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Abstract. Darwinian fitness is a central concept in evolutionary

biology. In practice, however, it is hardly possible to measure

fitness for all genotypes in a natural population. Here, we

present quantitative tools to make inferences about epistatic

gene interactions when the fitness landscape is only incompletely

determined due to imprecise measurements or missing observa-

tions. We demonstrate that genetic interactions can often be

inferred from fitness rank orders, where all genotypes are ordered

according to fitness, and even from partial fitness orders. We

provide a complete characterization of rank orders that imply

higher order epistasis. Our theory applies to all common types of

gene interactions and facilitates comprehensive investigations of

diverse genetic interactions. We analyzed various genetic systems

comprising HIV-1, the malaria-causing parasite Plasmodium

vivax, the fungus Aspergillus niger, and the TEM-family of

β-lactamase associated with antibiotic resistance. For all systems,

our approach revealed higher order interactions among mutations.
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1. Introduction

The fitness of an individual with a particular genotype is a measure

of its expected contribution to the next generation of the population.

The collection of all fitness values for all genotypes, referred to as the

fitness landscape, is a central concept in evolutionary biology (Wright

1932; Orr 2009). The fitness landscape can have a strong impact on

the fate of the evolving population, such as, for example, the risk of a

pathogen population to develop drug resistance and to survive under

drug treatment.

Genetic interactions, or epistasis, are abundant in nature. They can

have many causes and occur at various scales, for instance, among

mutations of a protein-coding sequence or between sequences coding

for different genes. Unless there are genetic interactions, we assume

that fitness is additive, i.e., the fitness effects of individual mutations

sum. An additive fitness landscape is determined by the wild-type and

single-mutant fitness values.

If the fitness landscape is determined by the wild-type, single-

mutant, and double-mutant fitness values, then we say that it has no

higher order epistasis. Intuitively, higher order epistasis means that

the fitness of a multiple mutant is unexpected given the fitness of the

wild type and all single and double mutants. For example, Weinre-

ich, Delaney, et al. (2006) showed that five mutations jointly increase

antibiotic resistance considerably more than expected.

Measuring fitness experimentally is challenging. Fitness measure-

ments tend to come with high uncertainty and they are often obtained

only for a subset of genotypes. Moreover, fitness can sometimes not

be measured directly at all. Instead, phenotypes are considered that

can be measured and are believed to approximate fitness well. For in-

stance, antimicrobial drug resistance is the dominating survival factor

for a bacterial population under drug exposure, so that the degree of

resistance is a good substitute measure of fitness. Several such fitness

proxies are used in microbiology, including survival as measured by disc
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INFERRING GENETIC INTERACTIONS 3

diffusion tests. Fitness proxies cannot in general be used for determin-

ing epistasis. Although it is possible to study epistasis of the proxy

phenotype, additive proxy data does not in general imply absence of

epistasis with respect to fitness.

Experimentally, epistatic interactions have been measured in several

genetic systems, including E. coli (Khan et al. 2011; Weinreich, De-

laney, et al. 2006; Poelwijk, Kiviet, et al. 2007), HIV-1 (Silva et al.

2010; Segal, Barbour, and Grant 2004), and other viruses (Wylie and

Shakhnovich 2011; Sanjuán 2010). These and similar studies involve

the analysis of standing genetic variation or spontaneous mutations

(Bonhoeffer et al. 2004; Bershtein et al. 2006), engineered site-directed

mutations (Sanjuán, Moya, and Elena 2004; Weinreich, Delaney, et

al. 2006), and combinations of both (Sanjuán, Cuevas, et al. 2005;

Poon and Chao 2006). Competition experiments are also frequently

employed to learn mutational fitness effects. For example, Sanjuán,

Moya, and Elena (2004) studied the distribution of deleterious muta-

tional effects in RNA viruses using this approach. Such experiments

are typically run on single-nucleotide substitution mutants produced

by site-directed mutagenesis. However, little is known about whether

or not it is possible to learn higher order genetic interactions from the

data produced in competition experiments.

Due to the rapid growth of the number of possible interactions with

the number of loci, all interactions can exhaustively be studied only

for a small number of loci. At the human genome scale, for example, a

complete study of only pairwise gene interactions would already require

hundreds of millions of experiments. On the other hand, for smaller

organisms, such as yeast, all pairwise and several three-way gene in-

teractions have been measured experimentally (Costanzo et al. 2010).

Only when restricting to a small set of preselected loci, can one assess

all combinations of mutations. This approach has been pursued, for

example, by Weinreich, Delaney, et al. (2006) for a five-locus system

associated with bacterial drug resistance.

Historically, the study of genetic interactions was mostly restricted

to pairwise epistasis. According to Crow and Kimura (p. 224, 1970)
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higher order interactions were generally believed not to be significant

in nature, with references to Fisher, Haldane, and Wright. More re-

cent arguments for the same view have been stated in the context of

protein folding (Gupta and Adami 2016). On the other hand, empiri-

cal findings suggest that the opposite is true for many other systems.

For example, Weinreich, Lan, et al. (2013) argue that three-way and

four-way interactions can be as strong as pairwise epistasis and refer to

various empirical fitness studies. A similar view is expressed in Sailer

and Harms (2017). Although the significance of higher order interac-

tions may vary between systems, the topic has not been thoroughly

investigated. This is partly due to lack of adequate methodology to

quantitatively assess the interactions underlying an observed empiri-

cal fitness landscape. Improved mathematical and statistical tools for

detecting higher order interactions, as well as more empirical results,

are necessary for more conclusive answers regarding the importance of

higher order interactions.

In this paper, we consider fitness data that comes in the form of

pairwise comparisons. Such data are frequent in practice and can arise

in different ways. First, some assays rely on comparing the fitness of

two genotypes, for example, by letting them grow in direct competi-

tion. Each competition experiment is informative about which of the

two genotypes has higher fitness, without estimating the fitness val-

ues themselves. Second, direct but uncertain fitness measurements are

also often summarized as pairwise fitness relations by recording only

whether two genotypes displayed significantly different fitness values or

not. Third, rather than fitness itself, a fitness proxy, i.e., a phenotype

closely related to fitness, may be considered. Fitness proxies cannot be

used directly to measure epistasis, because they generally do not pre-

serve fitness linearity (Gong, Suchard, and Bloom 2013), but if proxy

data preserves pairwise comparisons, they may be used instead. Lists

of mutants found in a new environment, such as, for example, a new

host for a pathogen or a drug environment can be utilized similarly.

Assuming that the capability to transition to and survive in the new

environment is an indication of higher fitness, this type of observational
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data also provides pairwise fitness comparisons. Similarly, the popu-

lation frequency of genotypes can sometimes be considered to draw

conclusions about fitness. For example, by employing a specific model

of viral evolution, fitness was inferred computationally from deep se-

quencing data of an HIV-1 population, and pairwise credible fitness

differences were reported (Seifert et al. 2015).

Irrespective of how they were obtained, any consistent set of pairwise

fitness relations can be regarded as a partial order of the genotypes with

respect to fitness. Two specific types of partial orders play important

roles for fitness landscapes. First, if comparisons are available for all

pairs of genotypes, then the partial order is a total order, or rank order.

In this case, all genotypes are ordered according to fitness. Second,

several studies compare fitness only between mutational neighbors, i.e.,

genotypes which differ at exactly one locus. The resulting partial orders

are referred to as fitness graphs and have recently been used extensively

(Ogbunugafor, Wylie, et al. 2016; Wu et al. 2016; Smith and Cobey

2016; Mira et al. 2015).

