See Section 4 for an example.

Functional, modular, and extensible framework The package’s functional, modular, and
extensible framework also allows researchers and more advanced users to implement new
recipes for other algorithms. An example of how to implement a new algorithm is demon-
strated in Section 5.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://github.com/CCS-Lab/easyml
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Easyml: Easily Build and Evaluate Machine Learning Models

Parallelization The nature of machine learning often lends itself to highly parallelizable
code. easyml makes it possible to run all recipes leveraging as many CPUs as are available.
Simply specify the n core parameter in the interface and easyml will parallelize the analyze
over that number of cores.

Code quality control easyml uses software engineering best practices such as Continuous
Integration (CI) to check the build of the package, Unit Testing and Code Coverage to check
the quality of the code, and linting to ensure adherence to a common style. As of this writ-
ing, all builds and tests pass on Ubuntu 14.04 and Mac OS X and the Code Coverage is above
85%. The project is also hosted on GitHub (https://github.com/CCS-Lab/easyml), and
is available to users who want to examine the source code, contribute to the code base, or
provide the authors with feedback or alert the authors to potential bugs, both via issues.

Documentation easyml provides exhaustive documentation and examples for both R and
Python. Users interested in the R package can find documentation here: http://ccs-lab.
github.io/easyml/R. Users interested in the Python package can find documentation here:
http://easyml.readthedocs.io.

3. Recipes

easyml uses standardized recipes for regression and classification machine learning algo-
rithms in R and Python. These recipes can be broken down into multiple steps and are
useful for interpreting models (e.g., estimating coefficients and variable importances) or
estimating in-sample and out-of-sample performance (e.g., predictions and measures of
goodness-of-fit). For each of these recipes, we describe our motivation for including the
recipe, a breakdown of the steps in each recipe, and the algorithms that recipe is imple-
mented for.

Coefficients Linear models are powerful due to their simplicity, robustness, and inter-
pretability of variables. However, sometimes the estimated coefficients for linear models
are different after each run, even with the same random state. This can be due to the
low-level code not setting the random state at the C/Fortran level or due to the stochastic
nature of the algorithm or optimizer. This phenomenon makes it difficult to interpret a
coefficient after building the model only once. To account for this intrinsic randomness

Table 1: List of machine learning models currently implemented in easyml (as of v0.1.0).
Model name easyml command R package Python package

Penalized regression easy glmnet glmnet glmnet
(LASSO, elastic net, ridge)
Random Forest easy random forest randomForest scikit-learn
Support Vector Machine easy support vector machine e1071 scikit-learn
Group-Lasso INTERaction-NET easy glinternet glinternet N/A
Neural network easy neural network nnet N/A
Deep neural network easy deep neural network darch N/A
Average Neural Network easy avNNet caret N/A

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://github.com/CCS-Lab/easyml
http://ccs-lab.github.io/easyml/R
http://ccs-lab.github.io/easyml/R
http://easyml.readthedocs.io
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hendricks and Ahn

and ensure the final coefficients returned are robust estimators, we generate the coefficients
n samples times using k-fold cross validation, where n samples = 1000 and k = 10 are
set as the defaults, and then calculate the mean and standard deviation of the estimated
coefficients. We have applied and validated this protocol in previous studies (Ahn et al.,
2014; Ahn and Vassileva, 2016; Ahn et al., 2016; Vilares et al., 2017). The ability to gener-
ate beta coefficients is currently implemented only for the penalized linear model algorithm
(easy_glmnet). See Algorithm 1.

