
1 
 

Estimation of universal and taxon-specific parameters of prokaryotic genome evolution  1 

 2 

Itamar Sela, Yuri I. Wolf and Eugene V. Koonin* 3 

National Center for Biotechnology Information, National Library of Medicine, National Institutes 4 

of Health, Bethesda, MD 20894 5 

*For correspondence: koonin@ncbi.nlm.nih.gov 6 

 7 

  8 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137430doi: bioRxiv preprint 

https://doi.org/10.1101/137430
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 9 

 10 

Our recent study on mathematical modeling of microbial genome evolution indicated that, on average, 11 

genomes of bacteria and archaea evolve in the regime of mutation-selection balance defined by positive 12 

selection coefficients associated with gene acquisition that is counter-acted by the intrinsic deletion bias. 13 

This analysis was based on the strong assumption that parameters of genome evolution are universal across 14 

the diversity of bacteria and archaea, and yielded extremely low values of the selection coefficient. Here we 15 

further refine the modeling approach by taking into account evolutionary factors specific for individual 16 

groups of microbes using two independent fitting strategies, an ad hoc hard fitting scheme and an 17 

hierarchical Bayesian model. The resulting estimate of the mean selection coefficient of 18 

𝑠𝑠~10−10 associated with the gain of one gene implies that, on average, acquisition of a gene is beneficial, 19 

and that microbial genomes typically evolve under a weak selection regime that might transition to strong 20 

selection in highly abundant organisms with large effective population sizes. The apparent selective pressure 21 

towards larger genomes is balanced by the deletion bias, which is estimated to be consistently greater than 22 

unity for all analyzed groups of microbes. The estimated values of s are more realistic than the lower values 23 

obtained previously, indicating that global and group-specific evolutionary factors synergistically affect 24 

microbial genome evolution that seems to be driven primarily by adaptation to existence in diverse niches.  25 
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 27 

 28 

Introduction 29 

 30 

Prokaryotes have compact genomes, in terms of the number of genes and especially gene 31 

density,  with typically short intergenic regions comprising less than 10% of the genome   32 

(Koonin and Wolf, 2008; Lynch and Conery, 2003; Mira et al., 2001). Deciphering the 33 

evolutionary forces that keep prokaryotic genome compact is an important problem in 34 

evolutionary biology. The common view, steeped in a population-genetic argument, seems to be 35 

that selection favors compact genomes in the fast-reproducing prokaryotes with large effective 36 

population sizes, to minimize the replication time and the energetic burden that is associated with 37 

gene expression (Lynch and Conery, 2003; Lynch and Marinov, 2015). This theory provides a 38 

plausible explanation for the observed dramatic differences in the typical size and architecture 39 

between prokaryotic and eukaryotic genomes, with the latter being up to several orders of 40 

magnitude larger than the former and, in many case, containing extensive non-coding regions 41 

(Koonin, 2009). Under the population-genetic perspective, the large effective population sizes of 42 

prokaryotes enhance the selection pressure and allow efficient elimination of superfluous genetic 43 

material (Lynch, 2007, 2006; Lynch and Conery, 2003; Lynch and Marinov, 2015).  44 

The population-genetic theory predicts an inverse correlation between genome size and 45 

the strength of selection, and this prediction generally holds across the full range of genome 46 

sizes, from viruses to multicellular eukaryotes (Lynch, 2007; Lynch and Conery, 2003). 47 

However, a detailed analysis of the relationship between the genome size and selection strength 48 

within prokaryotes reveals the opposite trend: genome size correlates positively and significantly 49 

with the protein-level selection strength indicating that larger genomes are typically subject to 50 

stronger selection on the protein level (Kuo et al., 2009; Novichkov et al., 2009b; Sela et al., 51 

2016). The protein-level selection is measured by the ratio of non-synonymous to synonymous 52 

mutation rates (d𝑁𝑁 d𝑆𝑆⁄  ratio) (Hurst, 2002) in core genes that are common across (nearly) all 53 

prokaryotes (Koonin, 2003). The underlying assumption is that the effects of single non-54 

synonymous mutations in these core, functionally conserved genes are similar (associated with 55 
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similar selection coefficients) across all prokaryotes (Sela et al., 2016). The differences in the 56 

observed d𝑁𝑁 d𝑆𝑆⁄  values between groups of prokaryotes are accordingly assumed to reflect 57 

differences in selection strength. At least formally, within the population-genetic theory, this 58 

assumption translates to similar selection coefficients but different effective population sizes.  59 

Recently, we performed an analysis of the factors that govern prokaryotic genome size 60 

evolution by developing a population-genetic evolutionary model and testing its predictions 61 

against the genome size distributions in 60 groups of closely related bacterial and archaeal 62 

genomes (Sela, Wolf et al. 2016). Within the modeling framework, the genome size evolution is 63 

represented as stochastic gain and loss of genes, an approach that is motivated by the dominant 64 

role of horizontal gene transfer in microbial evolution (Doolittle, 1999; Koonin et al., 2001; Pal 65 

et al., 2005; Puigbo et al., 2014; Treangen and Rocha, 2011). Specifically, the model predicts a 66 

distribution of the genome sizes for the given values of the effective population size, the deletion 67 

bias and the selection coefficient associated with the gain of a gene. Using maximum-likelihood 68 

optimization methods, the values of the deletion bias and the selection coefficients can be 69 

inferred from the data. Under the simplifying assumption that the mean selection coefficients and 70 

deletion bias are similar across the diversity of prokaryotes, the global mean values of these 71 

factors can be used in the model. Under this assumption, the different observed mean genome 72 

sizes among prokaryotic groups are due to the differences in the effective population sizes (Ne). 73 

The model then predicts a global trend line, which represents the dependency of the mean 74 

genome size on the effective population size. More realistically, however, the selection 75 

coefficients and the deletion bias values can differ between prokaryotic groups, and the observed 76 

genome sizes therefore deviate from the global trend. The challenge is to account for such 77 

deviations as fully as possible, without discounting the effect of the universal behavior.  78 

In our previous study (Sela et al., 2016), the fitting of the data to the model was 79 

performed in two stages: first, global parameters were fitted, and at the second stage, some 80 

parameters were taken as latent variables and were optimized to maximize the log-likelihood. 81 

This methodology is most accurate when deviations from the global trend are small compared to 82 

the distribution width. Here, we substantially modify the fitting procedure, to account for the 83 

specific factors affecting the genome evolution in different groups of prokaryotes, without 84 

obscuring the global trend. The resulting parameters of microbial evolution appear to be more 85 

realistic than those obtained with the previous, simplified approach.  86 
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 87 

Material and Methods 88 

Genomic dataset and estimation of selection pressure and effective population size 89 

A dataset of 707 bacterial and archaeal genomes clustered in 60 groups of closely related 90 

organisms was constructed using the Alignable Tight Genomic Cluster (ATGC) database 91 

(Kristensen et al., 2017; Novichkov et al., 2009a). For simplicity, these individual genomes will 92 

be referred to as “species” although many of them represent strains and isolates within the 93 

formally described microbial species. In addition to the genome size, which is known for all 94 

species in the database, a characteristic value of selection strength was assigned to each cluster 95 