The question addressed in the present study is whether higher order

interactions can be inferred from rank orders, fitness graphs, and gen-

eral partial orders. Connections between rank orders and fitness graphs

to epistasis and global properties of fitness landscapes have been ob-

served repeatedly (Greene and Crona 2014; Poelwijk, Tănase-Nicola,

et al. 2011; Weinreich, Delaney, et al. 2006; Weinreich, Watson, and

Chao 2005). Most recently, Wu et al. (2016) discussed an example of

a fitness graph that implies higher order epistasis. It is known that

some fitness graphs imply epistasis and an exact condition was given

in Crona, Greene, and Barlow (2013). The significance of rank orders

of genotypes for epistasis was recognized by Weinreich, Watson, and

Chao (2005). The authors introduced the concept of sign epistasis,

which refers to the two-locus system. Here, we develop a more general

approach that applies to any number of loci and can be regraded as a

higher order analogue to sign epistasis. In addition to the theoretical
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work mentioned above, rank order arguments have been used for devel-

oping antimicrobial treatment strategies (e.g Smith and Cobey 2016;

Nichol et al. 2015; Mira et al. 2015).

However, the full potential of rank order consideration for the com-

prehensive analysis of epistatic gene interactions in general n-locus ge-

netic systems has not been exploited. Furthermore, to the best of our

knowledge the general case of arbitrary partial fitness orders has yet to

be considered.

Here, we develop quantitative tools to detect virtually any type of

gene interaction described in the literature, including epistasis as de-

scribed by Fourier coefficients, Walsh coefficients, and circuits (Beeren-

winkel, Pachter, and Sturmfels 2007; Weinreich, Lan, et al. 2013). In

particular, our approach applies to total n-way epistasis, conditional

epistasis, and marginal epistasis. We used our approach to analyze

genetic interactions in HIV-1, the parasite Plasmodium vivax, the fun-

gus Asbergillus niger , and β-lactamase antibiotic resistance systems.

In all cases, we detect higher order interactions based only on partial

information about the fitness order of genotypes, without knowing or

estimating the actual fitness values.

2. Results

We consider genetic systems consisting of n biallelic loci. A genotype

can then be represented as a binary string of zeros and ones of length

n, where 0 denotes the wild-type allele and 1 the alternative allele. We

assume that fitness is additive in the absence of epistasis. The fitness of

a genotype g is denoted by wg, and we assume that the fitness landscape

w is generic in the sense that no two genotypes have exactly the same

fitness.

A complete analysis of all epistatic interactions would require fitness

measurements of all 2n genotypes. However, this level of completeness

is rarely available in empirical data sets due to experimental design

or an infeasible number of genotypes. To address this limitation, we

developed methods that are applicable to partial orders of genotypes

according to fitness. For example, the two fitness relations w01 > w00
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and w10 > w11 together define a partial order. One can always extend

a partial order to a rank order, i.e., a total order of the genotypes in

the system from highest to lowest fitness. For example, the total order

w10 > w11 > w01 > w00 extends the partial order above. Our goal is to

understand what fitness rank orders and more generally partial fitness

orders of genotypes reveal about gene interactions.

Two-locus case. We first consider epistasis for a biallelic two-locus

population consisting of the unmutated genotype, or wild type, 00, the

two single mutants 01 and 10, and the double mutant 11. In this case,

epistasis is denoted by ε2, where the index 2 refers to the number of

loci. It is defined as the deviation from additivity,

ε2 = (w00 + w11)− (w01 + w10). (1)

The system has no epistasis if ε2 = 0, positive epistasis if ε2 > 0 and

negative epistasis if ε2 < 0.

We first assume that the available information on fitness is a rank

order of the genotypes (Figure 1). The rank order is sometimes suffi-

cient for determining that the system has epistasis. For instance, the

rank order w11 > w00 > w10 > w01 (Figure 1 rank order 3), implies

w00 + w11 > w01 + w10, so ε2 > 0. It follows that the rank order alone

allows one to detect positive epistasis without knowledge of the actual

fitness values. There are 24 rank orders of the biallelic two-locus sys-

tem. Among these, eight imply positive epistasis, eight imply negative

epistasis, and eight do not permit any inference regarding epistasis. In

total two thirds of the rank orders imply epistasis. Each rank order

which implies epistasis also determines the sign of ε2 (Figure 1).

Sometimes even a partial order of the genotypes is sufficient for de-

termining that the system has epistasis. For instance, if we know that

w01 > w00 and w10 > w11, then we can infer that the system has nega-

tive epistasis (Figure 2 (a)). To see this, we consider all rank orders that

extend the partial order. There are six such total extensions, namely

rank orders 9, 10, 12, 13, 14, and 16 in Figure 1, and all imply negative

epistasis. We conclude that the partial order implies epistasis, based
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ε2 < 0

ε2 = 0
or

ε2 6= 0

Figure 1. All 24 rank orders of the biallelic two-locus
system, where the 16 colored rank orders imply epista-
sis. Red (top row) indicates positive epistasis and blue
(middle row) negative epistasis.

on only two fitness comparisons and without knowing any of the actual

fitness values. This observation holds in general: If all total extensions

imply epistasis then the same is true for the partial order. We will use

this argument repeatedly.

A partial order can also be compatible with several rank orders,

some of which might imply epistasis while others do not. In this case,

the information is not sufficient to detect epistasis from the partial

order alone. For example, the partial order w00 > w01 > w10, w11

is compatible with the two rank orders w00 > w01 > w11 > w10 and

w00 > w01 > w10 > w11 (Figure 2(b)). The first rank order implies

positive epistasis, but the other one does not. Consequently, the partial

order does not reveal whether or not the system has epistasis, and

further comparisons are needed for a conclusion.

Fitness graphs constitute an important subclass of partial orders,

as they often are the reported result of experiments, and because of

their relevance for evolutionary processes (Figure 3). Briefly, the nodes
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Figure 2. (a) A partial fitness order of genotypes. The
rank orders that extend this partial order are orders (9),
(10), (12), (13), (14), and (16) in Figure 1. All of them
imply negative epistasis (ε2 < 0). (b) A partial order
of genotypes with all its total extensions shown on the
right. The first extension shown in red implies positive
epistasis (ε2 > 0), while the second one in black does
not.

of a fitness graph represent genotypes and for each pair of mutational

neighbors, i.e., genotypes which differ at exactly one locus, an arrow

points toward the genotype of higher fitness (SectionA.3).

A fitness graph implies epistasis exactly when all rank orders com-

patible with the graph do, as is the case for partial orders in general.

For example, Figure 3 shows the four fitness graphs where genotype

00 has lowest fitness in the system. The graphs (b), (c) and (d) imply

epistasis, whereas (a) is compatible with additive fitness.

A couple of observations from Figure 3 are useful for determining

if a system is compatible with additive fitness. First, any rank order

compatible with the graph (a) has the following property: For each

genotype, replacing 0 by 1 results in a genotype of higher fitness. If

the genotype 00 has minimal fitness in the system, then rank orders

are compatible with additive fitness exactly if they satisfy the property.

The second observation is that a fitness graph such that 00 has minimal

fitness is compatible with additive fitness exactly if all arrows point up.

Both observation generalize to any number of loci, and can be phrased

in full generality (see Section A.3).
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(a) 00

01 10

11

(b) 00

01 10

11

(c) 00

01 10

11

(d) 00

01 10

11

Figure 3. For a biallelic two-locus system where the
genotype 00 has the lowest fitness, there are four fitness
graphs. The graph (a) is compatible with additive fit-
ness, whereas the remaining graphs imply negative epis-
tasis.

