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Abstract. The long awaited challenge of post-genomic era and systems biology 
research is computational prediction of protein-protein interactions (PPIs) that 
ultimately lead to protein functions prediction. The important research 
questions is how protein complexes with known sequence and structure be used 
to identify and classify protein binding sites, and how to infer knowledge from 
these classification such as predicting PPIs of proteins with unknown sequence 
and structure. Several machine learning techniques have been applied for the 
prediction of PPIs, but the accuracy of their prediction wholly depends on the 
number of features being used for training. In this paper, we have performed a 
survey of protein features used for the prediction of PPIs. The open research 
challenges and opportunities in the area have also been discussed.  

Keywords: Protein-Protein Interactions, Machine learning, Supervised 
learning, Feature selection, Protein features. 

1   Introduction 

Proteins are important for functioning of our body. The structure of a protein 
influences its function by determining the other molecules with which it can interact. 
The protein interactions can reveal hints about the function of a protein. Protein-
protein interactions (PPI) play an important role in living cells that control most of the 
biological processes, and most essential cellular processes are mediated by these 
kinds of interactions. Proteins mostly perform their functions with the help of 
interactions with other proteins. For example, disease-causing mutations that affect 
protein interactions may lead to disruptions in protein-DNA interactions, misfolding 
of proteins, new undesired interactions, or enable pathogen-host protein interactions. 
Similarly, aberrant protein-protein interactions have caused several neurological 
disorders including Parkinson and Alzheimer's disease. With appropriate knowledge 
of interaction, scientist can easily predict pathways in the cell, potential novel 
therapeutic target, and protein functions. Hence, these examples have motivated to 
map interactions on the proteome-wide scale. The prediction of PPI has emerged as 
an important research problem in the field of bioinformatics and systems biology. 

A PPI network focuses on tracing the dynamic interactions among proteins, 
thereby illuminating their local and global functional relationships (Rao et al., 2014). 
Experimentally determined PPI network from high-throughput techniques, such as 
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yeast two hybrid (Y2H) screens and Tandem affinity purification coupled to mass 
spectrometry (TAP-MS), are inherently noisy that contains a large number of false 
positives. Predicting PPIs using experimental techniques are time-consuming, costly, 
need man-power, and also unreliable. Therefore, computational methods for the 
prediction of PPIs have evolved. Among computational techniques, machine learning 
has been extensively used for several classification and prediction problems, 
including PPIs. Machine learning is a data-driven approach which requires sufficient 
number of training sets and features. It has been found that number of protein features 
play vital role in the accuracy of prediction algorithms. Therefore, it is required that 
we must identify various protein features that need to be used to train a machine 
learning algorithm.  

This review presents 13 different protein features which can be used for the 
prediction of PPIs. The paper is organized as follows. Section 1.1 and 1.2 describes 
types of PPIs and experimental methods for finding PPIs, respectively. Section 2 
presents a brief description of computational approaches for the prediction PPIs. 
Section 3 covers 13 different proteins features that can be used for training machine 
learning algorithms. Section 4 describes how protein features are represented so that it 
can be fed to a learning algorithm. Finally, section 5 concludes the paper and 
discusses challenges and opportunities in the area. 

1.1   Types of protein–protein interaction 

It is analyzed and found that determination of PPI by different methods show a low 
degree of overlap. Hence, researchers have designed computational tools to assess the 
reliability of data coming out of high-throughput experiments. This low overlapping 
of interaction data and low reliability of high-throughput experimental techniques 
show that PPI determined with various approaches explore different types of 
interactions. De Las Rivas and de Luis (De Las Rivas & de Luis, 2004) classified the 
PPI into three level of association with several sublevels, as shown in Fig. 1. 

 

Fig. 1. Classification of protein-protein interaction (Source: De Las Rivas & de Luis, 2004) 

Physical interactions are that where proteins form a stable protein complex and 
performs biomolecular role such as structural and functional role. They are protein 
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subunits of the complex that work together. Correlated proteins interactions are those 
which do not interact physically but are involved in the same biomolecular activities. 
Correlated protein interactions may be metabolic correlation or genetic correlation. 
Co-located proteins interactions are those where proteins are defined to work in the 
same cellular compartment. 

