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Abstract Non-equilibrium demography impacts coalescent genealogies leaving detectable,
well-studied signatures of variation. However, similar genomic footprints are also expected
under models of large reproductive skew, posing a serious problem when trying to make
inference. Furthermore, current approaches consider only one of the two processes at a
time, neglecting any genomic signal that could arise from their simultaneous effects, pre-
venting the possibility of jointly inferring parameters relating to both offspring distribution
and population history. Here, we develop an extended Moran model with exponential pop-
ulation growth, and demonstrate that the underlying ancestral process converges to a time-
inhomogeneous psi-coalescent. However, by applying a non-linear change of time scale –
analogous to the Kingman coalescent – we find that the ancestral process can be rescaled to
its time-homogeneous analogue, allowing the process to be simulated quickly and efficiently.
Furthermore, we derive analytical expressions for the expected site-frequency spectrum under
the time-inhomogeneous psi-coalescent and develop an approximate-likelihood framework for
the joint estimation of the coalescent and growth parameters. By means of extensive simu-
lation, we demonstrate that both can be estimated accurately from whole-genome data. In
addition, not accounting for demography can lead to serious biases in the inferred coalescent
model, with broad implications for genomic studies ranging from ecology to conservation
biology. Finally, we use our method to analyze sequence data from Japanese sardine popu-
lations and find evidence of high variation in individual reproductive success, but few signs
of a recent demographic expansion.
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The origins of the coalescent in the early 1970s mark a milestone for evolutionary theory
(Kingman 2000). More than 45 years after Kingman formally proved the existence of the “n-
coalescent” (Kingman 1982a,b,c), the so-called Kingman has gradually become the key theo-
retical tool to study the complex interplay of mutation, genetic drift, gene flow and selection.
Closely linked to its underlying forward-in-time population model – e.g., the Wright-Fisher
(WF; Fisher 1930; Wright 1931) and the Moran model (Moran 1958, 1962) – the Kingman
coalescent has been used to derive expected levels of neutral variation, including the number
of segregating sites s, the average number of pairwise differences π, and the distribution
of the allele frequencies in a population η (i.e., the site frequency spectrum; SFS). In fact,
these predictions not only apply to the WF and Moran model, but extend to a large class of
Cannings exchangeable population models (Cannings 1974) that all converge to the Kingman
coalescent in the ancestral limit (Möhle and Sagitov 2001). Furthermore, the Kingman coa-
lescent forms the basis for many population genetic statistics – such as Tajima’s D (Tajima
1989), Fay and Wu’s H (Fay and Wu 2000) or more generally any SFS-based test statistic
(Achaz 2009; Ferretti et al. 2010) – and subsequent inferences (Irwin et al. 2016) to detect
deviations from the assumption of a neutrally evolving, constant-sized, panmictic population
(Wakeley 2009).
While the Kingman coalescent has been shown to be robust to violations of its assumptions
(Möhle 1998, 1999), such as constant population size, random mating, and non-overlapping
generations, and has been extended to accommodate selection, migration, and population
structure (Neuhauser and Krone 1997; Nordborg 1997; Wilkinson-Herbots 1998), it breaks
down in the presence of skewed offspring distributions (Eldon and Wakeley 2006), strong
positive selection (Neher and Hallatschek 2013), recurrent selective sweeps (Durrett and
Schweinsberg 2004, 2005), and large sample sizes (Wakeley and Takahashi 2003; Bhaskar et al.
2014). In particular, all of these effects can cause more than two lineages to coalesce at a time,
resulting in so-called multiple mergers. Hence, the underlying coalescent topology (i.e., the
gene genealogy) is no longer represented by a bifurcating tree as in the “standard” Kingman
case, but can take more complex tree shapes that can also feature several simultaneous
mergers. Taking these points into account, a more general class of models, so-called multiple-
merger coalescent (MMC) models, have been developed (e.g., Bolthausen and Sznitman 1998;
Pitman 1999; Sagitov 1999; Schweinsberg 2000; Möhle and Sagitov 2001; reviewed in Tellier
and Lemaire 2014), aiming to generalize the Kingman coalescent model (Wakeley 2013). As
for the latter, these MMC models can often be derived from Moran models, generalized to
allow multiple offspring per individual (Eldon and Wakeley 2006; Huillet and Möhle 2013;
see also review of Irwin et al. 2016)).
Starting from such an extended Moran model, Eldon and Wakeley (2006) proved that the
underlying ancestral process converges to a psi-coalescent (sometimes also called Dirac coales-
cent; Eldon et al. 2015), and that population genetic parameters inferred from genetic data
from Pacific oysters (Crassostrea gigas) under this model vastly differ from those inferred
assuming the Kingman coalescent. Their study – being the first to link MMC models to ac-
tual biological questions, molecular data and population genetic inferences – highlighted that
high variation in individual reproductive success drastically affect both genealogical history
and subsequent analyses; this has been observed in many marine organisms such Atlantic
cod (Gadus morhua) and Japanese sardines (Sardinops melanostictus), but should also oc-
cur more generally in any species with type III survivorship curves that undergo so-called
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sweepstake-reproductive events (Hedgecock 1994; Hedgecock and Pudovkin 2011). Funda-
mentally, the problem is that an excess of low-frequency alleles (i.e., singletons), a ubiquitous
characteristic of many marine species (Niwa et al. 2016), could be explained by either mod-
els of recent population growth or skewed offspring distributions when analyzed under the
Kingman coalescent assuming neutrality which can result in serious mis-inference (e.g., a
vast overestimation of population growth).
In developing a SFS-based maximum likelihood framework, Eldon et al. (2015) demonstrated
that multiple merger coalescents and population growth can be distinguished from their
genomic footprints in the higher-frequency classes of the SFS with high statistical power (see
also Spence et al. 2016). However, there is currently neither a modelling framework that
considers the genomic signal arising from the joint action of both reproductive skew and
population growth nor is there any a priori reason to believe that the two could not act
simultaneously.
Here, we develop an extension of the standard Moran model that accounts for both repro-
ductive skewness and exponential population growth, and prove that its underlying ancestral
process converges to a time-inhomogeneous psi-coalescent. By (non-linearly) rescaling branch
lengths this process can – analogous to the Kingman coalescent (Griffiths and Tavaré 1998)
– be transformed into its time-homogeneous analogue allowing efficient large-scale simula-
tions. Furthermore, we derive analytical formulae for the expected site-frequency spectrum
under the time-inhomogeneous psi-coalescent and develop an approximate-likelihood frame-
work for the joint estimation of the coalescent and growth parameters. We then perform
extensive validation of our inference framework on simulated data and show that both the
coalescent parameter and the growth rate can be estimated accurately from whole-genome
data. In addition, we demonstrate that when demography is not accounted for, the inferred
coalescent model can be seriously biased with broad implications for genomic studies ranging
from ecology to conservation biology (e.g., due to its effects on effective population size or
diversity estimates). Finally, using our joint estimation method we re-analyze mtDNA from
Japanese sardine (Sardinops melanostictus) populations and find evidence for considerable
reproductive skew, but only limited support for a recent demographic expansion.