Three-locus case. The biallelic three-locus system consists of the

eight genotypes 000, 001, 010, 011, 100, 101, 110, and 111. The system

has total three-way epistasis if

ε3 = (w000 +w011 +w101 +w110)− (w001 +w010 +w100 +w111) 6= 0. (2)

For the three-locus system, we distinguish between fitness landscapes

with no epistasis (fitness is additive), with pairwise but not higher

order epistasis (fitness is not additive but ε3 = 0), and with three-way

epistasis (ε3 6= 0)

Some rank orders imply three-way epistasis, similar to our obser-

vation of epistasis in the two-locus case. The condition for when a

rank order implies three-way epistasis is remarkably simple, and we

demonstrate it with an example. Consider the rank order

w110 > w111 > w101 > w011 > w100 > w010 > w000 > w001. (3)

We can represent this rank order by a word in the letters e and o using

the following procedure. The genotype 110 with the highest fitness is
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represented by e because it has an even number of 1’s, the genotype

111 with the second highest fitness is represented by o because it has

an odd number of 1’s, and so forth. Working from highest to lowest

fitness, we obtain the word

e o e e o o e o (4)

If one reads the word letter by letter from left to right, then one

has never encountered more o’s than e’s. This property means that

eoeeooeo is a Dyck word (Stanley 1999).

For a biallelic three-locus system, a rank order implies three-way

epistasis exactly if its associated word (where the role of e and o can

be interchanged) is a Dyck word (Supplementary Information, Propo-

sition 1). This simple rule allows us to conclude that an empirical

system has three-way epistasis. As in the two-locus case, a landscape

may have three-way epistasis even if the rank order does not imply

it. For biallelic three-locus systems, there are in total 40,320 rank or-

ders, of which 16,128 (40%) imply three-way epistasis (Supplementary

Information, Proposition 1).

Fitness graphs can be analyzed by using our results on rank orders

as in the two-locus case. Figure 4 shows three fitness graphs for three-

locus systems. The fitness graph (a) implies three-way epistasis, the

graph (b) pairwise but not higher order epistasis, and the graph (c) is

compatible with additive fitness.

There are in total 1, 862 fitness graphs for the biallelic three-locus

system, of which 698 graphs (37%) imply three-way epistasis. In prin-

ciple one can check a particular three-locus system for higher order

epistasis using this result. However, it is not convenient to work with

a list of over one thousand graphs. In order to make the problem

more tractable, we can utilize the fact that some fitness graphs are

isomorphic (Supplementary Figure 8). There are 54 distinct isomor-

phism classes of graphs for the three-locus system, of which 20 imply

higher order epistasis (Supplementary Information, Section A.3). Con-

sequently, to detect three-way epistasis, one can find the isomorphism
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class and then check 54 graphs, namely one for each isomorphism class

(Supplementary Information, Figure 10).

(a) 000

001010

011

100

101110

111

(b) 000

001010

011

100

101110

111

(c) 000

001010

011

100

101110

111

Figure 4. The fitness graph (a) implies three way epis-
tasis, the graph (b) implies epistasis, but not higher or-
der epistasis, and (c) does not imply epistasis, since all
arrows point up.

We complete the consideration of the three-locus case by analyzing

partial orders. Again, in favorable cases one can infer three-way epis-

tasis. Indeed, if there exists a partition of all eight genotypes into four

pairs (ge, go), where e and o are as above, and wge > wgo for each pair,

then one can conclude three-way epistasis (Supplementary Information,

Proposition 7).

General n-locus case. The results on rank orders and higher order

epistasis for n = 3 generalize to any number of loci. The definition

of n-way epistasis in an n-locus system is analogous to the three-locus

case, as is the condition for when rank orders imply n-way epista-

sis. Accordingly, a characterization of rank orders that imply n-way

epistasis can be phrased in terms of Dyck words (Supplementary Infor-

mation, Proposition 1). From this result it follows that the fraction of

rank orders that imply n-way epistasis is 2/(2n−1 + 1) (Supplementary

Information, Corollary 2) and that it can be determined in a compu-

tationally efficient manner whether or not a rank order implies n-way

epistasis.

Rank order methods are useful for analyzing the total n-way epista-

sis for an n-locus system, as demonstrated. However, a single quantity

cannot capture all possible gene interactions. Rank order approaches
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have the capacity to reveal finer interactions as well. We start with a de-

scription of gene interactions based on the approach in (Beerenwinkel,

Pachter, and Sturmfels 2007), before exploring what rank orders can

reveal about these interactions. For simplicity, we restrict our analy-

sis to the three-locus system, although the arguments used are readily

extendable to any number of loci n.

First, we consider gene interactions that directly correspond to the

two-locus case by fixing one allele at the third locus. For example, if

we fix the third locus at 0, then

a = w000 + w110 − w010 − w100

measures pairwise epistasis between the first and second locus. Simi-

larly, if we set the third locus to 1, then

b = w001 + w111 − w011 − w101

measures pairwise epistasis between the first and the second locus. The

interactions described by a and b are referred to as conditional epistasis.

An example of an interaction with no correspondence in the two-

locus setting is

m = w001 + w010 + w100 − w111 − 2w000,

which compares the fitness of the triple mutant 111 to the three single

mutants. This expression is negative if the triple mutant has higher

fitness than one would expect based on the fitness effects of the three

single mutations. Expressions of these kinds are known as circuits, or

minimal dependence relations, and for the biallelic three-locus system,

there are twenty of them in total, including a, b, and m (Supplementary

Information, Section A.2).

If interactions a and b differ substantially, it may be important to

consider both of them. However, sometimes we are rather interested

in the average interaction for two loci, i.e., epistasis averaged over all

genetic backgrounds. We refer to such average effects as interaction

coordinates. The four interaction coordinates differ from Walsh coeffi-

cients only by a constant scaling factor.
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Arguments based on Dyck words can be used for analyzing rank or-

ders and finer gene interactions, including interaction coordinates and

circuits, exactly as for three-way epistasis. For each circuit and inter-

action coordinate, we identify all rank orders that determine its sign.

The characterization is given in terms of general Dyck word conditions.

We found that for each interaction coordinate, 2/5 of all rank orders

determine its sign; for each circuit corresponding to either conditional

two-way interaction or marginal epistasis between two pairs of loci, 2/3

of all rank orders determine its sign; and for each circuit relating the

three-way interaction to the total two-way epistasis, 1/2 of all rank

orders determine its sign (Supplementary Information, Corollary 4).

The signs of all twenty circuits determines the polyhedral shape of

the fitness landscape (Beerenwinkel, Pachter, and Sturmfels 2007). The

shape combines the circuit information into a more manageable object.

However, no rank order determines a shape for n = 3 (Supplementary

Information, Section A.2).

Our tools for detecting gene interactions work for total n-way epis-

tasis, interaction coordinates and circuits. Moreover, our approach

applies to any type of gene interaction that can be expressed by a

linear form (Supplementary Information, Theorem 3), such as Fourier

coefficients (Beerenwinkel, Pachter, and Sturmfels 2007) and Walsh

coefficients (Weinreich, Lan, et al. 2013). We have implemented al-

gorithms for detecting the gene interactions described in this sec-

tion, both for rank orders and partial orders for three locus systems

(https://github.com/gavruskin/fitlands#fitlands). In particu-

lar, algorithms for three-way epistasis, interaction coordinates and cir-

cuits are provided (Supplementary Information, Section B).