(see Figure 1A). Selection strength was inferred on the protein level, by estimating the d𝑁𝑁 d𝑆𝑆⁄  96 

ratio of 54 core gene families that are common for all or nearly all prokaryotes. Specifically, 97 

these alignments of the core proteins constructed using the MUSCLE program (Edgar, 2004) 98 

were concatenated, converted to the underlying nucleotide sequence alignments, and the 99 

characteristic d𝑁𝑁 d𝑆𝑆⁄  value (Yang, 2007) for each cluster was estimated as the median d𝑁𝑁 d𝑆𝑆⁄  100 

for all species pairs in the cluster. As shown previously, the median dN/dS is a stable 101 

characteristic of an ATGC that is robust to variations in the set of genome pairs employed for the 102 

estimation (Novichkov et al., 2009b). The effective population size 𝑁𝑁𝑒𝑒 for each cluster is 103 

deduced from the typical d𝑁𝑁 d𝑆𝑆⁄  value, using the approach developed by Kryazhimskiy and 104 

Plotkin (Kryazhimskiy and Plotkin, 2008). The effective population size calculation is performed 105 

under the following assumptions. Core genes are assumed to evolve under the weak mutation 106 

limit regime, where the mutation rate is low such that mutations appear sequentially. In addition, 107 

it is assumed that synonymous mutations are strictly neutral, and that the selection coefficient 108 

associated with non-synonymous mutations is similar for all core genes in all prokaryotes. 109 

Finally, the selection coefficient value of non-synonymous mutations is set such that the 110 

effective population size for ATGC001, that contains Escherichia coli strains, is 109 and the 111 

effective population size for all other clusters is calculated accordingly. 112 

 113 

Maximum-likelihood framework for model parameters optimization 114 

The objective is to infer the unknown parameters of the genome size model presented 115 

below from the genomic dataset. The probability of a set of observations 𝑿𝑿, namely, observed 116 
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genome sizes in all species in all ATGCs, is given by a distribution predicted by the genome size 117 

population model. The distribution depends on two types of parameters: known parameters 𝒁𝒁, 118 

and unknown parameters 𝜽𝜽. For the genome size population model, the known parameter is the 119 

effective population size 𝑁𝑁𝑒𝑒, which is calculated for each ATGC. The unknown parameters are  120 

deletion bias (r) and selection coefficient (s) associated with the gain of a single gene. Simply 121 

put, the goal is to optimize 𝜽𝜽 by fitting the model distribution to the observed genome sizes in 122 

terms of log-likelihood. Optimization is performed by maximizing ℓ(𝜽𝜽)  123 

ℓ(𝜽𝜽) = log[𝑃𝑃𝜃𝜃(𝑿𝑿|𝜽𝜽,𝒁𝒁)]                                                                    [1] 124 

The calculation of 𝑃𝑃𝜃𝜃(𝑿𝑿|𝜽𝜽,𝒁𝒁) from the genome size population model is presented in detail in 125 

the Results section. 126 

 127 

Results 128 

 129 

Global model of genome evolution 130 

The mean genome sizes and the d𝑁𝑁 d𝑆𝑆⁄  values correlate negatively and significantly, 131 

with Spearman’s rank correlation coefficient 𝜌𝜌 = −0.397 and 𝑝𝑝-value 0.0017 , in agreement 132 

with the previous observations (Kuo et al., 2009; Novichkov et al., 2009b; Sela et al., 133 

2016)(Figure 1A). Effective population sizes are extracted from the d𝑁𝑁 d𝑆𝑆⁄  values for each 134 

ATGC, resulting in the same correlation, but with the opposite sign, between genome size 𝑥𝑥 and  135 

𝑁𝑁𝑒𝑒. These correlations indicate that the genome size is determined, to a large extent, by global 136 

evolutionary factors that are shared by all prokaryotes. On top of the global factors, there 137 

obviously are local influences, such as different lifestyles, environments and availability of 138 

genetic material. The goal of the present work is to accurately assess the global factors that 139 

govern genome size evolution and are partially masked by local effects, and additionally, to 140 

compare the local factors for different groups of bacteria and archaea.  141 

Evolution of prokaryotic genomes can be described within the framework of population 142 

genetics by a stochastic process of gene gain and loss events (Sela et al., 2016). In brief, a 143 

genome is modeled as a collection of 𝑥𝑥 genes, where genome size is assumed to evolve through 144 
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elementary events of acquisition or deletion of one gene at a time, occurring with rates 𝛼𝛼 and 𝛽𝛽, 145 

respectively. Genes are assumed to be acquired from an infinite gene pool. Gene gains and losses 146 

are either fixed or eliminated stochastically, with a fixation probability 𝐹𝐹. In the weak mutation 147 

limit, the fixation probability can be expressed as (McCandlish et al., 2015) 148 

𝐹𝐹(𝑠𝑠) = 𝑠𝑠
1−𝑒𝑒−𝑁𝑁𝑒𝑒∙𝑠𝑠

                                                                                [2] 149 

where 𝑁𝑁𝑒𝑒 is the effective population size and 𝑠𝑠 is the selection coefficient associated with 150 

acquisition of a single gene. That is, assuming that the reproduction rate for genome of size 𝑥𝑥 is 151 

1, the reproduction rate for a genome of size 𝑥𝑥 + 1 is 1 + 𝑠𝑠. To obtain the selection coefficient 152 

associated with deletion of a gene, the event of gene deletion is considered: the reproduction rate 153 

for genome size 𝑥𝑥 + 1 is set as 1, and the reproduction rate for genome size 𝑥𝑥 can be therefore 154 

approximated by 1 − 𝑠𝑠, so that  155 

𝑠𝑠deletion=−𝑠𝑠acquisition                                                                        [3] 156 

The gain rate, 𝑃𝑃+, is given by the multiplication of the acquisition rate 𝛼𝛼, and the fixation 157 

probability of a gene acquisition event. In general, both the acquisition rate and the selection 158 

coefficient associated with the acquisition of a gene depend on the genome size:  159 

𝑃𝑃+(𝑥𝑥) = 𝛼𝛼(𝑥𝑥) ∙ 𝐹𝐹�𝑠𝑠(𝑥𝑥)�                                                                [4] 160 

Using the relation 𝑠𝑠deletion=−𝑠𝑠acquisition derived above, we get a similar expression for the loss rate, 161 

denoted by 𝑃𝑃− 162 

𝑃𝑃−(𝑥𝑥) = 𝛽𝛽(𝑥𝑥) ∙ 𝐹𝐹�−𝑠𝑠(𝑥𝑥)�                                                             [5] 163 

Genome size dynamics is then a chain of stochastic gain and loss events, and can be described by 164 

the equation  165 

𝑥̇𝑥 = 𝑃𝑃+(𝑥𝑥) − 𝑃𝑃−(𝑥𝑥)                                                                       [6] 166 