Algorithm 1 Generate coefficients

1: procedure generate coefficients(X, y)
2: initialize Z . Z is an n samples by m matrix
3: for i in 1, ..., n samples do
4: preprocess X
5: fit model to X, y
6: extract coefficients from model . coefficients are a 1 by m vector
7: insert the coefficients into row i of the matrix Z
8: end for
9: return Z

10: end procedure

Variable Importances Ensemble models are powerful due to their simplicity, ability to cap-
ture the non-linear patterns of features from the data, and like linear models, their in-
terpretability of variables. As with linear models, we wish to calculate and visualize the
importances of the variables as part of our machine learning protocol. Like linear mod-
els, ensemble models often have inherent sources of randomness. For example, the random
forest algorithm bootstraps the data randomly and randomly selects a subset of predictors
to use in each decision tree. Interpretability heuristics such as variable importance scores
can often differ from one random state to another. To ensure the resulting variable impor-
tances are robust, we can generate the random forest algorithm n samples times, where
n samples = 1000 is set as the default, and then calculate the mean and standard devia-
tion of the estimated importances. The ability to generate variable importances is currently
implemented for the random forest algorithm (easy_random_forest), which was used in
our recent paper (Haines et al., in preparation). See Algorithm 2.

Predictions We often wish to visualize our predictions, whether it’s a plot of actual against
predicted values or a plot of the area under the curve (AUC) of a Receiver Operating
Characteristic (ROC) curve. If models sometimes produce random, albeit small, deviations
in coefficients or weights, these deviations can propagate to our predictions. To guard
against this intrinsic error, we train a model using k-fold cross validation within the training
set (k = 10 set as the default) and generate predictions n samples times for a particular
train-test split (separately on training and test sets). Then we average the predictions
across the n samples iterations. By default, the training and test sets are 67% and 33%
of the whole dataset and it can be adjusted (e.g., train size = 0.67). The ability to

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Easyml: Easily Build and Evaluate Machine Learning Models

Algorithm 2 Generate variable importances

1: procedure generate variable importances(X, y)
2: initialize Z . Z is an n samples by m matrix
3: for i in 1, ..., n samples do
4: preprocess X
5: fit model to X, y
6: extract variable importances from model

7: insert the variable importances into row i of the matrix Z
8: end for
9: return Z

10: end procedure

generate predictions is currently implemented for all algorithms. See Algorithm 3 (note
that nrow(Xz) indicates the number of rows in Xz).

Algorithm 3 Generate predictions for single train-test split

1: procedure generate predictions(X, y)
2: divide X, y into Xtrain, Xtest, ytrain, ytest
3: preprocess Xtrain, Xtest

4: initialize Ztrain . Ztrain is an nrow(Xtrain) by n samples matrix
5: initialize Ztest . Ztest is an nrow(Xtest) by n samples matrix
6: for i in 1, ..., n samples do
7: fit model to Xtrain, ytrain
8: use the model to generate predictions for Xtrain

9: insert train predictions into column i of the matrix Ztrain

10: use the model to generate predictions for Xtest

11: insert test predictions into column i of the matrix Ztest

12: end for
13: return Ztrain, Ztest

14: end procedure

Model performance Often we wish to visualize model performance representing the quality
(i.e., accuracy) of our predictions, whether it’s a plot of mean squared errors, correlation
coefficients, or AUCs. We can guard against intrinsic errors by replicating predictions
many times for a particular train-test split, averaging the predictions across n iterations,
generating a model performance metric, and replicating for many (n divisions) different
train-test splits. The reader is referred to the Algorithm 4 box for more details. The ability
to generate model performance is currently implemented for all algorithms.

4. Example

This example demonstrates how to use easyml in R. For further examples on how to use
easyml in R, please see the documentation at http://ccs-lab.github.io/easyml/R. For
further examples on how to use easyml in Python, please see the documentation at http://

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

http://ccs-lab.github.io/easyml/R
http://easyml.readthedocs.io
http://easyml.readthedocs.io
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hendricks and Ahn

easyml.readthedocs.io. In this example, we will use easyml to replicate findings reported
in Ahn et al. (2016) where a penalized logistic regression was used to identify multivariate
patterns of behavioral measures that can classify individuals with cocaine dependence. To
use easyml in R, we must first install the easyml library.