Analysis of empirical fitness data. As proof of principle, we ap-

plied our tools to fitness data from a diverse set of biological systems,

ranging from HIV-1 (Segal, Barbour, and Grant 2004), malaria (Og-

bunugafor and Hartl 2016), antibiotic resistance (Mira et al. 2015), to

the fungus Aspergillus Niger (Franke et al. 2011). Our approach re-

veals higher order epistasis for all of these systems, only by considering

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2017. ; https://doi.org/10.1101/137372doi: bioRxiv preprint 

https://github.com/gavruskin/fitlands#fitlands
https://doi.org/10.1101/137372
http://creativecommons.org/licenses/by/4.0/


INFERRING GENETIC INTERACTIONS 15

rank orders and partial orders of genotypes, without the need to access

direct fitness measurements or estimates.

Our first application is to the HIV-1 data published by Segal, Bar-

bour, and Grant (2004). Following Beerenwinkel, Pachter, and Sturm-

fels (2007), we consider the three-locus biallelic system that consists of

the mutation L90M in the protease and mutations M184V and T215Y

in the reverse transcriptase of HIV-1. Fitness was measured as the

number of offspring in a single replication cycle of the virus in the

original study, and was reported relative to the wild-type strain NL4-3

on a logarithmic scale. The data consist of 288 fitness measurements,

including between 5 and 214 replicates per genotype.

The following rank order was obtained by comparing the mean fitness

of the eight genotypes:

w000 > w100 > w011 > w110 > w101 > w001 > w010 > w111,

where 000 corresponds to the sequence of amino acids LMT and 111

to MVY comprising the three selected loci. This rank order implies

positive three-way epistasis because the associated word

e o e e e o o o

is a Dyck word. It follows that the three mutations under consideration

together have a stronger effect on fitness than one would predict from

single and double mutants. A closer inspection of the word reveals more

information. If we swap any two adjacent letters in the word, then we

still have a Dyck word, with the single exception of the first two letters.

In other words, only one pair of adjacent genotypes in the rank order,

namely 000 and 100, could violate the conclusion if transposed.

If the experiment was to continue, our analysis could be used to di-

rect the data collection process. Indeed, the argument above suggests

that the position of the genotype 100 may violate the conclusion of pos-

itive three-way epistasis. To quantify the uncertainty in the ranking

of 100 with respect to the wild type 000, we employed the Wilcoxon

rank sum test on the replicate fitness measurements. The p-value of

the test is 0.47 for the relation w000 > w100, which implies considerable
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uncertainty and justifies our recommendation of further experiments

to clarify the position of 100. Importantly, the suggested experiment

reduces the number of measurements required to make a more robust

conclusion about epistasis considerably, namely to one out of 28 possi-

ble comparisons.

We proceeded by considering other types of gene interactions in this

data set. When considering all 20 circuits, the rank order implies inter-

actions for 55% of the circuits, with positive sign for 30% and negative

for 25% of the circuits. This result is consistent with the conventional

statistical approaches that use direct fitness measurements. Indeed,

since the empirical study of Segal, Barbour, and Grant (2004) pro-

vided multiple fitness measurements of each genotype, it was possible to

compare the conclusions of our analysis with statistical tests based on

fitness estimates (Supplementary Information, Section B). Testing for

interactions directly based on the replicate fitness measurements of each

genotype confirmed our results based only on the rank order. Specif-

ically, both approaches detected three-way epistasis. Furthermore, 11

of the 20 circuit interactions have been detected by our method and

confirmed by t-test. In addition to the 11 interactions, the t-test found

6 circuit interactions as significant (Supplementary Information, Ta-

ble 2). We emphasize that the rank order approach required much less

information to arrive at the same conclusions, thus demonstrating the

power of the method.

We conclude that the three sites in the HIV-1 genome under consid-

eration are prone to a diverse set of interactions. Specifically, the strong

support for the three-way epistasis, along with the 55% of informative

circuit interactions, imply that the three loci together interact in a

complex manner, meaning that the interactions cannot be explained

using pairwise interactions alone. Thus, in this data set, higher order

interactions have a strong impact on the fitness landscape.

Our second application is to a study of antimicrobial drug resis-

tance in malaria (Ogbunugafor and Hartl 2016). The authors measured

growth rates for several mutants of Plasmodium vivax under exposure

to the antimalarial drug pyrimethamine. We identified higher order
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epistasis by analyzing rank orders. More precisely, we considered a

three-locus sub-system of the study that consists of mutations N50I,

S58R, and S117N, in the context of T173L, a fixed mutation, under

nine different concentrations of pyrimethamine. The genotypes com-

prising positions 50, 58, and 117 are labeled 000 (NSS), 100, 010, 001,

110, 101, 011, and 111 (IRN). The three highest concentrations of the

drug resulted in the following rank orders:

w111 > w011 > w001 > w101 > w010 > w100 > w110 > w000

w111 > w011 > w001 > w010 > w100 > w101 > w110 > w000

w111 > w011 > w010 > w001 > w100 > w110 > w101 > w000.

The corresponding words are oeoeooee for the first rank order, ob-

tained under the highest concentration of the drug, and oeoooeee for

the second and third rank orders. Since we obtain Dyck words in all

cases, the system has negative three-way epistasis for the three highest

concentrations of the drug. This consistency shows that the result is

robust.

Next, we applied our tools to a study of the TEM-family of β-

lactamase, associated with antibiotic resistance (Mira et al. 2015), The

study measured growth rates for 16 genotypes exposed to 15 differ-

ent antibiotics. Specifically, all 16 genotypes that combine subsets of

the four amino acid substitutions M69L, E104K, G238S, N276D found

in TEM-50, including eight known enzymes, were created using site-

directed mutagenesis. We considered the fitness graph obtained when

the system was exposed to the antibiotic FEP Cefepime at a concentra-

tion of 0.0156 µg/ml (Figure 5). The fitness graph implies higher order

epistasis (Supplementary Information, Proposition 7), that is, the fit-

ness of TEM-50 cannot be predicted even with complete knowledge of

the fitness values of the remaining genotypes in the system. We con-

clude that even though some of the single and triple mutants confer

low antibiotic resistance, a large population of triple mutants alone is

more prone to become antibiotic resistant due to the epistatic fitness
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0110(TEM-15)1001(TEM-35)0101 1010 1100

1000(TEM-33)0100(TEM-17)0010(TEM-19)0001(TEM-84)

1110110110110111

0011

0000(TEM-1)

1111(TEM-50)

Figure 5. The TEM-family of β-lactamase contributes
to antibiotic resistance problems in hospitals. The fit-
ness graph shows a four-locus system consisting of the
wild type, TEM-1, the quadruple mutant, TEM-50, and
all intermediate mutants, including six clinically found
mutants in the TEM family. The mutation M69L cor-
responds to 1000, E104K to 0100, G238S to 0010, and
N276D to 0001. Growth rates were measured for the
16 genotypes under exposure to the antibiotic FEP Ce-
fepime, and the fitness graph was determined accordingly
(Mira et al. 2015). The graph reveals higher order epis-
tasis.

advantage of TEM-50, as compared to a setting with no higher order

epistasis.

Finally, we investigated a study of the filamentous fungus Aspergillus

Niger (Franke et al. 2011). We considered a system consisting of the

wild type and all combinations of the four individually deleterious mu-

tations fwnA1, leuA1, oliC2 and crnB12 (Figure 6). Fitness was es-

timated with two-fold replication by measuring the linear mycelium

growth rate in the original study. The fitness graph implies higher

order epistasis (Supplementary Information, Proposition 7).