1.2   Experimental methods 

There are two main technologies that determine PPI interactions: binary method 
and co-complex method. Binary techniques measure direct physical interactions 
between protein pairs. Yeast Two Hybrid (Y2H) method is one of the mostly used 
binary method. Co-complex method measures physical interaction among groups of 
proteins, without finding pairwise interactions. Tandem affinity purification coupled 
to mass spectrometry (TAP-MS) is most often used Co-Complex method. Generally, 
Co-complex methods measures both direct and indirect interactions between proteins.  

The experimental result of both the methods is totally different from each other. 
Data obtained from co-complex method cannot be directly mapped to binary 
interpretation. An algorithm or model is required to map group-based data into 
pairwise interactions. The ‘spoke model’ is most widely applied technique to 
transform data from group-based to pairwise interactions (de Las Rivas & Fontanillo, 
2010). 

2   Computational Predictions 

Mostly proteins do their functions by interacting with other proteins. The PPI within a 
cell may enrich our understanding about protein functions and cellular processes. 
Over the past few years, due to advancement in computation biology and 
bioinformatics, an explosion in functional biological data derived from high-
throughput technologies to infer PPI has been observed.  

Many large-scale experimental techniques have been employed to study PPIs 
including Y2H screens, X-ray crystallography, NMR and site-directed mutagenesis. 
But these experimental techniques are costly, tedious, time-consuming, labor-
intensive and potentially inaccurate (Browne et al, 2006; Wang et al, 2013). On the 
other hand, tremendous protein interaction data has been generated out of proteomics 
research that need to be validated and annotated structural information.  

Computational methods play a significant role in the prediction of PPI. They are 
used to predict potential interactions between proteins, to validate results of high-
throughput interaction screens and to analyze the protein networks inferred from 
interaction databases. Several statistical and machine learning based methods have 
been applied for the prediction of PPI including Bayesian Networks (Jansen et al., 
2003; Patil & Nakamura, 2005), Simple Naïve Bayesian, Random Forest (Šikic et al. 
2009; Zubek et al., 2015), Support Vector Machine (Bock & Gough, 2001; Chatterjee 
et al., 2011; You et al., 2013; You et al., 2014; Zubek et al., 2015), Decision Tree, 
Logistic Regression, k-Nearest Neighborhood (kNN), Conditional Random Field, 
Artificial Neural Networks (Fariselli et al., 2002), to name a few. Despite the success 
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of these methods, there is still need for the improvement in terms of prediction 
accuracy and computational efficiency (Res et al, 2005, Bordner & Abagyan, 2005). 

PPI predictions can be accomplished broadly in four steps, as shown in Fig. 2. 
Initially protein features will be extracted from different genomic and proteomic 
information. These protein features are represented in the form of a vector so that it 
can be used to train a machine learning classifier. Once a classifier is properly trained 
with the extracted protein features, it must be compared with the gold standard to 
assess its performance. A detail description of data-driven approach for prediction of 
PPIs can be found in Xue, et al. (2015). 

 
Fig. 2. Generic steps in machine learning-based protein-protein interaction predictions 

3   Protein Features Selection 

In the literature, various protein features have been used to predict PPI, either 
individually or in combinations. It has been found that none of the single protein 
feature is sufficient to predict PPI because single feature alone does not carry 
adequate information. Hence, a combination of some of these features has been found 
to be a better way to enhance the performance of machine learning for PPI predictions 
(Wang et al, 2006; Browne et al, 2006; Sikic et al, 2009). Detail of the protein 
features are described as follows: 

3.1 Primary sequence 

The primary sequence of protein corresponds to linear amino acid sequence. In the 
literature, initially PPI prediction has been carried out by using sequence information 
only (Ofran & Rost, 2003; Sikic et al., 2009). Ofran & Rost (2003) proposed a neural 
network based approach to identify PPI interfaces from sequence information. The 
result shows 94% accuracy for most strongly predicted sites. The results of Ofran & 
Rost (2003) indicated that PPI sites are possible to be predicted using sequence alone. 
Sikic and colleagues (Sikic et al., 2009) have used names of nine consecutive residues 
in a sequence as input feature vector. The input feature vector was defined on a 
sliding window of 9 residues. The window was considered as positive, if at least N 
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residues including the central residue were marked as interacting. The data was 
classified for values of N ranging from 1 to 9 and result was evaluated. The input 
vector consists of all nine residues’ names, and min, max or average value of features. 
When Random Forest classifier has been applied, the result shows precision of 84% 
and recall of around 26%. However, accuracy of the method is not good. In this 
direction, researchers suggested that we cannot predict PPI with acceptable accuracy 
using sequence information only. We need to incorporate other information, such as 
evolutionary and structure information, to predict PPI with high accuracy.   