If for a some value of 𝑥𝑥, denoted 𝑥𝑥0, gain and loss rates are equal, i.e. the evolving genome 167 

fluctuates stochastically around this value (under a condition discussed below, see Eq.(10)), the 168 

dynamics of Eq.(6) implies a steady state distribution 𝑓𝑓(𝑥𝑥) of the genomes sizes. This 169 

distribution has an extremum at 𝑥𝑥0, and is given by 170 
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𝑓𝑓(𝑥𝑥) ∝ [𝑃𝑃+(𝑥𝑥) + 𝑃𝑃−(𝑥𝑥)]−1 ∙ 𝑒𝑒2∫
𝑃𝑃+(𝑥𝑥)−𝑃𝑃−(𝑥𝑥)
𝑃𝑃+(𝑥𝑥)+𝑃𝑃−(𝑥𝑥)𝑑𝑑𝑑𝑑                                       [7] 171 

If the distribution is symmetric, 𝑥𝑥0 is the mean genome size, and given that 𝑓𝑓(𝑥𝑥) is only slightly 172 

skewed with relevant model parameters (see Figure 2), 𝑥𝑥0 is taken as an approximation for the 173 

mean genome size. With respect to the model parameters, 𝑥𝑥0 satisfies the relation 174 

𝑟𝑟(𝑥𝑥0) =   𝑒𝑒𝑁𝑁𝑒𝑒∙𝑠𝑠(𝑥𝑥0)                                                                                    [8] 175 

where 𝑟𝑟(𝑥𝑥) is the deletion bias, defined as the ratio of the deletion and acquisition rates: 176 

𝑟𝑟(𝑥𝑥) = 𝛽𝛽(𝑥𝑥) 𝛼𝛼(𝑥𝑥)⁄                                                                         [9] 177 

The extremum point of 𝑓𝑓(𝑥𝑥) at 𝑥𝑥0 can be either a maximum or a minimum. The case where 𝑓𝑓(𝑥𝑥) 178 

has a minimum at 𝑥𝑥0 corresponds to genomes that are either collapsing or growing infinitely, and 179 

is biologically irrelevant. The extremum point at 𝑥𝑥0 is a maximum when 180 

𝑃𝑃+′ (𝑥𝑥0) < 𝑃𝑃−′(𝑥𝑥0)                                                                          [10] 181 

Finally, explicit functional forms for 𝑠𝑠(𝑥𝑥), 𝛼𝛼(𝑥𝑥) and 𝛽𝛽(𝑥𝑥) are assumed in the fitting 182 

process. The selection coefficient is taken as constant with respect to genome size  183 

𝑠𝑠(𝑥𝑥) = const                                                                                 [11] 184 

and two forms of acquisition and deletion rates are considered. The first corresponds to the 185 

deletion bias in the form of a power law 186 

𝛼𝛼(𝑥𝑥) = 𝑥𝑥𝜆𝜆+                                                                              [12] 187 

𝛽𝛽(𝑥𝑥) = 𝑟𝑟′𝑥𝑥𝜆𝜆−                                                                            [13] 188 

with  189 

𝑟𝑟(𝑥𝑥) = 𝑟𝑟′𝑥𝑥𝜆𝜆                                                                              [14] 190 

where 𝜆𝜆 = 𝜆𝜆− − 𝜆𝜆+; because the distribution given by Eq.(7) is not sensitive to 𝜆𝜆+ values, it was 191 

set to the value of 10−3. In addition, a linear model was considered, where 192 

𝛼𝛼(𝑥𝑥) = 𝑎𝑎 ∙ 𝑥𝑥 + 𝑏𝑏                                                                       [15] 193 

𝛽𝛽(𝑥𝑥) = 𝑥𝑥                                                                                   [16] 194 
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and the deletion bias is then given by 195 

𝑟𝑟(𝑥𝑥) = 𝑥𝑥
𝑎𝑎∙𝑥𝑥+𝑏𝑏

                                                                              [17] 196 

The selection coefficient was taken as constant (independent of genome size) for simplicity. 197 

Preliminary calculations with additional linear term in genome size gave similar results, both in 198 

terms of the log likelihood and fitted parameter values (see Table S1) The deletion bias is 199 

modelled by a power law with respect to genome size because it encompasses the two extreme 200 

cases of constant or linear dependence, along with all intermediates. For compatibility with birth-201 

death-transfer models, in which linear acquisition and deletion rates are assumed (Iranzo et al., 202 

2017), the deletion bias given by Eq.(17) was studied as well. With the formulations given 203 

above, the population model for genome size evolution contains one known parameter, 𝑁𝑁𝑒𝑒, and a 204 

set of three unknown parameters: either {𝑠𝑠, 𝑟𝑟′, 𝜆𝜆} or {𝑠𝑠,𝑎𝑎, 𝑏𝑏}, depending to the choice of the 205 

model for the acquisition and deletion rates. 206 

  207 

Group-specific factors in prokaryotic genome evolution 208 

The assumption that all model parameters are universal across the diversity of prokaryotes 209 

translates into a global trend line (see Figure 1B) because in this case, groups of prokaryotic 210 

species differ from each other only by the typical effective population size. However, when the 211 

model parameters are fitted under the assumption that all unknown parameters are universal, the 212 

observed distributions of the microbial genome sizes are much wider than the distributions 213 

predicted by the model (see Figure 3A) indicating that ATGC-specific factors play a non-214 

negligible role in genome evolution. Deviations from the global trend line due to local effects 215 

can be incorporated into the model by introducing a latent variable 𝝋𝝋, i. e. assigning ATGC-216 

specific values to one of the model parameters. The underlying assumption is that the universal 217 

dependency of the genome size on the effective population size is captured by the global 218 

parameters 𝜽𝜽, whereas the deviations from the universal behavior caused by ATGC-specific 219 

effects are incorporated in the model through different values of a latent variable 𝝋𝝋. Because 220 

variation in one parameter of the model can be compensated by variation in a different parameter 221 

(e.g. the 𝑠𝑠 value can be adjusted to compensate for variation in 𝑟𝑟′ resulting in the same 222 

distribution; see Figure S2), standard methods for latent parameters fitting are not applicable. 223 
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Therefore, we developed two fitting methodologies: i) an ad hoc hard-fitting algorithm and ii) an 224 

hierarchical Bayesian fitting procedure. In both methodologies, ATGC-specific 𝝋𝝋 values are 225 

assigned according to the 𝜽𝜽 values. The probability of the observed genome sizes, 𝑃𝑃𝑜𝑜(𝑿𝑿|𝜽𝜽,𝝋𝝋,𝒁𝒁), 226 

is calculated numerically using the steady state genome size distribution 𝑓𝑓(𝑥𝑥) of Eq.(7), as 227 

explained below.  228 

The distributions produced by the model under optimized parameters are compared to the 229 

observed distributions in Figure 2. First, latent variable values are set for each ATGC, such that 230 

values are assigned to all three unknown model parameters. The details of this stage are 231 

discussed below.  For each ATGC, acquisition and deletion rates are then calculated, using either 232 

Eqs.(12) and (13), or Eqs.(15) and (16). Together with the fixation probability, which is given by 233 