All four arrows incident to 0000 point towards the genotype, so that

the genotype 0000 is a peak in the landscape. The same is true for

the genotypes 1100, 0011, and 1001. Because of the four peaks, it is

possible that the fungus population gets stranded at a suboptimal peak
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Figure 6. The fitness graph shows a four-locus sys-
tem for the filamentous fungus Aspergillus Niger . The
system consists of all combinations of the four individ-
ually deleteriouis mutations fwnA1, leuA1, oliC2 and
crnB12. The landscape has in total four peaks, labeled
0000, 1100, 0011 and 1001.

during the course of evolution (we do not necessarily assume that the

starting point for an evolutionary process is at 0000). In contrast, an

additive fitness landscape is single peaked. This example illustrates

that epistasis may have an impact on the evolutionary dynamics. Sev-

eral peaks can make the evolutionary process less predictable, depend-

ing also on other factors such as population size, mutation rate, etc.

More generally, for three-locus fitness graphs, we analyzed the impact

of higher order epistasis versus only pairwise epistasis systematically.

We found that higher order epistasis correlates with more peaks as

well as other features that can lead to involved evolutionary dynamics

(Supplementary Information, Section A.4).

3. Discussion

Gene interactions play a critical role in evolutionary processes. Im-

portant features of fitness landscapes, such as the number of peaks,

and accessible evolutionary trajectories, depend on epistastic gene in-

teractions. The importance of higher order versus pairwise epistasis,
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within and among genes or in non-coding regions, as well as the im-

pact of higher order epistasis on evolutionary dynamics, has not been

thoroughly investigated. Progress in all of these areas requires ade-

quate mathematical and statistical approaches, in addition to empirical

studies.

Here, we have developed new quantitative tools for detecting gene

interactions from empirical data. The main advantage of our tools is

that they can reveal gene interactions from the types of data frequently

generated in empirical studies, specifically rank orders, fitness graphs,

and general partial orders of genotypes. The reasons why, in prac-

tice, these types of data are available more often than precise fitness

measurements for each genotype are manifold. They include restricted

comparative experimental designs and known and unknown confound-

ing factors in measuring fitness that can result in uncertain and biased

estimates. The methods presented here allow for studying epistatic

interactions even when direct fitness measurements are lacking or only

a subset of pairwise fitness comparisons is available, either as the im-

mediate outcome of the experiment or the reported summary.

We provide a complete characterization of rank orders that imply

higher order epistasis, along with precise results for fitness graphs of

three-locus systems. In principle, our approach applies to general par-

tial orders as well, and we have implemented algorithms accordingly.

However, because of the increasing complexity it would be desirable

to have theoretical results for handling large systems. In particular, a

characterization of fitness graphs that imply higher order epistasis is

of independent mathematical interest.

We found that for biallelic three-locus systems, 40% of all possible

rank orders and 37% of all possible fitness graphs imply higher or-

der epistasis. These fractions suggest that our methods have a good

capacity to detect higher order epistasis among three loci, even if ex-

act and complete fitness measurements or estimates are not available.

Moreover, the power of our methods was demonstrated for a diverse

set of biological systems. We detected higher order epistasis for HIV,
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malaria, the fungus Aspergillus Niger, and antibiotic resistance sys-

tems. Our findings suggest that genetic interactions beyond two-way

epistasis shape the fitness landscapes of these genetic systems and may

play an important role in determining their evolutionary trajectories.

We also exhaustively investigated various types of higher order inter-

actions in HIV-1 and discovered a complex pattern of interactions,

confirming that our approach is powerful enough to detect finer gene

interactions. Specifically, we identified over twenty interactions by con-

ventional approaches, and rank order methods detected about half of

them.

Another important application of our method is to experimental de-

sign. When the information available in the data does not contradict

an interaction, but is not conclusive enough to claim the interaction, for

example because the number of performed competition experiments is

too small, then the method allows for prioritizing further experiments

by suggesting additional comparisons of genotypes. This feature may

prove useful in guiding fitness experiments that aim for testing specific

interactions and allow for iteration.

For a more theoretical perspective, we emphasize the distinction be-

tween rank order-induced gene interactions, and interactions that do

not change the rank order of genotypes. This distinction was pointed

out for bialellic two-locus subsystems by Weinreich, Delaney, et al.

(2006), who introduced the term ”sign epistasis”. In our terminology,

sign epistasis is a special case of rank order-induced epistasis. Rank or-

der induced epistasis can thus be considered a higher order analogue to

sign epistasis, and this new concept is meaningful in a broader context.

Indeed, there exist a number of possible ways to quantify and interpret

higher order interactions (Weinreich, Lan, et al. 2013; Beerenwinkel,

Pachter, and Sturmfels 2007; Hallgŕımsdóttir and Yuster 2008), and

our rank order approach applies to virtually any type of gene interac-

tion. In particular, we can detect interactions as described by Fourier

coefficients and Walsh coefficients. From our general argument based

on Dyck words we investigated three-locus systems, and determined

the number of rank orders that imply circuit interactions, including
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conditional and marginal epistasis, and similarly for interactions coor-

dinates. The method works equally well for for other interactions.

Further investigation of rank order-induced interaction has the po-

tential to relate global and local properties of fitness landscapes, simi-

larly to results on sign epistasis (Weinreich, Delaney, et al. 2006; Poel-

wijk, Tănase-Nicola, et al. 2011; Crona, Greene, and Barlow 2013).

Global properties concern peaks and mutational trajectories in the fit-

ness landscape, whereas local properties concern, for instance, fitness

graphs for small system. The relation between global and local prop-

erties is important since only local properties can be easily observed in

experiments or nature.

Although we have applied our method here only to fitness, any other

continuous phenotype of interest can be analyzed in exactly the same

manner. The fitness landscape w is then replaced by a more general

genotype-to-phenotype map. For example, rather than using it as a fit-

ness proxy, one may be concerned about the drug resistance phenotype

itself and its genetic architecture.

In summary, rank order methods have potential for the interpreta-

tion of empirical data, as well as for relating higher order gene inter-

actions and evolutionary dynamics. Our approach facilitates detecting

higher order epistasis from a very broad range of empirical data, and

will therefore contribute to enhancing our general understanding of

empirical fitness landscapes and epistatic gene interactions.
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Supplementary Information

A. Mathematical framework and proofs

Here we provide proofs for the results in the main text, and give a

brief background on the discrete Fourier transform, Dyck words, and

Catalan numbers. We start with rank orders and the total n-way epis-

tasis, followed by more general results on rank orders, circuits and other

linear forms. The next topic is epistasis and fitness graphs, including

some related graph theory. Finally we provide a few observations on

epistasis and partial orders.

Gene interactions for a biallelic n-locus system can be described in

terms of the Fourier transform for (Z2)
n defined as

ui1i2...in =
1

2n−1 ·
1∑

j1=0

1∑
j2=0

· · ·
1∑

jn=0

(−1)i1j1+i2j2+···+injn wj1j2...jn .

The interaction coordinate u1...1 measures the total n-way epistasis. By

abuse of notation we will ignore the scaling factor 1
2n−1 , so that

u1...1 =
1∑

j1=0

1∑
j2=0

· · ·
1∑

jn=0

(−1)j1+j2+···+jn wj1j2...jn .

In particular,

u11 = w00 − w10 − w01 + w11 = ε2

and

u111 = w000 − w100 − w010 − w001 + w110 + w101 + w011 − w111 = ε3

as defined in Eqs. 1 and 2 in the main text. A biallelic three-locus sys-

tem has three-way epistasis exactly if u111 6= 0. Otherwise the system

has only pairwise interactions. Similarly, a biallelic n-locus system has

(total) n-way epistasis exactly if u1...1 6= 0.