3.2 Secondary and 3D structure 

Proteins are polymers comprising of chains of amino acids. The structure of proteins 
determines their specific function. The structure of the protein can be described at 
different levels. The first level is the primary structure that corresponds to linear 
amino acid sequence. At the second level, we have secondary structure that refers to 
how the amino acid back-bone of the protein is arranged in 3-dimensional space, by 
forming hydrogen bonds with itself. There are three common secondary structures: 
alpha helices, beta sheets and random coils. Third level is tertiary structure which is 
produced when elements of the secondary structure fold up among them. Finally, the 
quaternary structure is related to the spatial arrangement of several proteins. 

Sikic and his colleagues (Sikic et al., 2009) combined sequence information and 
3D structure information to predict PPI using Random Forest classifier. They have 
used all 3D structure information available from Protein Structure and Interaction 
Analyzer (PSAIA) developed by Mihel and colleagues (Mihel et al., 2008), in 
additional to secondary structure. A total of 26 features have been considered here for 
training the classifier. Since, Random Forest algorithm is capable to estimate the 
importance of a particular feature, so they have applied input parameter set reduction. 
Here, it has been noticed that information acquired from sequence has the highest 
importance in the prediction. Also, five best structure features has been ranked as: 
non-polar accessible surface area (ASA), maximum depth index, relative non-polar 
ASA, average depth index, and minimum protrusion index.  

3.3 Sequence entropy 

Variability within related protein sequences has been proved to provide clue about 
their 3D structure and function. The high variability regions within related proteins 
groups are linked to the specificity of molecules, while low variability regions are 
mostly structural or define regions of common function. Shanon entropy can be 
applied to estimate the diversity among group of protein sequences. For alignment of 
multiple sequences, the entropy H for each position can be computed as,  

H = 	−���log���

�

�
�
																																															(�) 

 

 where, Pi is fraction of residues of amino acid type i, and M is total number of 
amino acid type, i.e., 20. The sequence entropy score basically ranks the frequencies 
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of the occurrence of 20 different types of amino acid, where lowest values correspond 
to the most conserved positions. The HSSP (Homology-derived Structures of 
Proteins) is a derived database that merges 3D structure and sequence information. 
This database is a noble resource for extracting sequence entropy (Schneider & 
Sander, 1996).  

3.4 Evolutionary conservation 

Conserved sequences are similar or identical sequences that may have been 
maintained by evolution despite speciation, if it is cross species conservation. More 
highly conserved sequence may occur in the phylogenetic tree. Since sequence 
information is normally transmitted from parents to progeny by genes, a conserved 
sequence implies that there is a conserved gene. There are several methods that use 
evolutionary conservation as a primary indicator to find location of interface residue 
in PPI. The main reason for using evolutionary conservation is that it reflects 
evolutionary selection at the interaction sites to maintain functions of protein families 
(Lichtarge et al., 1996; Neuvirth et al., 2004; Wang et al., 2013). At the interfaces, 
evolutionary conservation of residue is observed as higher than general surface 
residues, and hence has distinct feature of protein interaction sites (Wang et al., 2013). 

3.5 Solvent accessible surface area 

The accessible surface area (ASA), also known as solvent-accessible surface area 
(SASA), is the surface area of a biomolecule which is accessible to a solvent 
(Connolly, 1983; Richmond, 1984). Measurement of SASA is mostly measured in 
terms of square angstroms and was initially explained by Lee and Richards in 1971 
(Lee & Richard, 1971). SASA is computed using the 'rolling ball' algorithm proposed 
by Shrake & Rupley (1973). This algorithm applies a sphere of a particular radius to 
'probe' the surface of the molecule. Some of the other methods to calculate SASA are 
linear combination of pair-wise overlap (LCPO) (Weiser et al., 1999) and Power 
Diagram method. The relative SASA may be applied to estimate the magnitude of 
binding-induced conformational changes using structures of either monomeric 
proteins or bound subunits. When it is applied to a large set of complexes, the result 
shows large conformational changes due to common binding. The SASA including 
many other protein features have been used in Sikic et al., 2009 for finding PPI sites. 