Model and Methods

Here we will first present an extended, discrete-time Moran model (Moran 1958, 1962; Eldon
and Wakeley 2006) with exponential population growth which will serve as the forward-in-
time population genetic model underlying the ancestral limit process. We will then give
a brief overview of coalescent models with special focus on the psi-coalescent (Eldon and
Wakeley 2006), before revisiting SFS-based maximum likelihood methods to infer coalescent
parameters and population growth rates.
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Table 1 – Summary of notation and definitions.

UN Number of offspring of a reproductive event in an extended Moran model
with population size N

ν Vector of family sizes
Λ Probability measure on [0, 1]
limN→∞ λ

(N)
i,x Coalescent rate for x out of i active lineages

Gi,x Probability of an x−merger among i active lineages
c

(n)
N Coalescence probability(
Aψ,ρn,k

)
n∈N
⊂ Pk Ancestral process of the extended Moran model sweepstake parameter ψ

(ψ = 0 implying Kingman’s coalescent) and exponential population growth
at rate ρ for a sample of size k defined on Pk, i.e., the collection of partitions
of the set [k] = {1, . . . , k}.(

Πψ,ρ
t,k

)
t≥0
⊂ Pk ψ−coalescent (ψ = 0 implying Kingman’s coalescent) with exponential

growth at rate ρ and sample of size k defined on Pk, i.e., the collection of
partitions of the set [k] = {1, . . . , k}.

G(·) Time-change function
T

(k)
MRCA Time until the MRCA for a sample of size k
Ti Sum of the length of all branches with i descendants
Ttot Total branch length of the coalescent tree
η(k) =
(η(k)

1 , . . . , η
(k)
k−1)

Site frequency spectrum (SFS) for a sample of size k

ϕ(k) =
(ϕ(k)

1 , . . . , ϕ
(k)
k−1)

Normalized expected SFS for a sample of size k

ck =
(c2,2, . . . , ck,k)

Expected time to the first coalescence for a sample of size i ∈ {2, . . . , k}
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An extended Moran model with exponential growth
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Figure 1 – Illustration of the extend Moran model with exponential growth. Shown are the four different scenarios of

population transition within a single discrete time step. A The population size remains constant and a single

individual produces exactly two offspring (’Moran-type’ reproductive event). B The population size remains

constant and a single individual produces ψNn offspring (’sweepstake’ reproductive event). C The

population size increases by ∆(n)
N individuals and a single individual produces exactly Max[∆(n)

N + 1, 2]

offspring. D The population size increases by ∆(n)
N individuals and a single individual produces exactly

Max[∆(n)
N + 1, ψNn] offspring. Note that n denotes the number of steps in the past, such that n = 0 denotes

the present. An overview of the notation used in this model is given in Table 1.

We consider the idealized, discrete-time model with variable population size shown generally
in Figure 1. Furthermore, let Nn ∈ N be the deterministic and time-dependent population
size n ∈ N time steps in the past, where by definition N = N0 denotes the present population
size. In particular, defining ν(n) as the exchangeable vector of family sizes – with components
νi(n) indicating the number of descendants of the ith individual – the (variable) population
size can be expressed as

Nn−1 =
Nn∑
i=1

νi(n) with (ν1(n), ν2(n), . . . , νN(n)) ∈ NNn . (1)

Furthermore, we assume that the reproductive mechanism follows that of an extended Moran
model (Eldon and Wakeley 2006; Huillet and Möhle 2013). In particular, as in the original
Moran model, at any given point in time n ∈ N only a single individual reproduces and leaves
UN(n) offspring (including itself). Formally, the number of offspring can be written as a se-
quence of random variables (UN(n))n∈N (where each UN(n) is supported on {0, 1, . . . , Nn−1}),
such that ν(n) – up to reordering – is given by

νi(n) :=


0 if i < UN(n)
UN(n) if i = UN(n)
1 otherwise.

(2)
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However, since population size varies over time, the sequence (UN(n))n∈N is generally not
identically distributed. On a technical note though, we require that the (Un) are inde-
pendently distributed which ensures that the corresponding backwards process satisfies the
Markov property.
An illustration of our model and the four different scenarios for forming the next genera-
tion (i.e., within a single discrete time step) is shown in Figure 1. Generally we differen-
tiate between two possible reproductive events: a classic ’Moran-type’ reproductive event
(Fig. 1A,C) and a ’sweepstake’ reproductive event (Fig. 1B,D) occurring with probabilities
1 − N−γn and N−γn , respectively. If the population size remains constant between consecu-
tive generations (Fig. 1A,B), we re-obtain the extended Moran model introduced by Eldon
and Wakeley (2006) in which a single randomly chosen individual either leaves exactly two
offspring and replaces one randomly chosen individual (Moran-type) or replaces a fixed pro-
portion ψ ∈ (0, 1] of the population (of size Nn). Note that throughout, without loss of
generality, we assume that Nnψ is integer-valued. In both reproductive scenarios the re-
maining individuals persist. However, if the population size increases between consecutive
generations (Fig. 1C,D), the reproductive mechanism needs to be adjusted accordingly. Let

∆(n)
N := Nn−1 −Nn (3)

denote the increment in population size between two consecutive time points. Then the
number of offspring at time n is given by

UN(n) := Max[∆(n)
N + 1, ŨN(n)] (4)

where ŨN(n) denotes number of offspring for the constant-size population. Thus, independent
of the type of reproductive event – i.e., Moran-type or sweepstake – and in the spirit of the
original Moran model, additional individuals are always assigned to be offspring of the single
reproducing individual of the previous generation.
Following Eldon and Wakeley (2006), the distribution of the number of offspring P(UN(n) =
u) can be written as