A.1. Rank orders. We will determine the number of rank orders

which imply n-way epistasis. The proof depends on Catalan numbers

and Dyck words (Stanley 1999). Let Ci denote the ith Catalan number

for i ≥ 0, that is, Ci = (2i)!
(i+1)!i!

. In particular, C0 = C1 = 1, C2 = 5,
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C3 = 14 and C4 = 42. A Dyck word of length 2n in the letters X and

Y is a string consisting of n X’s and n Y ’s such that no initial segment

of the string has more Y ’s than X’s. For instance, the Dyck words of

length 4 are XXY Y and XYXY . The initial segments of XXY Y are

X, XX, XXY , and XXY Y .

Proposition 1. Consider a biallelic n-locus system. The number of

rank orders which imply n-way epistasis is

(2n)!× 2

2n−1 + 1

Proof. There are (2n)! rank orders in total. Let ei denote the fitnesses

of genotypes with an even number of 1’s in the subscripts (w0...0, w110...0,

and so forth) and oi the fitnesses of genotypes with an odd number of

1’s, ordered in such a way that ei > ei+1 and oi > oi+1 for all i. We

will refer to even and odd elements from now on. Let u1...1 denote the

interaction coordinate as defined above. Notice that u1...1 = 0 exactly

if
∑

i ei−
∑

i oi = 0. Consequently a rank order implies positive n-way

epistasis (u1...1 > 0) when the sum
∑

i (ei − oi) is positive for all fitness

landscapes compatible with the rank order. It is therefore sufficient to

count such rank orders.

We define a map from fitness rank orders to words in the alphabet

{e, o} as follows: ei 7→ e, oi 7→ o. For instance, the order w00 > w11 >

w10 > w01 is mapped to eeoo. We claim that a rank order satisfies∑
i (ei − oi) > 0 exactly when it is mapped to a Dyck word (where e

precedes o).

It is immediate that
∑

i (ei − oi) > 0 holds if the rank order is

mapped to a Dyck word. Conversely, suppose that a rank order is

not mapped to a Dyck word. Let s be the least number such that the

number of o’s exceeds the number of e’s for an initial segment of length

s (note that s has to be odd in this case) and let j = s+1
2

. Clearly one

can make the sum of
∑j

i=1 (ei − oi) negative for a particular choice of

ei and oi. By choosing the remaining numbers ei, oi sufficiently small,

we get
∑

i (ei − oi) < 0, which proves the claim.
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It remains to count the rank orders where
∑

i (ei − oi) > 0. Such

rank orders are mapped to Dyck words (where e precedes o) consisting

of 2n−1 e’s and 2n−1 o’s. There are C2n−1 such Dyck words (Stanley

1999). For each word there are (2n−1)! × (2n−1)! fitness rank orders

which map to the word. Indeed, one can choose the ordering of even

and odd elements each in (2n−1)! different ways.

In total there are C2n−1 × (2n−1)! × (2n−1)! fitness rank orders such

that
∑

i (ei − oi) > 0 for all landscapes. By symmetry, the same

number of fitness rank orders satisfy the negative epistasis condition∑
i (ei − oi) < 0. One verifies that

C2n−1 × (2n−1)!× (2n−1)!× 2 =
(2n)!× 2

(2n−1 + 1)
,

which completes the proof. �

A few observations in the proof of Proposition 1 are of interest.

Importantly, the proof gives a computationally efficient method (linear

in the number of genotypes) for checking if a rank order implies n-way

epistasis. Indeed, the rank order implies higher order epistasis exactly

if it is mapped to a Dyck word. Moreover, the proposition states that
(2n)!×2
(2n−1+1)

orders imply n-way epistasis. From the proof it is clear that

half of these orders imply positive n-way epistasis (u1...1 > 0) and the

other half negative n-way epistasis (u1...1 < 0). Also, the proof points

out some symmetries. If a rank order implies epistasis, then the same

is true for rank orders obtained by (i) any permutation of the even

elements, (ii) any permutation of the odd elements, and (iii) the flip

obtained by replacing every “<” by “>” in the rank order. It follows

that each rank order that implies three-way epistasis belongs to a class

of 1152 (= 4! · 4! · 2) elements, which differ by the operations (i)–(iii)

only.

Corollary 2. The fraction of rank orders that imply n-way epistasis

among all rank orders is
2

2n−1 + 1
.
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Proof. Since the number of all rank orders is (2n)!, the result follows.

�

The results on rank orders and epistasis for 2 ≤ n ≤ 4 are summa-

rized in Table 1.

Loci Rank orders Imply epistasis Fraction
2 24 16 2/3
3 40,320 16,128 2/5
4 20,922,789,890,000 4,649,508,864,000 2/9

Table 1. Numbers and fractions of rank orders that
imply n-way epistasis.

Interestingly, no integer sequence that starts with 16, 16 128, . . . is

available at The On-Line Encyclopedia of Integer Sequences (2016).

A.2. Circuits. The proof of Proposition 1 depends on the map defined

from the rank orders to words in the alphabet {e, o}. We will use a

generalization of the map in subsequent proofs. The starting point is

a given linear form. The form determines a map from rank orders to

words. Although the idea is closely related to the previous proof, we

will work with positive and negative coefficients in the linear forms.

For that reason, we will use P and N rather than e and o (even and

odd is no longer meaningful).

We start with a clarifying example. Assume that a given linear form

has integer coefficients and that the sum of its coefficients is zero. For

instance, the form

m = w001 + w010 + w100 − w111 − 2w000

defines a map ϕm as follows: Each of the variables w001, w010, w100 corre-

sponds to the letter P (for positive), and the variable w111 corresponds

to N (for negative). The variable w000 corresponds to NN , because of

the coefficient −2. In this case, the rank order

w111 > w001 > w000 > w100 > w010 > w110 > w101 > w011
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is mapped to NPNNPP under ϕm. Specifically, starting from left

w111 corresponds to N , w001 to P , w000 to NN , w100 to P , and w100

to P . The remaining variables w110, w101, w011 do not impact the word,

since their coefficients are zero for the form m.

Definition 1. Let f be a linear form with integer coefficients. Assume

that the sum of its coefficients is zero. Let ϕf denote the map from

a total order on the variables (a rank order) to words in the alphabet

{P,N} defined as follows: Each variable of f with a positive integer

coefficient c corresponds to a substring of c letters P . Each variable

in f with a negative integer coefficient c′ corresponds to a substring

of c′ letters N . A rank order of the variables is mapped to the word

consisting of the substrings obtained for each variable with non-zero

coefficient in f . Specifically, the substrings (from left to right) of the

word correspond to the variables in the rank order (from highest to

lowest).

The proof of Proposition 1 uses e and o instead of P and N . However,

notice that the map from rank orders to words in e’s and o’s is exactly

ϕu1...1 (modulo the labeling). The next result is a generalization of

Proposition 1. The proof is similar in every step with the modification

that ϕu1...1 is replaced by ϕf for an arbitrary form f , so we omit the

details.

Theorem 3. Let f be a linear form with integer coefficients. Assume

that the sum of its coefficients is zero. Then a rank order implies that

f is not zero if and only if it is mapped to a Dyck word by ϕf .

The theorem can be applied in different contexts, and we start

with circuits for biallelic three-locus systems. Recall from the main

text that a = w000 − w010 − w100 + w110 is a circuit. Notice that

a = 0 for all additive fitness landscapes. Moreover, a is minimal with

this property, in the sense that no linear form in a proper subset of

{w000, w010, w100, w110} equals zero for all additive landscapes. The cir-

cuits for a system of genotypes are defined as such minimal dependence
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relations. For a complete description of the gene interactions one can

analyze the circuits.