3.6 Protein expression 

The co-expression of genes may act as an indicator of functional linkage. Hence, 
Microarray mRNA expression data can be used to predict PPIs. Here, interactions 
between two proteins are predicted based on similar expression of their coding genes 
in multiple conditions. There are several methods using which we can compute the 
similarity among expression profiles of genes in the given gene expression matrix. 
Pearson's Correlation Coefficient is a popular method to compute similarity since it 
can distinguish positively and negatively regulated gene pairs. The idea here is to 
identify set of genes with similar expression patterns. 
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This microarray mRNA co-expression dataset is based on two assumptions: i) 
proteins present in same complex usually interact to each other, and ii) proteins 
belong to same complex are co-expressed. One of these datasets has been reported by 
Cho et al. (1998). The dataset represents time-course gene expression fluctuations 
during yeast cell cycle and Rosetta compendium, comprises of expression profiles of 
300 deletion mutants and cells under various chemical treatments (Cho et al, 1998). 
Cells have been collected at 17 time points observed at 10 min intervals, covering 
almost two full cell cycles. Here, pair-wise Pearson’s correlation were computed for 
every gene-pairs, value of which ranges between 0 and 1. 

3.7 Marginal essentiality 

At the most basic level, functional significance of genes may be defined by its 
essentiality, i.e., genes which are knocked out may render the cell unviable. Marginal 
essentiality is basically based on a hypothesis, called ‘marginal benefit’, that several 
non-essential genes make small but significant contributions to fitness of a cell 
(Browne et al., 2006). Marginal essentiality ‘M’ can be defined as a quantitative 
measure of a non-essential gene’s importance to a cell (Yu et al., 2004). Yu et al. 
(2004) described that marginal essentiality measure relates to several topological 
properties of PPI networks. Particularly, proteins having higher degree of M tend to 
be hubs of the network, and have a shorter characteristic path length to their 
neighbors. Yu et al. (2004) obtained marginal essentiality dataset by combining the 
result of four phenotypic experiments. Two proteins are considered to be interacting, 
if they have higher combined M.  

3.8 Co-essentiality 

This feature is based on the hypothesis that proteins are either essential or non-
essential, indicating that they belong to the same complex. If this is the case, they may 
be either essential or non-essential but not both. The reason is that a deletion mutant 
of either protein would yield same phenotype, and their mutual deletion would harm 
the function. In Zhang et al. (2012), co-essentiality, along with several proteins 
features, has been considered for the prediction as well as analysis of Protein 
Interactome in Pseudomonas aeruginosa. Gene essentiality data were retrieved from 
Database of Essential Genes (Zhang & Lin, 2009). Each gene of PA PAO1 (a 
pathogen P. aeruginosa which is problematic in chronic airway infections) is 
considered as either essential (678 genes) or non-essential (4,890 genes). Considering 
gene essentiality, each gene-pair has a nominal value for co-essentiality: both are 
essential, both are non-essential, one is essential and other is non-essential. 

Browne et al. (2006) has derived co-essentiality dataset from both MIPS complex 
catalogue and transposon and gene deletion experiments. In this dataset, protein-pairs 
are assumed to interaction, if both proteins are either essential or non-essential. When 
there is a combination of essential and non-essential proteins, protein-pair is 
considered as non-interacting. In Browne et al. (2006), mixture of non-essential and 
essential protein-pairs is represented by 1 and only non-essential are presented by 0. 
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More detail information about MIPS based co-essentiality data can be found in Mews 
et al. (2000). 

3.9 MIPS functional catalogue 

It is a hypothesis that protein-pairs acting in same biological processes are more likely 
to interact to each other. Hence, based on this hypothesis, protein-pairs can be defined 
as interacting, if they belong to same biological process. Functional similarity 
between two proteins has been estimated from Gene Ontology (GO) and MIPS 
functional catalogue (FunCat). MIPS FunCat is annotation scheme that represents 
functional description of proteins and contains 28 main functional categories covering 
cellular transport, metabolism and signal transduction. In other words, FunCat is a 
hierarchically organized, organism independent, flexible, scalable and controlled 
classification approach that enables functional description of proteins used for manual 
annotation of prokaryotes, eukaryotes, animals, fungi and plants. The main categories 
are organized as a hierarchical tree-like structure that describes up to 6 levels of 
increasing specificity. The FunCat version 2.1 includes a total of 1362 functional 
categories. Here, each protein represents a subtree of overall hierarchical class-tree. 
Now, it is possible to compute intersection tree of two subtree for two given proteins. 
This estimation is similarly done for complete list of protein pairs. For example, there 
are ~18 million interactions in yeast. The FunCat is separate from MIPS complex 
categories. The functional similarity between protein-pairs can be finally described as 
frequency at which interaction trees of protein-pair occur in the distribution. 