P(UN(n) = u) =


N−γn if u = Max[∆(n)

N + 1, Nnψ]
1−N−γn if u = Max[∆(n)

N + 1, 2]
0 otherwise,

(5)

for some γ > 0 that – for a given fixed population size – determines the probability of a
sweepstake reproductive event. We will here only consider the case where 1 < γ < 2 such that
sweepstake events happen frequently enough that the ancestral process will be characterized
by multiple mergers, and that all coalescent events are due to sweepstake reproductive events,
but not so frequently that the population is devoid of genetic variation (Eldon and Wakeley
2006). Note that while the numbers of offspring and replaced individuals are no longer
(necessarily) equal when the population size increases, the general reproductive mechanism
remains unaltered.
Throughout the paper and following Griffiths and Tavaré (1994), we will assume that the
population is growing exponentially over time at rate %, and in particular that the population
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size, n steps in the past, is given by

Nn :=
⌊
N (1− %)n

⌋
, (6a)

with

% = ρ
ψ2

Nγ
(6b)

if the ancestral process is dominated by sweepstake events (i.e., if 1 < γ < 2), or

% = ρ
1
N2 (6c)

if Moran-type reproductive events dominate (i.e., if γ > 2), and the growth rate ρ is measured
in units of the corresponding coalescent time. A discussion and details about the derivation
of the coalescent-time scaling are given below in the Derivation of the ancestral limit process
section.

Multiple merger coalescents: The Psi-coalescent
The most general class of coalescent processes that allows for multiple lineages to coalesce
per coalescent event (but not for multiple coalescent events at the same time) is the so-called
Λ-coalescent. These processes are partition-valued exchangeable stochastic processes defined
by a finite measure Λ on the [0, 1] interval (Donnelly and Kurtz 1999; Pitman 1999; Sagitov
1999). In particular, the rate at which x out of i active lineages merge is given by

lim
N→∞

λ
(N)
i,x =

(
i

x

)∫ 1

0
yx−2(1− y)i−xΛ(dy). (7)

Special instances of the Λ-coalescent are Kingman’s coalescent (Kingman 1982a,b) with

Λ(dy) = δ0(dy) (8)
and the psi-coalescent (Eldon and Wakeley 2006) with

Λ(dy) = δψ(dy), (9)
where the measure Λ is entirely concentrated at 0 and ψ, respectively.
Under a (constant-size) extended Moran model as proposed by Eldon and Wakeley (2006)
(corresponding to Fig. 1A,B), the scaled coalescence rates of the ancestral process become

lim
N→∞

λ
(N)
i,x =


(
i
x

)
ψx−2(1− ψ)i−x if 0 < γ < 2(

i
x

) (
2

2+ψ21x=2 + ψx

2+ψ2 (1− ψ)i−x
)

if γ = 2(
i
x

)
1x=2 otherwise,

(10)

where 1x=2 denotes the indicator function that is 1 if x = 2 and 0 otherwise. Accordingly,
the corresponding rate matrix of the ancestral process Qψ ∈ Rk×k with sample size k is given
by
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Qψ(i, j) =


λi,j if i > j

− 1
ψ2 (1− (1− ψ)i − iψ(1− ψ)i−1) if i = j

0 otherwise,
(11)

where j = i − x − 1. Note that the diagonal entries of Qψ(i, j) (i.e., when i = j) is given
by the (negative) sum over all coalescent rates, i.e., −∑i

m=2 λi,m, which evaluates to the
closed-form representation given in the second line of Equation 11.
In particular, in the boundary case ψ = 0 we recover the rate matrix under the Kingman
coalescent as

Q0(i, j) =


(
i
2

)
if j = i− 1

−
(
i
2

)
if i = j

0 otherwise.
(12)

Note that in the infinite population size limit γ defines the time scale of the ancestral process.
In particular, if 0 < γ < 2 all coalescence events are due to sweepstake reproductive events,
whereas sweepstake events do not happen frequently enough if γ > 2, such that all (2-)mergers
are due to Moran-type reproductive events. Moreover, in the latter case the ancestral process
of the Moran model can be accurately described by the Kingman coalescent (when scaled
appropriately). Note that for the special case γ = 2 both reproductive events happen on the
same time scale (Eldon and Wakeley 2006).

SFS-based maximum likelihood inference
In order to infer the coalescent model and its associated coalescent parameter and to (sep-
arately) estimate the demographic history of the population, Eldon et al. (2015) recently
derived an (approximate) maximum likelihood framework based on the SFS (see also Birkner
and Blath 2008 and Koskela et al. 2015 for alternative inference approaches based on a full
likelihood framework and approximate conditional sampling distributions, respectively).
In the following we will give a concise overview of their approach which forms the basis for
the joint inference of coalescent parameters and population growth rates.
First, let k denote the number of sampled (haploid) individuals (i.e., the number of leaves in
the coalescent tree). Furthermore, let η(k) = (η(k)

1 , . . . , η
(k)
k−1) denote the number of segregating

sites with derived allele count of i = 1, . . . , k − 1 of all sampled individuals (i.e., the SFS),
and let s = ∑k−1

i=1 ηi be the total number of segregating sites. Provided that s > 0 we define
the normalized expected SFS ϕ(k) = (ϕ(k)

1 , . . . , ϕ
(k)
k−1) as

ϕ
(k)
i =

E
[
η

(k)
i

]
∑k−1
i=1 E

[
η

(k)
i

] , (13)

which – given a coalescent model
(
Πψ,ρ
t,k

)
t≥0

and assuming the infinite-sites model (Watterson
1975) – can be interpreted as the probability that a mutation appears i times in a sample
of size k (Eldon et al. 2015). Furthermore, note that ϕ(k)

i is a function of
(
Πψ,ρ
t,k

)
t≥0

(i.e., of
the coalescent process and the demographic population history), but unlike E

[
η(k)

]
is not
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a function of the mutation rate, and should provide a good first-order approximation of the
expected SFS as long as the sample size and the mutation rate are not too small (Eldon et al.
2015).
Then the likelihood function L

((
Πψ,ρ
t,k

)
t≥0

, η̃(k), s
)
for the observed frequency spectrum η̃(k)

and given coalescent model
(
Πψ,ρ
t,k

)
t≥0

is given by

L
((

Πψ,ρ
t,k

)
t≥0

, η̃(k), s
)

= P(Πψ,ρ
t,k )

t≥0
,s
(
η

(k)
i = η̃

(k)
i , i ∈ [k − 1]

)

= EΠ

 s!
η̃

(k)
1 ! . . . η̃(k)

k−1!

k−1∏
i=1

 T
(k)
i

Ttot(k)

η̃
(k)
i


≈ s!
η̃

(k)
1 ! . . . η̃(k)

k−1!

k−1∏
i=1

(
ϕ

(k)
i

)η̃(k)
i

∝
k−1∏
i=1

exp
[
−sϕ(k)

i

] (sϕ(k)
i

)η̃(k)
i

η̃
(k)
i !