Eq.(2) and calculated using the 𝜽𝜽 and 𝒁𝒁 values, the acquisition and deletion rates are used to 234 

calculate the gain and loss rates of Eqs.(4) and (5). The gain and loss rates are then substituted 235 

into Eq.(7), and the genome size distribution is calculated and normalized numerically. Finally, 236 

the probability of the observed genome sizes is given by the product of the distribution values at 237 

the observed genome sizes 𝑿𝑿 238 

𝑃𝑃𝑜𝑜(𝑿𝑿|𝜽𝜽,𝝋𝝋,𝒁𝒁) = ∏ ∏ 𝑃𝑃𝑜𝑜�𝑥𝑥𝑖𝑖𝑖𝑖�𝜽𝜽,𝜑𝜑𝑖𝑖,𝑍𝑍𝑖𝑖�
𝑀𝑀𝑖𝑖
𝑗𝑗=1

60
𝑖𝑖=1         [18] 239 

where 𝑥𝑥𝑖𝑖𝑖𝑖 is observed genome size for species 𝑗𝑗 out of 𝑀𝑀𝑖𝑖 species of ATGC 𝑖𝑖, and 𝜑𝜑𝑖𝑖 and 𝑍𝑍𝑖𝑖 are 240 

ATGC-specific values of the latent variable and effective population size, respectively. For 241 

example, when setting the linear coefficient 𝑎𝑎 of the acquisition rate of Eq.(15) as the latent 242 

variable, we have 243 

𝜽𝜽 = {𝑠𝑠, 𝑏𝑏}                                  [19] 244 

𝝋𝝋 = 𝑎𝑎                                        [20] 245 

𝒁𝒁 = 𝑁𝑁𝑒𝑒                                       [21] 246 

For given 𝑠𝑠 and 𝑏𝑏 values, an ATGC-specific value is assigned for 𝑎𝑎, such that values are 247 

assigned to all model parameters and 𝑃𝑃𝑜𝑜(𝑿𝑿|𝜽𝜽,𝝋𝝋,𝒁𝒁) can be calculated following the steps 248 

described above. 249 
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In the ad-hoc fitting procedure, one model parameter is set as a latent variable, and the 250 

two remaining unknown model parameters are considered global and included in 𝜽𝜽. Eq.(8) is 251 

used to adjust the latent variable value according to the 𝜽𝜽 values and center model distributions 252 

around data points (see Figure 1B) 253 

𝝋𝝋 = 𝝋𝝋(𝜽𝜽,𝑿𝑿,𝒁𝒁)                                                                          [22] 254 

The log-likelihood is then calculated using Eq.(1) with 255 

𝑃𝑃𝜃𝜃(𝑿𝑿|𝜽𝜽,𝒁𝒁) = 𝑃𝑃𝑜𝑜(𝑿𝑿|𝜽𝜽,𝝋𝝋(𝜽𝜽,𝑿𝑿,𝒁𝒁),𝒁𝒁)                                [23] 256 

and 𝑃𝑃𝑜𝑜(𝑿𝑿|𝜽𝜽,𝝋𝝋(𝜽𝜽,𝑿𝑿,𝒁𝒁),𝒁𝒁) is calculated using Eq.(7) as explained above. However, different 257 

values of global parameters 𝜽𝜽 can be compensated by the value of the latent variable 𝝋𝝋 to yield 258 

similar genome size distributions (see Figure S2). Therefore, an additional constraint is applied 259 

to the 𝜽𝜽 values in the optimization procedure and combined with the log likelihood ℓ(𝜽𝜽) of 260 

Eq.(1). The global parameters 𝜽𝜽 represent the universal evolutionary factors that entail the 261 

observed genome size and effective population size correlation. It is therefore natural to use in 262 

the optimization not only the log-likelihood but also the goodness of fit of the global trend line 263 

associated with the 𝜽𝜽 values. The global trend is produced using Eq.(8) by assuming that all 264 

three model parameters are universal; however, under this optimization methodology, 𝜽𝜽 is a set 265 

of only two global model parameters. The set of global parameters 𝜽𝜽 is therefore completed by a 266 

single representative value of the latent variable, denoted 〈𝜑𝜑〉, to produce the global trend line. 267 

The goodness of fit is then given by the 𝑅𝑅2 value for the global trend line and mean genome 268 

sizes of the different ATGCs (see Figure 1B). The 𝑅𝑅2 value clearly depends not only on the 269 

values of the two universal model parameters 𝜽𝜽, but also on the value of 〈𝜑𝜑〉. For the 270 

optimization of 𝜽𝜽 values, the maximum possible 𝑅𝑅2 value for the given 𝜽𝜽 values is taken. 271 

The goodness of fit for the global trend line is optimized together with the log likelihood, by 272 

minimizing a goal function 𝐺𝐺(𝜽𝜽): 273 

𝐺𝐺(𝜽𝜽) = −ℓ(𝜽𝜽) |ℓ0|⁄ − 𝑅𝑅2(𝜽𝜽) 𝑅𝑅02⁄                                                       [24] 274 

where the log-likelihood and goodness of fit are normalized to give comparable values. 275 

Specifically, the values |ℓ0| = 4773 and 𝑅𝑅02 = 0.1793 were used as these are close to the 276 

optimal values of log-likelihood and goodness of fit, respectively, for our data set. Fitting was 277 
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performed for all three assignments of the latent parameter and the two representations of the 278 

deletion bias, namely, 𝜑𝜑 = 𝑠𝑠, 𝜑𝜑 = 𝜆𝜆 and 𝜑𝜑 = 𝑟𝑟′ for the deletion bias of Eq.(14), and 𝜑𝜑 = 𝑠𝑠, 𝜑𝜑 =279 

𝑎𝑎 and 𝜑𝜑 = 𝑏𝑏 for the deletion bias of Eq.(17). In all 6 cases, the results were similar, in terms of 280 

both the optimized values of the selection coefficient and log-likelihood. The results are 281 

summarized in Tables 1 and 2, and the fitted latent variable values are shown in Figures 4 and 5. 282 

Notably, there was no significant correlation of the fitted latent variable values and effective 283 

population size (Tables 1 and 2), suggesting that the universal correlation between the genome 284 

size and the effective population size is not masked by assigning ATGC-specific value to model 285 

parameters using this approach. For comparison with the hierarchical Bayesian model approach 286 

(see below), the optimized latent variable values for all cases but 𝜑𝜑 = 𝑏𝑏, were fitted to a normal 287 

distribution. For 𝜑𝜑 = 𝑏𝑏, the fitted values formed a long-tailed distribution (Figure 5) and were 288 

accordingly fitted to a log-normal distribution. Fitting was performed by assuming that fitted 𝜑𝜑𝑖𝑖 289 

values are samples drawn from a normal distribution with mean 𝜑𝜑0 and standard variation 𝜎𝜎𝜑𝜑 290 

(for 𝜑𝜑 = 𝑏𝑏, it was assumed that ln(𝜑𝜑) is drawn from a normal distribution) 291 