1 if (packageVersion("devtools") < 1.6) {

2 install.packages("devtools") # install devtools

3 }

4 devtools :: install_github("CCS -Lab/easyml", subdir = "R")

Algorithm 4 Generate model performance metrics

1: procedure generate model performance(X, y)
2: initialize Wtrain . Wtrain is a 1 by n divisions vector
3: initialize Wtest . Wtest is a 1 by n divisions vector
4: for i in 1, ..., n divisions do
5: divide X, y into Xtrain, Xtest, ytrain, ytest
6: initialize Ztrain . Ztrain is a nrow(Xtrain) by n iterations matrix
7: initialize Ztest . Ztest is a nrow(Xtest) by n iterations matrix
8: for j in 1, ..., n iterations do
9: fit model to Xtrain, ytrain

10: use the model to generate predictions for Xtrain

11: insert the train predicitons into column j of the matrix Ztrain

12: use the model to generate predictions for Xtest

13: insert the test predicitons into column j of the matrix Ztest

14: end for
15: calculate the mean of the matrix Ztrain across the row axis

16: generate a metric from ytrain and the averaged predictions

17: insert the metric into slot i of the vector Wtrain

18: calculate the mean of the matrix Ztest across the row axis

19: generate a metric from ytest and the averaged predictions

20: insert the metric into slot i of the vector Wtest

21: end for
22: return Wtrain, Wtest

23: end procedure

Next, let’s load the package and the data set.

1 library(easyml)

2 data("cocaine_dependence", package = "easyml")

3 head(cocaine_dependence) # examine the dataset

Finally, we pass in the following input arguments to run the analysis:

• .data, the data set to be analyzed (n×m matrix). n=the number of samples. m=the
number of features. At this time, it should contain no missing data.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

http://easyml.readthedocs.io
http://easyml.readthedocs.io
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Easyml: Easily Build and Evaluate Machine Learning Models

• dependent variable, the name of the dependent variable, which is an n by 1 vector.
In the cocaine data, diagnosis (0=healthy control, 1=cocaine user) is the dependent
variable.

• family, the name of the family of regression with choices are “gaussian” and “bino-
mial”. Since we are modeling a binary dependent variable, we will select “binomial”.

• preprocess, the preprocessing function to use on the data. We choose the preprocess scale

function so as to scale (z-score) any continuous variable across samples (full data set
or train/test data sets) before training a model.

• exclude variables, which variables, if any, should be excluded from the analysis. If
there is more than one variable, use the function c() (e.g., exclude_variables = c

("subject", "edu_yrs")).

• categorical variables, which variables are categorical, and thus need to be spe-
cially handled during preprocessing. Note that categorical variables will not be nor-
malized. If there is more than one variable, use the function c().

• random state, the seed to use for the random state.

• model args, the list of arguments specific to penalized linear models. See ?glmnet::

glmnet.

1 # Set mixing parameter (alpha) to 1 and the number of lambda

2 # to 200. See the help file of glmnet (? glmnet :: glmnet)

3 # for more details.

4 model_args <- list(alpha = 1, nlambda = 200)

5

6 results <- easy_glmnet (.data = cocaine_dependence ,

7 dependent_variable = "diagnosis",

8 family = "binomial",

9 preprocess = preprocess_scale ,

10 exclude_variables = "subject",

11 categorical_variables = "male",

12 random_state = 12345,

13 model_args = model_args)

That’s it! Now let’s examine the results. Each algorithm returns a list with objects for
various functions, data structures, and plot objects that are instrumental to the analysis.
Calling the names function on the variable results will show all the slots available to us.