(14)

(Eldon et al. 2015). Note that in the third line we approximated E
[(

T
(k)
i

T
(k)
tot

)]
≈

E
[
T

(k)
i

]
E
[
T

(k)
tot

] = ϕ
(k)
i .

In fact, Bhaskar et al. (2015) recently used a Poisson random field approximation to derive
an analogous, structurally identical likelihood function for estimating demographic parame-
ters under the Kingman coalescent. Notably though, their approximation assumes that the
underlying coalescent tree is independent at each site, under which condition Equation 14 is
exact.
As an alternative to the likelihood approach, we followed Eldon et al. (2015) and also imple-
mented a minimal-distance statistic approach where

ψ̂, ρ̂ = arg min
ψ, ρ

dp
(
η̃(k),E

[
η(k)

])
, (15)

where dp is some metric on Rp−1 calculated between the observed and the expected SFS
under the generating coalescent process.
Note though that both the likelihood and the distance-based approach require expressions for
the normalized expected SFS ϕ(k). Instead of performing Monte Carlo simulations to obtain
these quantities we adapted an approach recently proposed by Spence et al. (2016), who
derived analytical formulas for the expected SFS under a given (general) coalescent model(
Πψ,ρ
t,k

)
t≥0

and an intensity measure ξ(t) : R≥0 → R>0. In particular, the authors showed that

E
[
η(k)

]
= θ

2BCLck, (16)

where B ∈ Rk−1×k−1 and C ∈ Rk−1×k−1 are both Λ−independent (and thus easy to calculate)
matrices, L ∈ Rk−1×k−1 is a Λ−dependent lower triangular matrix that depends on the rate
matrix Q and its spectral decomposition, θ is the population-scaled mutation rate, and
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ck = (c2,2, . . . , ck,k) denotes the expected time to the first coalescence for a sample of size
i ∈ {2, . . . , k}. Importantly, the time-inhomogeneity of the underlying coalescent process
only enters through the first coalescence times ck. For example, the first coalescence times
for the Kingman coalescent with an exponentially growing population are given by

ci,i = −1
ρ

exp

(
i
2

)
ρ

Ei
−

(
i
2

)
ρ

 , (17)

where Ei(x) := −
∫∞
−x(exp [−t] /t)dt denotes the exponential integral (Polanski et al. 2003;

Polanski and Kimmel 2003; Bhaskar et al. 2015). Finally, plugging Equation 16 into Equa-
tion 13 leads to

ϕ
(k)
i = (BCLck)i∑k−1

i=1 (BCLck)i
, (18)

highlighting that θ cancels and that the likelihood function (eq. 14) is independent of the
mutation rate.
To obtain the coalescent parameter ψ and population growth rate ρ that maximize the likeli-
hood function (eq. 14) or respectively minimize the distance function (eq. 15), we used a grid
search procedure over an equally-spaced two-dimensional grid with ψgrid = {0, 0.01, . . . , 1}
and ρgrid = {0, 1, . . . , 1024}, and evaluated the value of the likelihood respectively distance
function at each grid point.

Data availability
The empirical raw data used have been downloaded from GenBank (accession numbers
LC031518 – LC031623; data from Niwa et al. 2016). The empirical SFS can be downloaded
from Supporting Information (Supporting Files: File E1). The simulation program and
the inference program were written in C++ and are available upon request.

Results and Discussion

The aim of this work is to derive the ancestral process for an exponentially expanding popula-
tion that undergoes sweepstake reproductive events. We first derive the time-inhomogeneous
Markovian ancestral process that underlies the extended Moran model, and show that, anal-
ogous to the Kingman coalescent, it can be described by a time-homogeneous Markov chain
on a non-linear time scale. In particular, we derive the coalescent rates and the time-change
function, and prove convergence to a Λ−coalescent with Dirac measure at ψ. Detailed deriva-
tions of the results, which in the main text have been abbreviated to keep formulas concise,
can be found in Supporting Information (Detailed derivation of results). On the basis of
these results, we derive a maximum likelihood inference framework for the joint inference of
the coalescent parameter and the population growth rate, and assess its accuracy and perfor-
mance through large-scale simulations. Furthermore, we quantify the bias of coalescent and
population growth parameter estimates when mistakenly neglecting population demography
or reproductive skew. Finally, we apply our approach to mtDNA from Japanese sardine
(Sardinops melanostictus) populations where patterns of sequence variation were shown to
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Figure 2 – The normalized expected (lumped) SFS for the psi-coalescent for an exponentially growing population
(eq. 18) with sample size k = 20 (A) for different values of ρ and fixed ψ = 0.15 and (B) for different values
of ψ and fixed ρ = 1. The sixth entry in the SFS contains the aggregate of the higher frequency classes.

be more consistent with sole influence from sweepstake reproductive events, again highlight-
ing the potential mis-inference of growth if reproductive skew is not properly accounted for
(Niwa et al. 2016; Grant et al. 2016).