There are 20 circuits a, . . . , t for three-locus systems (Beerenwinkel,

Pachter, and Sturmfels 2007), namely

a := w000 − w010 − w100 + w110

b := w001 − w011 − w101 + w111

c := w000 − w001 − w100 + w101

d := w010 − w011 − w110 + w111

e := w000 − w001 − w010 + w011

f := w100 − w101 − w110 + w111

g := w000 − w011 − w100 + w111

h := w001 − w010 − w101 + w110

i := w000 − w010 − w101 + w111

j := w001 − w011 − w100 + w110

k := w000 − w001 − w110 + w111

l := w010 − w011 − w100 + w101

m := w001 + w010 + w100 − w111 − 2w000

n := w011 + w101 + w110 − w000 − 2w111

o := w010 + w100 + w111 − w001 − 2w110

p := w000 + w011 + w101 − w110 − 2w001

q := w001 + w100 + w111 − w010 − 2w101

r := w000 + w011 + w110 − w101 − 2w010

s := w000 + w101 + w110 − w011 − 2w100

t := w001 + w010 + w111 − w100 − 2w011

The circuits a, . . . , f measure conditional two-way epistasis between

two loci when the allele at the third locus is fixed, the circuits g, . . . , l

relate marginal epistasis of two pairs of loci, and the circuits m, . . . , t
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relate the three-way interaction to the total two-way epistasis. (Beeren-

winkel, Pachter, and Sturmfels 2007).

For a given circuit, some rank orders imply that the circuit is positive,

i.e., the circuit is positive for all fitness values compatible with the rank

order. Similarly, some rank orders imply that the circuit is negative,

whereas the sign cannot be determined from other rank orders. We

will use Theorem 3 to check whether a rank order determines the sign

of a circuit or not.

Corollary 4. For the circuits a, . . . l, two thirds of all possible rank

orders determine the sign of the circuit. For the circuits m, . . . , t, one

half of all possible rank orders determine the sign of the circuit.

Proof. Fix one of the circuits from a to l and a rank order. The circuit

has exactly four variables with non-zero coefficients (for instance, for

the circuit a the variables are w000, w100, w010, w110, so that ϕa maps

rank orders to four-letter words). By Theorem 3, the rank order implies

that the circuit differs from zero when it is mapped to one of the Dyck

words PPNN , PNPN , NNPP or NPNP under ϕ, whereas the sign

of the circuit is not determined when the word is PNNP or NPPN .

One concludes that the sign of a given circuit from a to l is determined

for 2/3 of the rank orders.

Using a similar argument, we consider words of length 6 for the

circuits labeled m to t. There are in total 20 words consisting of 3 P ’s

and 3 N ’s. Ten of them are Dyck words. We conclude that the sign of

a given circuit from m to t is determined for 1/2 of the rank orders. �

The gene interactions for a biallelic three-locus system can be clas-

sified in terms of shapes of the fitness landscape, or triangulations of

the 3-cube (Beerenwinkel, Pachter, and Sturmfels 2007). There are

74 shapes for the 3-cube. The shape of the fitness landscapes is deter-

mined by the signs of the 20 circuits. It follows that rank orders provide

some information about possible shapes. However, the following result

shows that rank orders do not determine shapes.
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Proposition 5. Consider a three-locus biallelic system. No rank order

determines the shape of a fitness landscape.

Proof. The result follows from the characterization of shapes for the 3-

cube in (Beerenwinkel, Pachter, and Sturmfels 2007), where each shape

is described in terms of a circuit sign pattern. We verified computa-

tionally that no rank order implies that all the circuits have the signs

which describe a particular shape (https://github.com/gavruskin/

fitlands#analysis-of-rank-orders) . More precisely, for every cir-

cuit a, . . . , t, we determined the set of all rank orders that imply that

the circuit is positive or negative.

For every rank order, we then considered the circuit signs determined

by the order. In no case did a rank order determine all the circuit signs

necessary for describing a particular shape. �

The fact that rank orders do not determine the shape of a fitness

landscape over a three-locus system is expected. Shapes reflect inter-

actions in a very fine scaled way, whereas rank orders provide only

coarse information.

In addition to u111, there exist three other interaction coordinates

u110, u101, u011. These coordinates correspond to two-way epistasis

marginalized over the loci marked by 0 (Beerenwinkel, Pachter, and

Sturmfels 2007). We again apply Theorem 3 to identify rank orders

that determine the sign of the interaction coordinates.

Corollary 6. For each of the interaction coordinates u110, u101, and

u011, the number of rank orders which imply three-way epistasis is

16,128.

Proof. The linear form for each interaction coordinate consists of 8

elements, 4 with positive signs and 4 with negative signs. Notice that

16, 128 rank orders imply three-way epistasis, by Proposition 1. By

Theorem 3 the problem can be reduced to counting Dyck words of

length 8. It follows that the number of rank orders is 16, 128 for each

interaction coordinate. �
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The approach to epistasis given in (Weinreich, Lan, et al. 2013) de-

pends on Walsh coefficients. Notice that interaction coordinates and

Walsh coefficients are closely related in this case. Specifically, the

Walsh coefficients E110, E101, E011 differ from the interaction coor-

dinates u110, u101, u011 only by a scalar, so that Corollary 6 applies to

the coefficients as well.

A.3. Partial orders and fitness graphs. We now consider partial

orders, for instance,

w111 > w110, w100, w010, w001 > w000 > w101, w011

for a three-locus system. Arguing as in the proof of Proposition 1, the

(unknown) total order is mapped to the word oxxxxeee under ϕu1...1 ,

where xxxx is some permutation of eooo. For any such permutation

we get a Dyck word. It follows that the system has three-way epistasis.

This condition can be stated and proved in a more general form.

Proposition 7. Consider an n-locus biallelic system. Let ei and oi be

defined as in the proof of Proposition 1. If there exists a partition of

the total set of fitness values into pairs (ei, oi), where ei > oi for all i,

then one can conclude n-way epistasis. By symmetry, the same is true

for a partition where ei < oi for each pair.

Proof. We will verify that the existence of a partition as described is

equivalent to the order being mapped to a Dyck word under the map

ϕu1...1 . It is immediate that the existence of such a partition implies

that the order is mapped to a Dyck word. Conversely, if the rank

order is mapped to a Dyck word under ϕu1...1 , then one can construct a

partition as follows. One pair in the partition corresponds to the first

e and the first o in the Dyck word, a second pair corresponds to the

second e and the second o in the word, and so forth. This partition

has the desired property. �

A fitness graph is a directed acyclic graph where each node represents

a genotype, and arrows connect each pair of mutational neighbors,

directed toward the node representing the genotype of higher fitness.
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Moreover, fitness graphs are structured so that the node labeled 0 . . . 0

is at the bottom, genotypes with exactly one 1 on the level above, and

so forth (see Figure 10).

Some fitness graphs imply epistasis, whereas other fitness graphs are

compatible with additive fitness. As illustrated in the two-locus case, a

fitness graph is compatible with additive fitness if all arrows point up,

that is toward a higher level. More generally, a fitness graph implies

epistasis unless it is isomorphic to a graph with all arrows up (Crona,

Greene, and Barlow 2013).