1 print(names(results)) # examine the slots available to us

[1] "call" "data"

[3] "dependent_variable" "algorithm"

[5] "class" "family"

[7] "resample" "preprocess"

[9] "measure" "exclude_variables"

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hendricks and Ahn

[11] "train_size" "survival_rate_cutoff"

[13] "n_samples" "n_divisions"

[15] "n_iterations" "random_state"

[17] "progress_bar" "n_core"

[19] "generate_coefficients" "generate_variable_importances"

[21] "generate_predictions" "generate_metrics"

[23] "model_args" "column_names"

[25] "categorical_variables" "y"

[27] "X" "coefficients"

[29] "coefficients_processed" "plot_coefficients"

[31] "X_train" "X_test"

[33] "y_train" "y_test"

[35] "predictions_train" "predictions_test"

[37] "plot_predictions_single_train_test_split_train" "plot_predictions"

[39] "plot_predictions_single_train_test_split_test" "model_performance_test"

[41] "plot_roc_single_train_test_split_test" "model_performance_train"

[43] "plot_roc_single_train_test_split_train" "plot_model_performance"

[45] "plot_model_performance_train" "plot_model_performance_test"

ggplot2 objects can be accessed via the $ operator. For example, to examine the predictions
for the train data set, we can call the following (see Figure 1):

1 results$plot_roc_single_train_test_split

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

1 − Specificity

S
en

si
tiv

ity

Train Predictions

ROC Curve (AUC = 0.968)

Figure 1: Plot of the train predictions.

And we can examine the out-of-sample predictions for the test data set (see Figure 2).

1 results$plot_roc_single_train_test_split_test

We can also examine the plot of the estimated beta coefficients by calling results$plot

_coefficients. By default, beta coefficients and variable importances are sorted so that
features are shown in the order of their magnitudes. See Figure 3 where the coefficient
means are represented by the dots and the error bars represent the standard deviations.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Easyml: Easily Build and Evaluate Machine Learning Models

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

1 − Specificity

S
en

si
tiv

ity

Test Predictions

ROC Curve (AUC = 0.9)

Figure 2: Plot of the test predictions.

We could reproduce the almost the same plot that appears in Ahn et al. (2016). These are
true ggplot2 objects and can be modified however needed. See the scripts below how we
modified Figure 3 by adding a title, labels, etc.:

1 labels <- c("Education", "IMT Discriminability", "IGT Score",

2 "Sex", "IMT FN", "IMT Response bias",

3 "SSRT", "ln(k), Kirby", "PRL perseverance",

4 "BIS Attn", "IMT FP", "ln(k)",

5 "Age", "BIS Nonpl", "BIS Motor")

6 # plot the processed coefficients

7 results$plot_coefficients +

8 scale_x_discrete("Predictors", labels = labels) +

9 ggtitle("Predicting Cocaine Group Membership") +

10 theme_gray() +

11 theme(legend.position = "none")

Education

IMT Discriminability

IGT Score

Sex

IMT FN

IMT Response bias

SSRT

ln(k), Kirby

PRL perseverance

BIS Attn

IMT FP

ln(k)

Age

BIS Nonpl

-0.5 0.0 0.5 1.0
Coefficient estimates

P
re
di
ct
or
s

Predicting Cocaine Group Membership

Figure 3: Multivariate patterns of impulsivity measures predicting cocaine dependence. See
Ahn et al. (2016) for more details.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hendricks and Ahn

As seen in Figure 4, by calling results$plot_model_performance_train, we can also
examine the in-sample model performance generated for the train data set, which is the
distribution of the AUCs of the ROC curves over 1,000 repetitions:

1 results$plot_model_performance_train

as well as the out-of-sample model performance generated for the test data set by calling
results$plot_model_performance_test (see Figure 5).

1 results$plot_model_performance_test

The other algorithms are just as easily run and follow the same structured interface, making
it easy to quickly switch to other algorithms with very few modifications to the parameters.
For example, to run a random forest model, one would run:

1 results = easy_random_forest(cocaine_dependence , "diagnosis",

2 family = "binomial",

3 exclude_variables = "subject",

4 categorical_variables = "male")

Or for a support vector machine model, one would run:

1 results=easy_support_vector_machine(cocaine_dependence ,

2 "diagnosis",

3 family = "binomial",

4 exclude_variables = "subject",

5 categorical_variables = "male")

5. Implementing a New Algorithm

While penalized regression models, random forests, and support vector machines are among
some of the most popular algorithms, an advanced user may wish to add an algorithm
implemented elsewhere to easyml or perhaps even write their own algorithm. easyml makes

0

100

200

300

0.00 0.25 0.50 0.75 1.00

AUC

F
re

qu
en

cy

Train Metrics

Distribution of AUCs (Mean AUC = 0.978)

Figure 4: Plot of the train metrics.