Derivation of the ancestral limit process
Unlike in the case of a constant-size population, the sequence of the number of offspring
(UN(n))n∈N changes along with the (time-dependent) population size. Thus, the ancestral
process is characterized by an inhomogeneous Markov chain with transition probabilities

G
(n)
i,x =

(
i

x

)
Nn∑
u=2

PN(UN(n) = u)(u)x(Nn − u)i−x
(Nn)i

(19a)

where (z)j is the descending factorial, z(z − 1) . . . (z − j + 1) with (z)0 = 1, and PN denotes
the rescaled distribution of UN given by

PN(UN = u) := P(UN = u)u(u− 1)/(N(N − 1))
c

(n)
N

. (19b)

Note that PN is scaled by the time-dependent coalescence probability c(n)
N – which scales the

unit of time in the limit process such that it is equal to G2,2 steps in the discrete-time model
and thus serves as the “natural” time scale for the corresponding ancestral process – defined
as

c
(n)
N := G

(n)
2,2 = E [UN(n)2 − UN(n)]

Nn(Nn − 1) (20)

for all n ∈ N.
Plugging Equation 5 into Equations 19a and 20, and using Equation 4 then yields
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G
(n)
i,x =

(
i

x

)
1

Nn (Nn − 1) (21)((
1−N−γn

) (
Max[2,∆(n)

N + 1]
)
x

(
Nn −Max[2,∆(n)

N + 1]
)
i−x

+ N−γn (Max[ψNn,∆(n)
N + 1])x

(
Nn −Max[ψNn,∆(n)

N + 1]
)
i−x

)
and

c
(n)
N =

(1−N−γn )
(
Max[2,∆(n)

N + 1]
)

2
+N−γn (Max[ψNn,∆(n)

N + 1])2

Nn (Nn − 1) , (22)

respectively. Note that Equation 22 is the weighted sum of the number of offspring for the
two different reproductive events. Furthermore, taking the limit N →∞ in Equation 3

lim
N→∞

∆(n)
N = lim

N→∞
(Nn −Nn−1)

≤ lim
N→∞

Nρ
ψ2

Nγ

= 0 (23)

shows that ∆(n)
N is bounded for all n ∈ N under the exponential growth model and thus allows

dropping of the maxima condition in Equations 21 and 22. Furthermore, for sufficiently large
N Equation 22 becomes

c
(n)
N = (1−N−γn ) 2 + ψN1−γ

n (ψNn − 1)
Nn (Nn − 1) ∼ ψ2

Nγ
n
. (24)

To prove that the time-scaled ancestral process of the underlying extended Moran model
converges to a continuous-time Markov chain as the initial population size approaches infin-
ity, we apply Theorem 2.2 in Möhle (2002), which requires the following definitions: First,
consider a step function FN : [0,∞)→ [0,∞) given by

FN(s) :=
bsc∑
n=1

c
(n)
N . (25)

Furthermore, let G−1
N denote a modification of the right-continuous inverse of FN

G−1
N (t) := inf{s > 0 | FN(s) > t} − 1 (26)

which will constitute the time-change function in the following. Since by assumption
lims→∞ FN(s) = ∞ it follows that G−1

N (t) is finite for all t ∈ [0,∞). Finally, Theorem
2.2 (Möhle 2002) requires that for all t ∈ [0,∞)
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lim
N→∞

inf
1≤n≤G−1

N (t)
Nn =∞ (27)

and

lim
N→∞

sup
1≤n≤G−1

N (t)
c

(n)
N = 0 (28)

holds, i.e., that – on the new time scale – the population size remains large while the coalescent
probabilities become small.
Then, let

(
Aψ,ρn,k

)
n∈N

denote the ancestral process of the extended Moran model with expo-
nential growth (see Model and Methods) and let φ and ξ denote two partitions of [k] with
ξ ⊂ φ of size a and b = b1 + . . . + ba (where b1 ≥ b2 ≥ . . . ≥ ba ≥ 1), respectively. The
transition probability of

(
Aψ,ρn,k

)
n∈N

at time n ∈ N is given by

Φ(N)
a (n; b1, b2, . . . , ba) := 1

(Nn−1)b

Nn∑
i1,...,1a=1
all distinct

E
(
(νi1(n))b1

· · · (νia(n))ba
)
. (29)

Thus, for the extended Moran model with exponential growth Theorem 2.2 in Möhle (2002)
states:
Theorem 1 (Theorem 2.2 ; Möehle 2002). Assume that Equations (27) and (28) hold and
for all t ∈ R>0 the limit

πa ((0, t]; b1, . . . , ba) := lim
N→∞

G−1
N (t)∑
n=1

Φ(N)
a (n; b1, b2, . . . , ba) (30)

exists. Then for each sample size k ∈ N the ancestral process
(
Aψ,ρG−1

N (t),k

)
t≥0

converges as N
tends to infinity to a time-continuous and in general a time-inhomogeneous Markov chain(
Πψ,ρ
t,k

)
t≥0

.

Note though that in its general form Theorem 1 was derived for any generic Cannings model
as well as any kind of population size change (Möhle 2002).
We will now derive our first main result and show that the ancestral limiting process
limN→∞

(
Aψ,ρn,k

)
t≥0

converges to a Λ − k−coalescent on a non-linear time scale. First, we
derive the time-change function G−1

N (t) for the ancestral process by considering the step
function (eq. 25)

FN(s) =
s∑

n=1
c

(n)
N ∼

s∑
n=1

ψ2

Nγ
n

= ψ2

Nγ

(
1− ρ ψ

2

Nγ

)−γ ((1− ρ ψ2

Nγ

)−γs
− 1

)
(
1− ρ ψ2

Nγ

)−γ
− 1

. (31)

Solving for s then gives
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G−1
N (t) = inf{s > 0 : FN (bs > tc)}

∼
[

log [1 + ργt]
ργ

Nγ

ψ2

]
, (32)

where we have used log
[
1− ρψ2

Nγ

]
∼ −ρψ2

Nγ for sufficiently large N . In particular, we have

G−1(t) := lim
N→∞

G−1
N (t)c(0)

N = log [1 + ργt]
ργ

. (33)

Furthermore, Equations 27 and 28 hold since

lim
N→∞

inf
1≤n≤G−1

N (t)
N

(
1− ρ ψ

2

Nγ

)n
(34)

= lim
N→∞

N inf
1≤n≤G−1

N (t)
exp

(
−ρψ

2

Nγ
n

)

= lim
N→∞

N(1 + ργt)−
1
γ

=∞ ∀t ∈ (0,∞), (35)

and by the same reasoning

lim
N→∞

sup
1≤n≤G−1

N (t)

ψ2

N
(
1− ρ ψ2

Nγ

)n = 0, ∀t ∈ (0,∞). (36)

Finally, to show that Equation 30 holds, we first note that

Φ(N)
a (n; b1, ..., ba) = 0 , (37)

and for a ≥ 2 and there are two indices 1 ≤ i < j ≤ a with bi, bj ≥ 2

πa((0, t]; b1, ..., ba) = 0, (38)
since the extended Moran model does not allow for more than one reproductive event at a
time.
Thus, limN→∞