Similarly, we can easily characterize rank orders that are compatible

with additive fitness. After relabeling genotypes, we can assume that

the genotype 0 . . . 0 has the lowest fitness in the system. Then a rank

order is compatible with additive fitness, exactly if for each genotype

replacing 0 by 1 results in higher fitness. Otherwise the rank order

implies epistasis. For instance, w00 < w10 < w01 < w11 is compatible

with additive fitness, whereas the rank order w00 < w11 < w01 < w10

implies epistasis. The claims follows immediately from the result stated

above for fitness graphs.

As we have already seen, rank orders have potential far beyond de-

tecting whether or not there is epistasis in a system. The same is true

for fitness graphs, and we proceed with higher order interactions. In

order to analyze fitness graphs and three-way epistasis, we consider the

set of rank orders compatible with a given fitness graphs. For instance,

the fitness graph in Figure 7 is compatible with the following two rank

orders:

w111 > w000 > w100 > w010 > w001 > w110 > w101 > w011, (5)

w000 > w111 > w100 > w010 > w001 > w110 > w101 > w011. (6)

The first order implies three-way epistasis (it is mapped to oeoooeee

under ϕu1,...,1 and the second does not (it is mapped to eooooeee under

ϕu1,...,1). We conclude that in this case, the fitness graph does not

imply higher order epistasis. However, if every rank order compatible

with the fitness graph implies higher order epistasis, then the fitness
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111
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010 100001

000

Figure 7. The fitness graph is compatible with the two
rank orders (5) and (6).

graph itself does imply higher order epistasis. More generally, the same

observation holds for any partial order.

Remark. A partial order implies higher order epistasis exactly if all

its total extensions imply higher order epistasis.

Indeed, if all total extensions imply higher order epistasis, then in

particular the (unknown) rank order does. The converse holds by def-

inition.

Consequently, one can in principle determine if a fitness graph im-

plies higher order epistasis by checking all of the compatible rank or-

ders. For a systematic study of the three-locus case, it is convenient to

reduce the problem to isomorphic graphs. In biological terms, isomor-

phic graphs differ by the labeling of the genotypes only (a relabeling

needs to respect the adjacency structure so that mutational neighbors

stay neighbors). Figure 8 shows 4 isomorphic fitness graphs.

As mentioned in the main text, there are in total 1, 862 fitness graphs

for three-locus systems, and the number of fitness graphs that imply

higher order epistasis is 698 (37 percent). Up to isomorphism there are

in total 54 fitness graphs, and 20 graphs imply higher order epistasis.

This result was verified by reducing the study of all 1862 graphs for

three-locus systems, to a non-redundant list of 54 graphs, i.e., no two

graphs in the list are isomorphic.
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011
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001
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001

000
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001

000

011
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Figure 8. The four graphs are isomorphic (by abuse of
notation, we do not follow the level convention for the
fitness graphs). In biological terms, the fitness graphs
differ only by the labeling of the genotypes. For instance,
the second graph differs from the first by a 90 degree
clockwise rotation of the label system.

Isomorphisms between three-locus systems have a geometric inter-

pretion. The fitness graph can be regarded as a three-dimensional cube,

with vertices corresponding to genotypes and edges corresponding to

arrows. The group of isomorphisms then corresponds to the symmetry

group of the three dimensional cube (Coxeter 1973). Indeed, it was by

way of this equivalence that we carried out the enumeration described

above.

A.4. Graph theoretical aspects. As mentioned in the main text,

the 20 graphs which imply higher order epistasis (see Supplementary

Figure 10) constitute a diverse category. We analyzed the category

from a graph theoretical point of view, but could not see that the

graphs have any property which singles them out.

Recall that a unique sink orientation is a graph where each face

has no more than one sink. Equivalently, there is no subsystems with

reciprocal sign epistasis (Crona, Greene, and Barlow 2013; Poelwijk,

Kiviet, et al. 2007). The category of 20 graphs includes unique sink

orientations (also called USO or AOF graphs), as well as non-USO’s.
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Moreover, in the terminology of Gärtner and Kaibel (1998), the cate-

gory includes separable and non-separable graphs, as well as realizable

and non-realizable graphs.

There were some indications of higher complexity for the category,

but only in a statistical sense. Indeed, as can be verified from Figure 10,

the graphs in the category have on average 1.8 sinks (a sink corresponds

to a peak in the landscape), whereas the average number of sinks for

all graphs is 1.6. Moreover, 5 out of the 20 graphs (25 percent) in the

category are unique sink orientations, whereas in total 19 out of the 54

graphs (35 percent) are unique sink orientations.

Even though the category of fitness graphs which implies epistasis

is diverse, it is still possible that a characterization exists. This is an

open problem.

B. Software and HIV-1 study

In this section, we provide the details of our analysis of the HIV-1

data in Section 2, after a brief discussion of code related to this paper.

We have implemented algorithms based on our theoretical results in

an open source software package (https://github.com/gavruskin/

fitlands#fitlands). The package provides algorithms for detecting

gene interactions as described in the main text for two- and three-locus

systems. In particular, algorithms for detecting total three-way epista-

sis, interaction coordinates and circuits have been implemented. The

documentation also explains how to reproduce results for our applica-

tion to HIV-1 data described in the main text.

For the HIV-1 study, we had the opportunity to compare our rank

order based approach with conventional methods. To compare our rank

order methods with conventional Wilcoxon rank sum tests, we used the

replicate fitness measurements provided in the original study (Segal,

Barbour, and Grant 2004). We computed the values of interaction

coordinates and circuit interactions for the summary statistics reported

in (Beerenwinkel, Pachter, and Sturmfels 2007). Figure 9 shows that

our rank order methods detected the majority of circuit interactions

identified by using the summary statistics.
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Figure 9. Interactions detected from fitness summary
statistics and from rank orders. The horizontal axis is
labeled by the four interaction coordinates u110, . . . , u111
and twenty circuits a, . . . , t. The boxplots show the dis-
tributions given by the fintess values and the stars indi-
cate whether or not the interaction has been detected us-
ing our rank order methods. The star with Y-coordinate
1 means positive interaction, with Y-coordinate −1 nega-
tive interaction, and with Y-coordinate 0 means the rank
order does not imply interaction.

Second, we applied Student’s t-test to detect interactions and quan-

tify the significance of the estimates. Table 2 summarizes the results,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2017. ; https://doi.org/10.1101/137372doi: bioRxiv preprint 

https://doi.org/10.1101/137372
http://creativecommons.org/licenses/by/4.0/


41

and for related code see https://github.com/gavruskin/fitlands/

blob/master/HIV_2007_conventional_analysis.ipynb

Interaction p-value Result From rank order
u011 1.13e-31 + 0
u101 2.67e-12 − 0
u110 1.20e-24 − 0
u111 1.50e-29 + +
a 7.10e-16 − +
b 5.23e-32 − −
c 7.62e-04 + +
d 8.36e-68 − −
e 1.39e-38 + +
f 2.59e-01 0 0
g 3.10e-59 − 0
h 2.22e-02 − +
i 7.97e-05 + 0
j 2.20e-32 − −
k 1.96e-05 + 0
l 7.50e-51 − −
m 4.88e-07 − 0
n 9.87e-37 + 0
o 8.83e-03 + 0
p 7.18e-19 + +
q 1.94e-01 0 0
r 5.02e-50 + +
s 7.10e-27 − 0
t 8.49e-61 − −

Table 2. The first column lists the four interaction co-
ordinates and twenty circuits. The second column shows
p-values returened by Student’s t-test based on fitness
measurements. The third column shows which interac-
tions are significant based on 0.03 threshold and their
signs. For comparison, the last column displays the re-
sults obtained from rank order methods.
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C. Supplementary figures
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Figure 10. All 54 fitness graph types. Those depicted
in red imply three-way epistasis.
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