3.10 GO-driven frequency based similarity 

By consider the hypothesis, as considered in FunCat, that is, protein-pair involved in 
same biological process are likely to interact; it is possible to extract participation 
information of protein-pairs in specific biological process using Go-driven annotation 
databases such as Saccharomyces Genome Database (Cherry et al., 1998). Browne et 
al. (2006) applied GO-driven Frequency Based Similarity measures to generate 
dataset to predict PPIs. This dataset was obtained by computing the similarities 
between gene products annotated in GO biological process hierarchy. Consider two 
proteins p1 and p2 which has a specific set of lowest common ancestor nodes in 
hierarchy, then it is possible to count number of proteins pairs having same set of 
annotation terms. In Browne et al. (2006), for all possible protein pairs in S. 
Cerevisiac (~18 million), they counted how many of these possible pairs share exactly 
same functional terms resulting a number ranges between 0 and 18 million. A smaller 
number represents a more specific functional description of a protein pair that 
suggests higher functional similarity and higher possibility to belong to same 
complex. On the other hand, a larger value of count represents a less functional 
similarity and there is less possibility for the protein-pair to belong to same complex. 

3.11 GO-driven semantic similarity 
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To calculate similarity between Go terms and gene products, Lin’s semantic similarity 
technique (Lin, 1998) is mostly applied (Azuaje et al., 2005). The similarity values of 
gene-pairs can be used for PPI prediction, as used in Browne et al. (2006), to 
construct GO-driven Semantic Similarity (GOSEM) dataset. The GOSEM method 
exploits information contents of shared GO terms parents, as well as that of query GO 
terms applied in annotating gene. This similarity measure is expressed as probability 
and based on count of each terms occurring in the GO corpus. Lin’s method computes 
similarity between two GO terms xi and xj as, 

���(�� , ��) =
2 × max�∈�(� ,�!)

"log	�#��$%
log �(��) +	 log �#��$

																											(') 
 

 
 where S is set of parental terms shared by terms xi and xj; P(x) is probability of 

finding terms x or any of its parent in the GO corpus. The similarity between genes 
can be computed by aggregating similarity values of annotated terms of genes. The 
similarity between gene products gk and gl can be defined as average interest 
similarity between terms Ai to Aj, 

���(�� , ��) =
2 × max�∈�(� ,�!)

"log	�#��$%
log �(��) +	 log �#��$

																											(() 
 

where, Ak and Al comprises of m and n terms. 

3.12 Position-specific scoring matrices 

Position Specific Scoring Matrices (PSSMs), also called Position-Specific Weight 
Matrix (PSWM), are most commonly applied motifs descriptor in biological 
sequences. It is often calculated from a set of functionally related and aligned 
sequences. PSSM attempts to capture intrinsic variability characteristic from multiple 
sequence alignment (MSA). PSSMs have been used as protein feature vector by many 
researchers for finding PPIs (Deng et al., 2009). A PSSM has one row for each 
residue (4 rows for nucleotides or 20 rows for amino acids). Given a set S (S={s1, s2, 
…, sn}) of n aligned sequences having length l, PSSM can be calculated as, 

 

)�� =	1+	� ,�#�-�$
.

-
�
																																															(/) 

 

 

0ℎ232, ,�(4) = 5(�) = 6 1					�5	� = 4
			0				89ℎ230��2	  
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where, i=A, C, T, G or amino acid residues; j=1, 2, …, l; sk=sk1, sk2, …, skl (ski 
being any of the residue). Each coefficient in PSSM indicates count of a residue at a 
given position. 