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Easyml: Easily Build and Evaluate Machine Learning Models

0

40

80

120

0.00 0.25 0.50 0.75 1.00

AUC

F
re

qu
en

cy

Test Metrics

Distribution of AUCs (Mean AUC = 0.889)

Figure 5: Plot of the test metrics.

this easy by allowing users to write wrapper functions to provide a common interface to
those algorithms and pass wrapper functions into easyml functions. In Appendix A, we
provide an example where we wrap an algorithm that uses averaging over several neural
networks. The reader is referred to the caret (Kuhn, 2016) documentation for details on
the caret::avNNet function.

6. Comparison to Similar Toolkits and Frameworks

R and Python both have a wide ecosystem of machine learning toolkits. caret and mlr (Bis-
chl et al., 2016) are perhaps the most similar packages to easyml in R while scikit-learn

(Pedregosa et al., 2011) is perhaps the most simiar package to easyml in Python. These
packages contain algorithms for regression and classification tasks, tools for preprocessing
and model interepretation, and all focus on lowering the barrier to entry for machine learning
for non-experts. While these packages provide users the flexibility and tools to develop mod-
eling techniques, easyml extends the process by allowing users to use standardized recipes
for common machine learning techniques and produce journal-quality visualizations, all in
a single line of coding.

7. Conclusions and Outlook

In conclusion, the easyml package fits a specialized niche, and further lowers the barrier
to entry to machine learning. Practitioners have immediate access to powerful machine
learning algorithms in a single-line of coding in R or Python, without worrying about their
implementation or best practices for each algorithm. Researchers with strong programming
skills can leverage the easyml library to provide customized extensions quickly. This is still a
beta version (v0.1.0 as of May 2017) and users are encouraged to make suggestions or report
any bug by posting new issues to the GitHub repository (https://github.com/CCS-Lab/
easyml). Next steps for easyml are likely to include more algorithms and additional recipes
and convenience functions to further lower the barrier to entry for machine learning. We
also plan make it easy to use easyml on neuroimaging data. Specifically, we will allow users

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://github.com/CCS-Lab/easyml
https://github.com/CCS-Lab/easyml
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hendricks and Ahn

to apply a machine learning algorithm to functional magnetic resonance imaging (fMRI)
data and produce journal-quality brain maps in a single line of coding.

8. Acknowledgement

We thank Nathaniel Haines for his feedback on various codes and his help on the random
forest algorithm.

9. Author contributions

W.-Y.A. conceived the project. P.H. and W.-Y.A. programmed codes and designed/built
the package.

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Easyml: Easily Build and Evaluate Machine Learning Models

References

Woo-Young Ahn and Jerome R Busemeyer. Challenges and promises for translating com-
putational tools into clinical practice. Current Opinion in Behavioral Sciences, 11:1–7,
2016.

Woo-Young Ahn and Jasmin Vassileva. Machine-learning identifies substance-specific be-
havioral markers for opiate and stimulant dependence. Drug and alcohol dependence, 161:
247–257, 2016.

Woo-Young Ahn, Kenneth T Kishida, Xiaosi Gu, Terry Lohrenz, Ann Harvey, John R
Alford, Kevin B Smith, Gideon Yaffe, John R Hibbing, Peter Dayan, et al. Nonpolitical
images evoke neural predictors of political ideology. Current Biology, 24(22):2693–2699,
2014.

Woo-Young Ahn, Divya Ramesh, Frederick Gerard Moeller, and Jasmin Vassileva. Utility
of machine-learning approaches to identify behavioral markers for substance use disor-
ders: Impulsivity dimensions as predictors of current cocaine dependence. Frontiers in
Psychiatry, 7, mar 2016. doi: 10.3389/fpsyt.2016.00034. URL https://doi.org/10.