(
Aψ,ρG−1

N (t),k

)
t≥0

is well defined and does not feature any simultaneous coalescent
events, implying that the limiting process must be a (possibly time-inhomogeneous) Λ− k−
coalescent. Further, for a = 1,

lim
N→∞

G−1
N (t)∑
n=1

Φ(N)
1 (n; b) = lim

N→∞

G−1
N (t)∑
n=1

Gb,b

= ψb−2t. (39)
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Hence, Theorem 1 implies that for each sample size k ∈ N the limit of the time-scaled ances-
tral process

(
Aψ,ρG−1

N (t),k

)
t≥0

exists and from Equation 39 it follows that limN→∞

(
Aψ,ρG−1

N (t),k

)
t≥0

is a time-homogeneous Λ− k−coalescent. Further,

tψb−2 = t
∫ 1

0
xb−2Λ(dx) (40)

holds for all b ∈ N if and only if Λ is the Dirac measure at ψ. Thus, in the large population-
size limit the ancestral process, limN→∞

(
Aψ,ρG−1

N (t),k

)
t≥0

, converges to a psi-k-coalescent –(
Πψ,ρ
t,k

)
t∈R≥0

:= limN→∞

(
Aψ,ρ
bt/c(0)

N c,k

)
t≥0

– that is equal (in distribution) to a regular psi-k-

coalescent
(
Πψ,0
G(t),k

)
with time (non-linearly) rescaled by

G(t) = exp (ργt)− 1
ργ

. (41)

Put differently, analogous to the results obtained for the Kingman coalescent (Griffiths and
Tavaré 1994; Griffiths and Tavaré 1998; Kaj and Krone 2003), the time-inhomogeneous an-
cestral limiting process of the extended Moran model with exponential growth can be trans-
formed into a time-homogeneous psi-coalescent with coalescent rates given by Equation 10
with branches rescaled by Equation 41 allowing it to be simulated easily and efficiently. Intu-
itively, the transformation sums over the coalescence intensities of the time-inhomogeneous
process and weighs them by the time they were effective, such that on the new time-scale co-
alescent intensities are constant across time, and the (re-scaled) process is time-homogeneous
(see also Kaj and Krone 2003). Thus, changing the time-scale by Equation 41 compensates
for the shrinking population sizes (going backwards in time) and the effect of increasing
(total) coalescent rates.
To highlight the duality between the two processes – i.e., the (forward in time) extended
Moran model and the corresponding coalescent – key properties (e.g., the summed length of
all branches with i descendants Ti and the total tree length Ttot) are compared in the Support-
ing Information (Extended Moran model simulations). Finally note, that Equation 41
is – except for the additional factor γ that is proportional to the coalescent time scale –
structurally identical to the time-change function in the Kingman case (Griffiths and Tavaré
1998). However, since G(t) depends on the product ρ̃ = ργ, it is impossible to obtain a direct
estimate of ρ (or γ) without additional information, and thus – analogous to the case of the
population scaled mutation rate θ – only the compound parameter ρ̃ can be estimated. To
keep notation simple though, we will refer to ρ (instead of ρ̃) when referring to growth rate
estimates.

Joint inference of coalescent parameters and population growth rates
In this paragraph we modify the likelihood function

L
((

Πψ,ρ
t,k

)
t≥0

, η̃(k), s
)
∝

k−1∏
i=1

exp
[
−sϕ(k)

i

] (sϕ(k)
i

)η̃(k)
i

η̃
(k)
i !

(42)
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derived in the Model and Methods section to jointly infer the coalescent parameter ψ and
the population growth rate ρ. Note that while the general form of the likelihood function
(eq. 14) is independent of the generating coalescent process, changes in ψ and ρ affect the
normalized expected SFS as given by

ϕ
(k)
i = (BCLck)i∑k−1

i=1 (BCLck)i
. (43)

Recall that B and C depend neither on ψ nor ρ, and that L does depend on ψ but not on
ρ, and that the time-inhomogeneity of the underlying coalescent process only enters through
the first coalescence times ck, which are given by

ci,i =
∫ ∞

0
P(time of first coalescence for i individuals > t)dt

=
∫ ∞

0
exp

(
(Q)i,i

∫ t

0
(1/ξ(s))ds

)
dt, (44)

where ξ(s) denotes the intensity measure (Polanski and Kimmel 2003; Bhaskar et al. 2015;
Spence et al. 2016). For the psi-coalescent with exponential growth ξ(t) = e−ργt such that
Equation 44 becomes

ci,i =
∫ ∞

0
exp

(
(Q)i,i

exp (ργt)− 1
ργ

)
dt

= −exp ((Q)i,i ργ)
ργ

Ei(−(Q)i,i ργ), (45)

where Ei(x) := −
∫∞
−x(exp [−t] /t)dt denotes the exponential integral. Thus, when growth

rates are measured on their corresponding coalescent scale – i.e., ργ under the psi-coalescent
versus ρ under the Kingman coalescent – Equation 45 is a generalization of the Kingman
coalescent result (eq. 17) derived by Polanski and Kimmel (2003). Finally, combining Equa-
tion 45 with Equation 43 allows for the exact computation of the normalized expected SFS
ϕ(k), avoiding the simulation error that would be introduced by Monte Carlo simulations.
Figure 2 shows the normalized expected SFS obtained from Equation 43, where higher fre-
quency classes have been aggregated (i.e., lumped) for different values of ψ and ρ. In line
with previous findings, both multiple mergers and population growth lead to an excess in sin-
gletons (Durrett and Schweinsberg 2005; Eldon et al. 2015; Niwa et al. 2016). Furthermore,
this excess increases as sample size increases under the psi-coalescent (Fig. SI C_1), while it
decreases for the Kingman coalescent independent of the presence or absence of exponential
growth. These qualitative differences stem from the different footprints reproductive skew
and exponential growth leave on a genealogy. While the latter is a simple rescaling of branch
lengths leaving the topology unchanged, multiple-merger coalescents by definition affect the
topology of the genealogical tree (Eldon et al. 2015). In particular, when ψ is large, adding
samples will disproportionally increase the number of external branches T1 such that the
genealogy will become more star-like, rendering disproportionately more singletons.
Though the excess in singletons characterizes either process, their higher frequency classes
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will typically differ (Eldon et al. 2015). When both processes – reproductive skew and
exponential growth – act simultaneously though, their joint effects on the SFS (non-trivially)
combine. As expected, increasing growth under the psi-coalescent further exacerbates the
excess in singletons. More generally, exponential growth leads to a systematic left shift in
the SFS towards lower frequency classes that is independent of ψ. Increasing ψ on the other
hand changes the SFS – and in particular the higher frequency classes – non-monotonically
even if there is no population growth (Fig. SI C_2). Interestingly, for ρ = 0 the last entry
of the normalized expected SFS E[ηk−1] initially increases with ψ and takes an intermediate
maximum, decreases monotonically until ψ ≈ 0.85, peaks again and then quickly reduces to 0
as ψ approaches 1. This effect prevails as sample size increases (Fig. SI C_2) even though the
intermediate maximum slightly shifts towards lower ψ. However, this intermediate maximum
is effectively washed out by increasing ρ such that the second peak becomes the maximum.
Furthermore, the shape of the peak becomes more pronounced as sample size increases. Thus,
reproductive skew and exponential growth leave complex and distinct genomic footprints on
the SFS. While in theory population growth and reproductive skew should be identifiable,
this in practice strongly depends on sample size (Spence et al. 2016). In the next section we
will assess the accuracy of our joint estimation framework and perform extensive validation
(eq. 14) on large-scale simulated data.