3.13 Residue interface propensity 

Residue Interface Propensity (RIP) quantifies preferences of an amino acid to act as 
interface site of two interacting proteins. It is calculated by using interaction of all the 
proteins in entire family. For each amino acid i, the propensity is defined as, 

 

�38:2+��9;� =	
<�.(�) <�.=

<>?@A(�) <>?@AB
																																						(C) 

 

where Nin(i) is number of amino acid of type i in interface; Nin is total number of 
amino acids of any type in the family; Nsurf(i) is number of surface amino acid of type 
i in all domain; and Nsurf is total number of amino acids of any type in the family. In 
general, Propensityi > 1.0 indicates that residue i has high chance for being in 
interface. The propensity score depends on both, number of interaction inferred from 
PSIMAP and size of SCOP family. RIP has been applied by Dong et al. (2007) and 
Lui et al. (2009) to identify protein binding sites. 

4   Protein Feature Representations 

There are different proteins features, such as sequence information, co-expression, 
protein structure information, phylogenetic profiles, and so on, that can be used to 
predict PPIs computationally. Once protein features has been selected, the next 
fundamental question is how these protein features are represented so that it can be 
fed to a classifier for training and prediction. For the representation of sequence 
information as feature vector, a sliding window is most deployed approach to 
represent association among neighboring residues. Selecting length of sliding window 
is a vital issue because it affects the prediction accuracy. There is no thumb rule for 
the selection of length of sliding window and mostly it is set randomly. In a recently 
study, Sikic et al., 2009 applied an entropy based method to find out window length, 
which is given by, 

−�:� × D8E�:� −	D8E�F
G

�
�
																																						(H) 

 

where, L is window length, and pi represent the appearance frequency of ith 
interacting residues in window of L residue given a central interaction. Results 
observed by Sikic et al. (2009) was similar for different window length but window 
length of 9 shows maximum difference of entropy. You et al. (2014) proposed a 
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novel feature representation technique. It has been assumed here that continuous 
and discontinuous amino acids segment play a vital role in predicting PPI. The 
proposed feature representation approach considers interaction between sequentially 
distant but spatially closed residues. Here, Multiscale Continuous and 
Discontinuous (MCD) method is deployed for sequence representation to transform 
protein sequence to feature vector using binary encoding scheme. A multiscale 
decomposition technique is applied to divide given sequence into chunk of multiple 
sequences of distinct length. For the extraction of information, entire protein 
sequence is divided into equal length segments, and further a binary coding scheme 
is applied to each segment. Each segment is encoded as 4-bit binary sequence of 1’s 
or 0’s. For every continuous or discontinuous region, composition (C), transition (T) 
and distribution (D) – three kinds of descriptors are applied to represent its 
characteristics. Here, ‘C’ is ratio of number of amino acids in local region. ‘T’ 
specifies frequency (in percent) to which amino acids of a particular property is 
followed by that other property. ‘D’ means the length of chain within first 25%, 
50%, 75% and 100% of amino acids of particular property are located. 

5   Conclusion and Discussion 

It has been observed that there are still discrepancies in estimating the number of PPIs 
even for small size well-studied unicellular organism Saccharomyces cerevisiae 
(yeast). Different studies estimated different size of complete binary protein 
interactome of yeast containing ~6,000 proteins. Grigoriev (2003) estimated around 
16,000 to 26,000 PPIs, on the other hand Blow (2009) reported more than 30,000 
potential interactions in yeast. Some of the databases have only experimental data 
containing greater than 50,000 binary PPIs in yeast. Thus, this discrepancy in the 
results indicates that some of the experimentally obtained interactions most probably 
contain false positives. Machine learning algorithms are playing a pivotal role in 
several classification and prediction problems including PPIs predictions. Prediction 
of PPI is a non-trivial problem because there are lots of factors which are involved in 
binding of amino-acids. Feature selection is an important issue in machine learning 
techniques, specially protein features in PPI prediction problem. This review covers a 
maximum of 13 different protein features used in the literation. 

In case of incomplete datasets, careful study is required to know the optimal 
machine learning technique, and optimal protein features. Some of the suggested 
future directions are as follows: 

i) Most of the methods proposed earlier consider either single or few protein 
features for training classifiers. The results show that considering multiple 
protein features improves the performance of PPI prediction. Hence, we can 
look forward for integrating more protein features for further improvement in 
the prediction results. 

ii) Today, several ensembles learning algorithms have been developed, including 
boosting, bagging and multi-classifier systems, showing better prediction 
accuracy in various classification and prediction problems. Hence, we can 
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deploy these algorithms to increase the prediction accuracy at the cost of 
computation. 

iii) Mostly of the studies have been performed on finding PPIs on yeast 
only. We can look for finding PPIs in Homo sapiens in similar way. 
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