3389%2Ffpsyt.2016.00034.

Woo-Young Ahn, Nathaniel Haines, and Lei Zhang. Revealing neuro-computational mech-
anisms of reinforcement learning and decision-making with the hbayesdm package. Com-
putational Psychiatry, 1(1), 2017.

Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus,
Giuseppe Casalicchio, and Zachary M. Jones. mlr: Machine learning in r. Journal of
Machine Learning Research, 17(170):1–5, 2016. URL http://jmlr.org/papers/v17/

15-066.html.

Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001. ISSN 0885-6125.
doi: 10.1023/A:1010933404324. URL http://dx.doi.org/10.1023/A:1010933404324.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–
297, September 1995. ISSN 0885-6125. doi: 10.1023/A:1022627411411. URL http:

//dx.doi.org/10.1023/A:1022627411411.

Martin Drees. Implementierung und analyse von tiefen architekturen in r. Master’s thesis,
Fachhochschule Dortmund, 2013.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for gener-
alized linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22,
2010. URL http://www.jstatsoft.org/v33/i01/.

Nathaniel Haines, Matthew W. Southward, Paul Hendricks, Jeffrey F. Cohn, Jennifer S.
Cheavens, and Woo-Young Ahn. Reading positive and negative emotion intensities from
facial expressions using machine learning. in preparation.

Max Kuhn. caret: Classification and Regression Training, 2016. URL https://CRAN.

R-project.org/package=caret. R package version 6.0-73.

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.3389%2Ffpsyt.2016.00034
https://doi.org/10.3389%2Ffpsyt.2016.00034
http://jmlr.org/papers/v17/15-066.html
http://jmlr.org/papers/v17/15-066.html
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1023/A:1022627411411
http://www.jstatsoft.org/v33/i01/
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hendricks and Ahn

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

Michael Lim and Trevor Hastie. Learning interactions via hierarchical group-lasso regular-
ization. Journal of Computational and Graphical Statistics, 24(3):627–654, 2015.

David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and Friedrich Leisch.
e1071: Misc Functions of the Department of Statistics, Probability Theory Group (For-
merly: E1071), TU Wien, 2017. URL https://CRAN.R-project.org/package=e1071.
R package version 1.6-8.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2016. URL https://www.R-project.org/.

Guido Rossum. Python reference manual. Technical report, Amsterdam, The Netherlands,
The Netherlands, 1995.

Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for
cox’s proportional hazards model via coordinate descent. Journal of Statistical Software,
39(5):1–13, 2011. URL http://www.jstatsoft.org/v39/i05/.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York,
fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-
0.

Iris Vilares, Michael J Wesley, Woo-Young Ahn, Richard J Bonnie, Morris Hoffman, Owen D
Jones, Stephen J Morse, Gideon Yaffe, Terry Lohrenz, and P Read Montague. Predicting
the knowledge–recklessness distinction in the human brain. Proceedings of the National
Academy of Sciences, 114(12):3222–3227, 2017.

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://CRAN.R-project.org/package=e1071
https://www.R-project.org/
http://www.jstatsoft.org/v39/i05/
http://www.stats.ox.ac.uk/pub/MASS4
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Easyml: Easily Build and Evaluate Machine Learning Models

Appendix A.

Below we demonstrate an ordinary way of fitting the avNNET model of the caret package
on the cocaine dataset in R. We see that while we can build this model relatively easily,
it takes some extra work to build such as removing the first and second columns from the
cocaine_dependence dataset. Furthermore, to evaluate this model multiple times with
customized train-test splits, preprocessing data, visualize outputs, users need to program
many lines of code additionally.