Simulated coalescent and demographic models
To test our inference framework, we followed two different simulation approaches, each corre-
sponding to two biological limiting cases. In both, data was simulated for the Cartesian prod-
uct set over ψ = {0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9}, ρ = {0, 1, 10, 100}, k = {20, 50, 100, 200}
and s = {100, 1 000, 10 000} per locus over 10,000 replicates each. In order to make results
comparable across different coalescent models and thus across different values of ψ and ρ, we
calculated the population-scaled mutation rate θ based on Watterson’s estimator (Watterson
1975),

θ = 2s
E
[
Tψ,ρtot

] (46)

for a fixed number of segregating sites s over the expected total tree length under the gener-
ating coalescent model (given by the denominator in eq. 43). Note that Ttot decreases with
both increasing ψ and ρ. Thus, keeping s constant implies that θ effectively increases with
ψ and ρ. We will discuss the latter point in more detail in light of the results below. Data
was simulated for the following two underlying genetic architectures:

• Case 1 (Independent-sites simulations): Under the Poisson random field assumption,
the underlying coalescent tree at each site is independent (Sawyer and Hartl 1992;
Bhaskar et al. 2015). Thus, by averaging over independent realizations of the (shared)
underlying coalescent process the SFS can be obtained by randomly drawing from a
multinomial distribution such that η ∼ Multinomial (s,ϕ) .

• Case 2 (Whole-genome simulations): In this scenario we consider a genome of ` = 100
and ` = 1,000 independent loci, respectively, where sites within each locus share the
same genealogy (i.e., coalescent tree). Thus, for each locus we draw a random genealogy
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according to equations 10 and 41, superimpose s ∼Poisson(θ/2) random mutations onto
the ancestral tree by multinomial sampling, and aggregate the individual locus SFS into
a single genome-wide SFS.

Finally, data sets where s = η1 (i.e., where all segregating sites were singletons) were dis-
carded and simulated again since these do not allow the underlying coalescent parameter and
demographic history to be identified.

Accuracy of joint estimation framework

ρ

ψ
Figure 3 – Likelihood surface (eq. 14) of the idealized SFS with k = 100, ψ = 0.3, ρ = 10 and s = 10,000. Contours

show the 0.95, 0.9675, 0.975, 0.99, 0.99225, 0.9945, 0.99675, 0.999, 0.99945 and 0.9999 quantiles. Likelihoods
below the 0.95 quantile are uniformly colored in gray. The green square shows the true ψ and ρ. The black
star shows the maximum likelihood estimates ψ̂ and ρ̂.

Next we evaluated the accuracy of the joint estimation framework by means of the mean
absolute deviation (MAD) MAD = 1

n

∑n
i=1|xi − x̂i|, the mean deviation (MD) MD =

1
n

∑n
i=1 xi − x̂i, the mean squared error (MSE) MSE = 1

n

∑n
i=1 (xi − x̂i)2 , and the median

deviation (MDD) where x and x̂ denote the true and the estimated parameter, respectively.
If not stated otherwise, results in the main text are shown for the default parameters k = 100
and θ (eq. 46) with s = 10,000. More results are given in Supporting Information (Support-
ing Figures) and (Supporting Tables).

Inference under the independent-sites assumption. First, for a consistency check we applied
our grid-search algorithm to estimate ψ and ρ from an idealized SFS (i.e., where the SFS
accurately reflects the expected branch length under the generating coalescent and demo-
graphic model ϕ except for distortions due to rounding). An exemplary likelihood surface
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Figure 4 – Heatplot of the frequency of the maximum likelihood estimates for 10,000 data sets assuming independent
sites with k = 100, ψ = 0.3, ρ = 10, and θ (eq. 46) with s = 10,000. Counts increase from blue to red with
grey squares showing zero counts. The green square shows the true ψ and ρ. The black star shows the
median (and mean) of the maximum likelihood estimates ψ̂ and ρ̂.