𝜑𝜑𝑖𝑖~𝑁𝑁�𝜑𝜑0,𝜎𝜎𝜑𝜑�                                            [25] 292 

where 𝜑𝜑0 and 𝜎𝜎𝜑𝜑 were optimized by maximizing 293 

 ℓ�𝜑𝜑0,𝜎𝜎𝜑𝜑� = log�∏ 𝑃𝑃�𝜑𝜑𝑖𝑖�𝜑𝜑0,𝜎𝜎𝜑𝜑�60
𝑖𝑖=1 �            [26] 294 

and 𝑃𝑃�𝜑𝜑𝑖𝑖�𝜑𝜑0,𝜎𝜎𝜑𝜑� was calculated using a normal distribution. To assess the fit quality, normality 295 

test was performed for (𝜑𝜑𝑖𝑖 − 𝜑𝜑0) 𝜎𝜎𝜑𝜑⁄  using the Kolmogorov-Smirnov test against standard 296 

normal distribution, with mean 0 and standard deviation 1 (the log of fitted values were tested 297 

for normality for 𝜑𝜑 = 𝑏𝑏). For all cases, the null hypothesis that the optimized 𝜑𝜑𝑖𝑖 values are 298 

drawn from a normal distribution could not be rejected. The fitted normal distributions are 299 

shown in Figures 4 and 5, and the normal distributions parameters and Kolmogorov-Smirnov test 300 

𝑝𝑝 −values are given in Tables 1 and 2. 301 

 302 

In the ad-hoc hard fitting method described above, Eq.(7) was used to adjust latent 303 

variable values such that the model distributions centered around the observed genome sizes. The 304 

fitted latent variable values are then scattered around some typical value (Figures 4 and 5). 305 
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Moreover, fitted values form distributions that are statistically indistinguishable from normal 306 

distributions (with the exception of the case  𝜑𝜑 = 𝑏𝑏, which forms a log-normal distribution). It is 307 

possible to rely on this observation and implement an alternative optimization methodology, 308 

where a prior distribution 𝑃𝑃𝜑𝜑 is assumed for the latent variable. In the following, normal 309 

distributions were assumed as priors, with the exception of a log-normal distribution for the case 310 

when 𝑏𝑏 is set as the latent variable. Accordingly, a specific value 𝜑𝜑𝑖𝑖 of the latent variable is 311 

associated with a probability 𝑃𝑃𝜑𝜑�𝜑𝜑𝑖𝑖�𝜑𝜑0,𝜎𝜎𝜑𝜑�. The probability of the observed genome sizes 𝑥𝑥𝑖𝑖𝑖𝑖 312 

for species 𝑗𝑗 of ATGC 𝑖𝑖 can be then calculated using the Bayes rule, and is given by 313 

𝑃𝑃�𝑥𝑥𝑖𝑖𝑖𝑖�𝜽𝜽,𝜑𝜑𝑖𝑖 ,𝑍𝑍𝑖𝑖,𝜑𝜑0,𝜎𝜎𝜑𝜑� = 𝑃𝑃𝑜𝑜�𝑥𝑥𝑖𝑖𝑖𝑖�𝜽𝜽,𝜑𝜑𝑖𝑖,𝑍𝑍𝑖𝑖� ∙ 𝑃𝑃𝜑𝜑�𝜑𝜑𝑖𝑖�𝜑𝜑0,𝜎𝜎𝜑𝜑�                   [27] 314 

This formulation is known as the hierarchical Bayesian model (Gelman et al., 1995). The 315 

probability of 𝑥𝑥𝑖𝑖𝑖𝑖 depends on the prior distribution of 𝜑𝜑𝑖𝑖 parameters (𝜑𝜑0 and 𝜎𝜎𝜑𝜑) indirectly, and 316 

in an hierarchical manner: 𝑥𝑥𝑖𝑖𝑖𝑖  depends directly on 𝜑𝜑𝑖𝑖, which in turn occurs with the probability 317 

𝑃𝑃𝜑𝜑 that depends on 𝜑𝜑0 and 𝜎𝜎𝜑𝜑. The prior distribution parameters are optimized as well during the 318 

fitting process and are therefore included in the set of global parameters 𝜽𝜽. The log-likelihood is 319 

then given by ℓ(𝜽𝜽,𝝋𝝋) 320 

ℓ(𝜽𝜽,𝝋𝝋) = log�∏ 𝑃𝑃𝜑𝜑(𝜑𝜑𝑖𝑖|𝜽𝜽)60
𝑖𝑖=1 ∙ ∏ 𝑃𝑃𝑜𝑜�𝑥𝑥𝑖𝑖𝑖𝑖�𝜽𝜽,𝜑𝜑𝑖𝑖,𝑍𝑍𝑖𝑖 , �

𝑀𝑀𝑖𝑖
𝑗𝑗=1 �                    [28] 321 

where 𝑥𝑥𝑖𝑖𝑖𝑖 is observed genome size for species 𝑗𝑗 out of 𝑀𝑀𝑖𝑖 species of ATGC 𝑖𝑖. In more compact 322 

way, the equation above can be written as 323 

ℓ(𝜽𝜽,𝝋𝝋) = log�𝑃𝑃𝑜𝑜(𝑿𝑿|𝜽𝜽,𝝋𝝋,𝒁𝒁) ∙ 𝑃𝑃𝜑𝜑(𝝋𝝋|𝜽𝜽)�                                                  [29] 324 

Note that within this formulation, the maximization of ℓ(𝜽𝜽,𝝋𝝋) is performed in a 64-dimensional 325 

parameter space (60 𝝋𝝋 latent variable values, 2 global model parameters 𝜽𝜽 and 2 parameters 326 

describing the prior distribution 𝑃𝑃𝜑𝜑 of the latent variable). However, for the optimization of 𝜽𝜽, it 327 

is possible to sum over all possible values of the latent variable 𝝋𝝋, such that 𝑃𝑃𝜃𝜃(𝑿𝑿|𝜽𝜽,𝒁𝒁) of Eq.(1) 328 

is given by 329 

𝑃𝑃𝜃𝜃(𝑿𝑿|𝜽𝜽,𝒁𝒁) = ∫ d𝝋𝝋 ∙ 𝑃𝑃𝑜𝑜(𝑿𝑿|𝜽𝜽,𝝋𝝋,𝒁𝒁) ∙ 𝑃𝑃𝜑𝜑(𝝋𝝋|𝜽𝜽)                                               [30] 330 
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and the optimization of 𝜽𝜽 is performed by maximizing ℓ(𝜽𝜽). To test the validity of the 331 

hierarchical Bayesian approach, when applied using the population-genetic model of genome 332 

evolution, 9 realizations of artificial ATGCs ware generated using the distribution of genome 333 

sizes given by the model (Eq.(7); see Methods for details). The realizations were generated using 334 

parameter values similar to the fitted parameters obtained using the hard fitting methodology. 335 

We then applied the hierarchical Bayesian model fitting algorithm to the artificial ATGCs and 336 

verified that the optimized parameters values were similar to those of the parameters used for 337 

generating the artificial ATGCs (Figure S2). In all realizations, the 𝜆𝜆 value was inferred to a 338 

good accuracy, with a tendency for the fitting values to be slightly lower than the actual ones. 339 