1 library(caret)

2

3 # load data

4 data("cocaine_dependence", package = "easyml")

5

6 # fit model

7 model <- avNNet(cocaine_dependence[, c(-1, -2)],

8 factor(cocaine_dependence$diagnosis),

9 size = 5, linout = TRUE , trace = FALSE)

10

11 # predictions

12 head(predict(model , type = "class"))

Here we demonstrate the easyml way of using this model (see below how we wrapped the
algorithm into easyml). We see that with very few lines of code, we can enjoy all the
features and benefits of easyml. For example, users can examine model performance by
calling b$plot_predictions_train_mean and b$plot_metrics_test_mean, etc.

1 model_args <- list(size = 5, linout = TRUE , trace = FALSE)

2 b <- easy_avNNet(cocaine_dependence , "diagnosis",

3 family = "binomial",

4 preprocess = preprocess_scale ,

5 exclude_variables = c("subject"),

6 categorical_variables = c("male"),

7 n_samples = 10, n_divisions = 10,

8 n_iterations = 10, random_state = 12345 ,

9 n_core = 1, model_args = model_args)

10

11 g <- easy_avNNet(prostate , "lpsa",

12 preprocess = preprocess_scale ,

13 n_samples = 10, n_divisions = 10,

14 n_iterations = 10,

15 random_state = 12345, n_core = 1,

16 model_args = model_args)

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hendricks and Ahn

Here we show how we wrapped the avNNet algorithm into easyml.

1 library(easyml)

2

3 # wrap the avNNet fit_model function

4 fit_model.easy_avNNet <- function(object) {

5 # set model arguments

6 model_args <- object [["model_args"]]

7

8 # process model_args

9 model_args[["x"]] <- as.matrix(object [["X"]])

10 model_args[["y"]] <- object [["y"]]

11

12 # build model

13 model <- do.call(caret ::avNNet , model_args)

14 object [["model_args"]] <- model_args

15 object [["model"]] <- model

16

17 # write output

18 object

19 }

20

21 # wrap the avNNet predict_model function

22 predict_model.easy_avNNet <- function(object , newx = NULL) {

23 newx <- as.matrix(newx)

24 model <- object [["model"]]

25 family <- object [["family"]]

26 if (family == "gaussian") {

27 type <- "raw"

28 } else if (family == "binomial") {

29 type <- "class"

30 }

31 preds <- stats :: predict(model , newdata = newx , type = type)

32 preds

33 }

34

35 easy_avNNet <- function (.data , dependent_variable ,

36 family = "gaussian", resample = NULL ,

37 preprocess = preprocess_scale ,

38 measure = NULL ,

39 exclude_variables = NULL ,

40 categorical_variables = NULL ,

41 train_size = 0.667 , foldid = NULL ,

42 survival_rate_cutoff = 0.05,

43 n_samples = 1000, n_divisions = 1000,

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Easyml: Easily Build and Evaluate Machine Learning Models

44 n_iterations = 10,

45 random_state = NULL ,

46 progress_bar = TRUE , n_core = 1,

47 coefficients = FALSE ,

48 variable_importances = FALSE ,

49 predictions = TRUE , metrics = TRUE ,

50 model_args = list()) {

51 easy_analysis (.data , dependent_variable ,

52 algorithm = "avNNet",

53 family = family , resample = resample ,

54 preprocess = preprocess , measure = measure ,

55 exclude_variables = exclude_variables ,

56 categorical_variables = categorical_variables ,

57 train_size = train_size , foldid = foldid ,

58 survival_rate_cutoff = survival_rate_cutoff ,

59 n_samples = n_samples ,

60 n_divisions = n_divisions ,

61 n_iterations = n_iterations ,

62 random_state = random_state ,

63 progress_bar = progress_bar , n_core = n_core ,

64 coefficients = coefficients ,

65 variable_importances = variable_importances ,

66 predictions = predictions , metrics = metrics ,

67 model_args = model_args)

68 }

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Project Vision
	Recipes
	Example
	Implementing a New Algorithm
	Comparison to Similar Toolkits and Frameworks
	Conclusions and Outlook
	Acknowledgement
	Author contributions