The fitted values of 𝑠𝑠 and 𝑟𝑟′ typically have larger errors because variation of 𝑠𝑠 can be 340 

compensated by the variation of 𝑟𝑟′, and vice versa. Accordingly, the fitted values of 𝑠𝑠 and 𝑟𝑟′ 341 

follow a line (Figure S2D). However, the under-estimation of 𝜆𝜆 is compensated by slightly 342 

greater values of 𝑟𝑟′, resulting in a slight offset of the 𝑠𝑠 − 𝑟𝑟′ trend line with respect to the actual 343 

values. Finally, the hierarchical Bayesian model was applied to optimize model parameters 344 

according to the genomic data, where one genome size model parameter is set as latent variable. 345 

Fitted values of global parameters 𝜽𝜽 are summarized in Table 1 and Table 2, where global 346 

parameters now include the parameters of the prior distribution of the latent variable, 𝜑𝜑0 and 𝜎𝜎𝜑𝜑. 347 

Using these optimized 𝜽𝜽 values together with Eq.(28) allows fitting the ATGC-specific 𝝋𝝋 values 348 

(Figure 4 and Figure 5). As with the ad-hoc hard-fitting methodology, there was no significant 349 

correlation between fitted 𝝋𝝋 values and 𝑁𝑁𝑒𝑒 (see Table 1 and Table 2), with the exception of 𝜑𝜑 =350 

𝑏𝑏, where the Spearman’s correlation coefficient is 𝜌𝜌 = −0.24 with 𝑝𝑝 −value 0.06. Notably, both 351 

optimization methodologies gave similar results in terms of the optimized values of 𝜽𝜽 and 𝝋𝝋, as 352 

shown in Table 1, Table 2 and Figures 4 and 5.   353 

In all cases, the genome size distributions produced by the model centered on the 354 

observed genome sizes, either by design, as in the hard-fitting algorithm, or as a result of 355 

maximizing the log-likelihood, as in the hierarchical Bayesian approach. However, the observed 356 

widths of the genome size distributions are not predicted perfectly by the model, as shown in 357 

Figure 3. It is therefore natural to consider the case where more than one model parameter is set 358 

as a latent variable. Although generalizing the hierarchical Bayesian model to account for more 359 

than one latent variable is straightforward, the calculation of the integral of Eq.(30) is 360 
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computationally intensive for more than one latent variable. However, it is possible to explore a 361 

setting with more than one latent variable in the hierarchical Bayesian model that is expected to 362 

produce similar results. As the calculation of the integral in Eq.(30) requires long computation 363 

times, the assessment is performed using the expression for ℓ(𝜽𝜽,𝝋𝝋) of Eq.(28). Specifically, for 364 

deletion bias modelled as in Eq.(14), all three genome size model parameters (𝑠𝑠, 𝜆𝜆 and 𝑟𝑟′) are set 365 

as latent variables, and the normal distributions fitted to the latent variables values obtained by 366 

applying the hard-fitting methodology are used as priors. Prior distributions are not optimized 367 

such that the product term of Eq.(28) can be calculated separately for each ATGC, with high 368 

efficiency. It is important to note that this is an approximation because the prior distributions that 369 

are used here were obtained when optimizing one latent variable at a time. Another possibility is 370 

to perform the optimization in the 64 dimensional parameter space of ℓ(𝜽𝜽,𝝋𝝋) in two stages: for 371 

the given 𝜽𝜽 values, latent variables are fitted for each ATGC separately such that ℓ(𝜽𝜽,𝜑𝜑𝑖𝑖) is 372 

maximized. This approach was applied for 𝝋𝝋 = {𝜆𝜆, 𝑟𝑟′}. Both assessments produced results 373 

similar to those obtained for one latent variable, so we conclude that, within the current modeling 374 

framework, the agreement between the model and the observed genome size distributions cannot 375 

be significantly improved further by considering additional latent variables under the hierarchical 376 

Bayesian model. 377 

Finally, the distributions for the latent variable can be used in order to derive estimations 378 

for maximum and minimum genome sizes. The optimized 𝜽𝜽 values together with 𝜑𝜑 values from 379 

the optimized prior distributions tails were substituted into the model approximation for mean 380 

genome size of Eq.(8). Specifically, 𝜑𝜑 values from percentiles 1 to 10 and 90 to 99 were used, 381 

where each of the two ranges corresponds either to the maximum or to the minimum genome 382 

size estimates, depending on the choice of the latent variable. For example, when 𝜑𝜑 = 𝜆𝜆 or 𝜑𝜑 =383 

𝑟𝑟′, the left tail of the distribution (1 to 10 percentile) corresponds to the maximum genome size 384 

estimates, whereas for all other choices of 𝜑𝜑, the left tail corresponds to the minimum genome 385 

size estimates. The effective population size was set arbitrarily to 𝑁𝑁𝑒𝑒 = 109. Estimations for 𝜑𝜑 =386 

𝑠𝑠, 𝜑𝜑 = 𝜆𝜆, 𝜑𝜑 = 𝑟𝑟′ and 𝜑𝜑 = 𝑎𝑎 are shown in Figure 6. For deletion bias modeled by Eq.(14), the 387 

estimates are roughly consistent with the observed minimum and maximum genome sizes of 388 

prokaryotes (excluding the smallest genomes of intracellular parasitic bacteria) (Koonin and 389 

Wolf, 2008). Notably, genome size diverges for the deletion bias of Eq.(17) with 𝜑𝜑 = 𝑠𝑠 or 𝜑𝜑 = 𝑎𝑎 390 
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as a latent variable. The deletion bias of Eq.(17) results from linear approximations for the 391 

acquisition and the deletion rates. Accordingly, gain and loss rates are linear with respect to 392 

genome size, where the slope of 𝑃𝑃+ is smaller than the slope of 𝑃𝑃−, albeit with a non-zero 393 

intercept (model parameter 𝑏𝑏). A finite genome size 𝑥𝑥0, where 𝑃𝑃+ = 𝑃𝑃− therefore exists, and the 394 

condition of Eq.(10) is satisfied. However, for 𝑎𝑎 = 𝑒𝑒−𝑁𝑁𝑒𝑒𝑠𝑠, both rates, 𝑃𝑃+ and 𝑃𝑃−, have the same 395 

slope and 𝑃𝑃+ > 𝑃𝑃− for all genome sizes, such that the genome size diverges. 396 

Discussion 397 

Our previous effort on modeling microbial genome evolution (Sela et al., 2016) has 398 

shown that for all ATGCs, the best fit between the model-generated and observed distributions 399 

of genome sizes were obtained with positive s values and r>1 (deletion bias). Given that the 400 

deletion bias indeed appears to be a universal characteristic of genome evolution (Kuo and 401 

Ochman, 2009; Petrov, 2002; Petrov et al., 2000), we have concluded that prokaryotic genomes 402 

typically evolve under a selection-mutation balance regime as opposed to a streamlining regime. 403 

In biologically oriented terms, these results seem to indicate that, on average, benefits of new 404 

genes acquired by microbial genomes outweigh the cost of gene maintenance and expression. 405 

However, the actual values of the selection coefficient yielded by the model were extremely low, 406 

on the order of 10-12, suggesting that the selection affecting an average gene was extremely 407 

weak, but also that these values could be under-estimates. The latter possibility was additionally 408 

suggested by the observation that, although the model yielded good fits for the means of the 409 

genome size distributions, the width of the distributions was significantly over-estimated (Figure 410 

3A). In the previous study, we made the strong assumption that the parameters of microbial 411 

genome evolution were universal across the entire prokaryotic diversity represented in the 412 

ATGCs. The results indicate that the contribution of the universal factors is indeed substantial 413 

but fails to account for all or even most of the variation in the genome size distributions 414 

indicating that, not unexpectedly, ATGC-specific factors are important for genome evolution as 415 

well. 416 

In the present work, we attempted to take into account the group-specific evolutionary 417 

factors by using two independent optimization approaches. Both procedures were used together 418 

with two different functional forms of the deletion bias. In all cases, the results were similar, 419 

with 𝑠𝑠~10−10, 𝜆𝜆~0.06 and 𝑟𝑟′~0.7 for a power law deletion bias (Table 1), and 𝑠𝑠~10−10, 𝑎𝑎~0.8 420 
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and 𝑏𝑏~175 for a deletion bias based on linear acquisition and deletion rates (Table 2). 421 

Introducing latent variables allowed incorporation of ATGC-specific effects into the fitting 422 

process. However, variation in one model parameter can be compensated by adjustment of 423 

another model parameter, such that all fits are similar in terms of log-likelihood and thus it is 424 

impossible to disambiguate global from local factors affecting the evolution of genome size in 425 

terms of model parameters. Nevertheless, the optimized values of the latent variables form 426 

relatively narrow distributions around the means (Figures 4 and 5), such that, for the deletion 427 

bias of Eq.(14), the ratios between standard deviation and mean values are 0.28, 0.06 and 0.03 428 

for 𝜑𝜑 = 𝑠𝑠, 𝜑𝜑 = 𝜆𝜆 and 𝜑𝜑 = 𝑟𝑟′, respectively. For the linear deletion bias given by Eq.(17), the 429 

ratios between standard deviation and mean values are 0.35, 0.05 and 0.46 for 𝜑𝜑 = 𝑠𝑠, 𝜑𝜑 = 𝑎𝑎 430 

and 𝜑𝜑 = 𝑏𝑏, respectively. In both cases, the higher value among those obtained with the hard 431 

fitting and the hierarchical Bayesian model methodologies is indicated. Thus, the mean values 432 

give good estimates for model parameters for all ATGCs.  The mean selection coefficient of 433 

𝑠𝑠~10−10 associated with the gain of one gene implies that, on average, acquisition of a gene is 434 

beneficial, and that microbial genomes typically evolve under a weak selection regime, with the 435 

characteristic selection strength 𝑁𝑁𝑒𝑒 ∙ 𝑠𝑠~0.1. In highly abundant organisms, transition to a strong 436 

selection regime, with 𝑁𝑁𝑒𝑒 ∙ 𝑠𝑠 >  1.0, appears possible. These values of s appear to be 437 

substantially more realistic than the lower values obtained previously, indicating that global and 438 

group-specific evolutionary factors synergistically affect microbial genome evolution. This result 439 

is consistent with the observed significant, positive correlation between the genome size and 440 

selection strength on the protein level and appears intuitive given the diversity of bacterial 441 

lifestyles that conceivably drives adaptive gene acquisition. The selective pressure towards larger 442 

genomes, manifested in the positive selection coefficients, is balanced by the deletion bias, 443 

which is consistently greater than unity. Notably, an independent duplication-loss-transfer model 444 

of microbial evolution that we have developed recently in order to compare the evolutionary 445 

regimes of different classes of genes has yielded closely similar mean values of the selection 446 

coefficient (Iranzo et al., 2017). 447 

In this work, the deletion bias is considered genome size-dependent and is modelled as a 448 

power law or as the ratio of linear approximations for the acquisition and the deletion rates. We 449 

found that the best fitted power value is 𝜆𝜆~0.06. This value indicates that the genome size 450 

dependencies of gene acquisition and deletion rates are generally similar but the deletion rate 451 
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grows slightly faster with the genome size. This difference, although slight, could put a limit on 452 

microbial genome growth. Estimates for minimal and maximal genome sizes were derived using 453 

model parameters from the edges of latent variables distributions (percentiles 1% and 99%). The 454 

estimations derived using a power law deletion bias were consistent with the observed 455 

prokaryotic genome sizes, genome size diverged when considering values from the edges of the 456 

distributions together with a linear approximation for the deletion bias. This divergence suggests 457 

that the linear approximation for the acquisition and deletion rates holds only locally, and breaks 458 

down when a wide range of parameters is considered. 459 

Given the compensation between the s and r’ values, the comparison between the values 460 

of these parameters obtained for different ATGCs should be approached with caution. 461 

Nevertheless, with this caveat, it is worth noting that the lowest mean values of the selections 462 

coefficient were estimated for parasitic bacteria with degraded genomes, such as Mycoplasma 463 

and  Chlamydia, whereas the highest values were obtained for complex environmental bacteria 464 

with large genomes, such as Rhizobium and Serratia (Supplementary Tables 2 and 3). These 465 

differences are compatible with the proposed regime of adaptive evolution of microbial genomes 466 

under (generally) weak selection for functional diversification.  467 

 468 

 469 

 470 

 471 

 472 

 473 

  474 
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Figure legends 534 

 535 

Figure 1. Genome size and selection strength in prokaryotes.  536 

(A) Mean number of genes 𝑥𝑥 is plotted against inferred selection strength d𝑁𝑁 d𝑆𝑆⁄  where each 537 

point represent one prokaryotic cluster (ATGC). Error bars represent genome sizes distributions 538 

widths and indicate one standard deviation.  539 

(B) Mean number of genes is plotted against extracted effective population size 𝑁𝑁𝑒𝑒. A 540 

representative global trend line of mean genome size as predicted by the model (see Eq.(8)), 541 

where all model parameters are assumed to be global 𝜽𝜽 = {𝑠𝑠, 𝑟𝑟′, 𝜆𝜆} is indicated by a red line. The 542 

approach implemented in the hard fitting methodology, where Eq.(8) is used in order to set latent 543 

variable value such that model distributions are centered around observed genome sizes, is 544 

illustrated in a dashed orange line. 545 

 546 

Figure 2. Comparison of the observed and model-generated genome size distributions for 6  547 

ATGCs that consist of at least 20 species. Empirical genome sizes are indicated by bars and 548 

model distributions by red solid lines. For model distributions Eq.(7) was used, together with the 549 

deletion bias of Eq.(17). Model parameters were optimized using the hierarchical Bayesian 550 

model method, with the linear coefficient 𝑎𝑎 of the acquisition rate (see Eq.(15)) as latent 551 

variable. Optimized parameters are listed in Table 2 and in Supplementary table 2. The ATGCs 552 

are as follows (the numbers of genomes for each ATGC are indicated in parentheses): (A) 553 

ATGC0001 (109), (B) ATGC0003 (22), (C) ATGC0004 (22), (D) ATGC0014 (31). (E) 554 

ATGC0021 (45) and (F) ATGC0050 (51) 555 

 556 

Figure 3. Prokaryotic genome size distribution width plotted vs. genome size.  557 

The standard deviation is taken as the proxy for the distribution width. ATGCs are indicated by 558 

circles and model fits by lines. (A) Model prediction using the deletion bias of Eq.(14) with 559 

parameters optimized under the assumption that all three model parameters as universal (Sela et 560 

al., 2016). (B) Six model fits with the deletion bias of Eq.(14) (fitted parameters are given in 561 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137430doi: bioRxiv preprint 

https://doi.org/10.1101/137430
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Table 1). In all fits, one model parameter was set as a latent variable. The model parameter that 562 

was set as a latent variable and the methodology used for fitting are indicated in the inset; fits 563 

that were visually indistinguishable are represented by the same line. H, hard fitting method; B, 564 

hierarchical Bayesian model. (C) Same as panel B, for the deletion bias of Eq.(17) (fitted 565 

parameters are given in Table 2). 566 

 567 

 568 

Figure 4. Fitted latent variable values  under the power law deletion bias model (Eq.(14)) 569 

for 𝝋𝝋 = 𝒔𝒔 (A-C), 𝝋𝝋 = 𝒓𝒓′ (D-F) and 𝝋𝝋 = 𝝀𝝀 (G-I).  570 

The fits were obtained using the hard fitting methodology (blue) and the hierarchical Bayesian 571 

model (orange). Fitted 𝜑𝜑 values for all ATGCs are plotted against the effective population size in 572 

the leftmost column. The mean values of the distributions are indicated by dashed lines. The 573 

fitted 𝜑𝜑 values histograms are shown together with the latent variable distributions, which are 574 

indicated by solid lines. The distribution parameters are given in Table 1. Histograms obtained 575 

using the hard fitting methodology are shown in the middle column, and histograms obtained 576 

under the hierarchical Bayesian model are shown in the rightmost column.  577 

 578 

 579 

Figure 5. Fitted latent variable values under the linear deletion bias model (Eq.(17)) for 580 

𝝋𝝋 = 𝒔𝒔 (A-C), 𝝋𝝋 = 𝒂𝒂 (D-F) and 𝝋𝝋 = 𝒃𝒃 (G-I) 581 

The fits were obtained using the hard fitting methodology (blue) and the hierarchical Bayesian 582 

model (orange). The fitted 𝜑𝜑 values for all ATGCs are plotted against the effective population 583 

size in the leftmost column. Values are indicated by markers and mean values of the distributions 584 

are indicated by dashed lines. Fitted 𝜑𝜑 values histograms are shown together with latent variable 585 

distributions, which are indicated by solid lines. The parameters of the distributions are given in 586 

Table 2. Histograms obtained using the hard fitting methodology are shown in the middle 587 

column, and histograms obtained using the hierarchical Bayesian model are shown in the 588 

rightmost column.  589 
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 590 

Figure 6. Maximum and minimum equilibrium genome sizes calculated using Eq.(8) with 591 

parameters fitted under the hierarchical Bayesian model. Latent variables and deletion bias 592 

models are indicated in the inset. The effective population size was set as 𝑁𝑁𝑒𝑒 = 109. For each fit, 593 

the latent variable was taken from the left tail (percentiles 1-10) or the right tail (percentiles 90-594 

99) of the optimized distribution of the latent variable. All estimates for maximum or minimum 595 

genome sizes, based on the different choices of the latent variable, are plotted together. As a 596 

result the same figure mixes distributions left and right tail for different choices of 𝜑𝜑. (A) For 597 

𝜑𝜑 = 𝑟𝑟′ and 𝜑𝜑 = 𝜆𝜆 the 𝑥𝑥 axis indicates 1 − 𝑃𝑃, where 𝑃𝑃 is the percentile. (B) For 𝜑𝜑 = 𝑠𝑠 and 𝜑𝜑 =598 

𝑎𝑎 the 𝑥𝑥 axis indicates 1 − 𝑃𝑃, where 𝑃𝑃 is the percentile. 599 

  600 
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Table 1. Optimal fits for the genome evolution model parameters using the power law 601 

model of deletion bias (Eq.(14)) 602 

Methodology 𝜑𝜑 𝑠𝑠 𝑟𝑟′ 𝜆𝜆 ℓ(𝜽𝜽) 𝑅𝑅2 KS 𝑝𝑝-

value 

𝜑𝜑0 𝜎𝜎𝜑𝜑 𝜌𝜌 𝜌𝜌 

𝑝𝑝 −value 
H 𝑠𝑠 - 0.693 0.061 −4782 0.179 0.35 1.20 ∙ 10−10 2.8 ∙ 10−11 −0.06 0.67 

B 0.703 0.056 −4975 - - 9.0 ∙ 10−11 2.5 ∙ 10−11 0.04 0.78 

H 𝑟𝑟′ 

 

1.25 ∙ 10−10 - 0.061 −4782 0.179 0.35 0.70 0.018 0.03 0.83 

B 1.01 ∙ 10−10 0.056 −4975 - - 0.710 0.017 −0.02 0.87 

H 𝜆𝜆 

 

1.27 ∙ 10−10 0.688 - 

 

−4770 0.179 0.32 0.0628 0.004 0.03 0.80 

B 8.7 ∙ 10−11 0.666 −4924 - - 0.062 0.003 −0.1 0.42 

H, hard fitting methodology; B, hierarchical Bayesian model fitting.  603 

 604 

Table 2. Optimal fits for the genome evolution model parameters using the linear model of 605 

deletion bias (Eq.(17)) 606 

Methodology 𝜑𝜑 𝑠𝑠 𝑎𝑎 𝑏𝑏 ℓ(𝜽𝜽) 𝑅𝑅2 KS 𝑝𝑝-

value 

𝜑𝜑0 𝜎𝜎𝜑𝜑 𝜌𝜌 𝜌𝜌 

𝑝𝑝 −value 
H 𝑠𝑠 - 0.810 186 −4700 0.175 0.52 1.26 ∙ 10−10 2.8 ∙ 10−11 −0.01 0.92 

B 0.825 167 −4913 - - 1.18 ∙ 10−10 2.5 ∙ 10−11 −0.04 0.79 

H 𝑎𝑎 

 

1.41 ∙ 10−10 - 187 −4696 0.175 0.4 0.80 0.04 −0.02 0.88 

B 1.28 ∙ 10−10 167 −4909 - - 0.816 0.03 −0.03 0.79 

H 𝑏𝑏 

 

1.30 ∙ 10−10 0.824 - 

 

−4759 0.175 0.35 174 77 0.01 0.92 

B 1.91 ∙ 10−10 0.782 −4944 - - 148 68 −0.24 0.06 

 607 

H, hard fitting methodology; B, hierarchical Bayesian model fitting.  608 

 609 

 610 

 611 

 612 

 613 
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