(eq. 14) for such an idealized SFS is depicted in Figure 3, which shows that the likelihood
surface – up to the resolution of the grid point – is smooth and generally unimodal and that
the true parameters can be estimated accurately. Furthermore, Figure 3 shows that there
is generally a negative correlation between ψ and ρ, and that the likelihood surface tends
to be steeper and more concentrated along the ψ direction, which suggests that growth rate
estimates might show a larger variance and could in general be more difficult to estimate.
The steepness of the likelihood surface along the ψ axis tends to increase with ψ and sample
size k, suggesting that the accuracy for estimating ψ should increase as well, while it should
become more difficult to estimate ρ accurately.
An exemplary distribution of the jointly inferred maximum likelihood estimates (ψ̂, ρ̂) as-
suming independent sites is shown in Figure 4. The shape of this distribution resembles that
of the likelihood surface (Fig. 3), indicating that there is some variance – in particular along
the ρ-axis – in the maximum likelihood estimates. However, the median and the mean of the
distribution match the true underlying coalescent and growth rate parameters (i.e., ψ and ρ)
very well, implying that if sites are independent, ψ̂ and ρ̂ are unbiased estimators.
Generally, as expected from the shape of the likelihood surface, ψ is estimated with high
accuracy and precision, even for large sample sizes (k = 200) with only a few segregating sites
(s = 100) and (nearly) independent of ρ (Fig. 5A, SI C_3A, SI C_4A; Table SI D_1). Growth
rate estimates ρ̂, however, show a larger variance and for some parameters – namely large k
and small s – might be slightly upwardly biased when both the coalescent parameter and the
growth rate are large (Fig. 5B, SI C_3B, SI C_4B; Table SI D_2). Though, as the number
of segregating sites increases, this bias vanishes and the variance decreases (Fig. SI C_5),
highlighting that the joint estimation procedure gives asymptotically unbiased estimators.
For a given s, increasing sample size k increases the signal-to-noise ratio and thus the error in
both ψ̂ and ρ̂ (Tables SI D_1, SI D_2, SI D_3, SI D_3) which is most noticeable in growth
rate estimates, in particular when ρ is large (Fig. SI C_6). This increase in estimation error
can (partially) be compensated by increasing the number of segregating sites s (Fig. SI C_7,
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Figure 5 – Boxplot of the deviation of the maximum likelihood estimate from the true (A) ψ and (B) ρ for 10,000 data
sets assuming independent site with k = 100 and θ (eq. 46) with s = 10,000. Boxes represent the
interquartile range (i.e., the 50% C.I.) and whiskers extend to the highest/lowest data point within the box
±1.5 times the interquartile range.

Table SI D_5). Specifically, if the true underlying ψ is large (i.e., if the offspring distribution
is heavily skewed) an increasing number of segregating sites is needed to accurately infer ρ.
However, the total tree length T̄tot – and thus the number of segregating sites s – is expected
to decrease sharply with ψ (Eldon and Wakeley 2006), implying that trees tend to become
shorter under heavily skewed offspring distributions. This effect could (again, partially) be
overcome by increasing sample size since T̄tot – unlike the Kingman coalescent – scales linearly
with k as ψ approaches 1 (Eldon and Wakeley 2006). However, population growth will reduce
T̄tot and the number of segregating sites even further.
Calculating θ based on a fixed and constant (expected) number of segregating sites for the
assessment of the accuracy of the estimation method evades this problem to some extent.
However, by making this assumption we effectively increase θ in our simulations as ψ and ρ
increases. Our results suggest, though, that even more segregating sites than considered in
this study (i.e., an even larger θ) would be necessary to infer population growth accurately.
Thus, unless (effective) population sizes and/or genome-wide mutation rates are large it might
be very difficult to infer population growth if the offspring distribution is heavily skewed (i.e.,.
if ψ is large). On the other hand, the few studies that have estimated ψ generally found it
to be small (Eldon and Wakeley 2006; Birkner et al. 2013; Árnason and Halldórsdóttir 2015)
leaving it unresolved whether this problem is of any practical importance when studying
natural populations.

Inference from genome-wide data. We next tested the accuracy of our joint estimation frame-
work when applied to genome-wide data obtained from ` = 100 independent loci. An ex-
emplary distribution of the jointly inferred maximum likelihood estimates (ψ̂, ρ̂) is depicted
in Figure 6; Figure 7 shows the overall performance of the joint estimation method when
applied to genome-wide data. While the whole-genome simulations are designed such that
each site in a given locus shares the same underlying genealogy, and thus violate the as-
sumption of (statistical) independence between sites, we find that coalescent and growth rate
parameters (i.e., ψ and ρ) can be estimated robustly and accurately. In concordance with
the independent-sites simulations, the variance in ψ̂ is typically small, whereas ρ̂ spreads
considerably, and increasingly so if ψ is large. The mean and the median of the coalescent
parameter and growth rate estimates are again centered around the true value, implying that
ψ̂ and ρ̂ are unbiased estimators (see also Tables SI D_11, SI D_12, SI D_13, SI D_14).
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Figure 6 – Heatplot of the frequency of the maximum likelihood estimates for 10,000 whole-genome data sets assuming
with ` = 100, k = 100, ψ = 0.3, ρ = 10, γ = 1.5 and θ (eq. 46) with s = 1,000. Counts increase from blue to
red with grey squares showing zero counts. The green square shows the true ψ and ρ. The black star shows
the median (and mean) of the maximum likelihood estimates ψ̂ and ρ̂.

Interestingly, the precision of the coalescent and growth rate parameter estimates increases
along with the number of loci (i.e., the number of independent coalescent realizations) while
keeping the number of segregating sites constant (Table SI D_10). While this effect is to some
extent expected as increasing the number of (independent) loci reduces the approximation
error (see above), it suggests that sequencing efforts should be put on covering the genome
in its entirety rather than on increasing coverage of individual genomic regions.
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Figure 7 – Boxplot of the deviation of the maximum likelihood estimate from the true (A) ψ and (B) ρ for 10,000
whole-genome data sets with ` = 100, k = 100, γ = 1.5, and θ (eq. 46) with s = 1,000. Boxes represent the
interquartile range (i.e., the 50% C.I.) and whiskers extend to the highest/lowest data point within the box
±1.5 times the interquartile range.

Distance-based inference and the effect of lumping. As an alternative to the likelihood-based
method, Eldon et al. (2015) proposed an ABC approach based on a minimum-distance statis-
tic (eq. 15). In this section we assess the accuracy of ψ̂d and ρ̂d when estimated from d1 and
d2 distances (i.e., the l1 and l2 distance). A surface plot of the l1 and the l2 distance is shown
in Figure SI C_8. We find that for the l1 and the l2 distance results are comparable to those
of the likelihood-based estimates, but generally display a larger variance (Fig. SI C_9, SI
C_10, SI C_11). Likelihood-based estimates ψ̂ML tend to be more accurate across the entire
parameter space, though differences between the two are marginal.
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Over the majority of the parameter space the same holds true for ρ̂ML. Particularly for small
to intermediate ψ the likelihood-based approach outperforms both distance-based approaches
considerably (Table SI D_7). Interestingly though, for large ψ and ρ (i.e., in the part
of the parameter space where estimating ρ is generally difficult) the l1 distance approach
gives more accurate estimates. When increasing the number of segregating sites, though,
the likelihood approach becomes more accurate again, suggesting that the l1 distance-based
approach only outperforms the likelihood-based approach when there is insufficient data (not
shown). These general findings are also upheld when considering genome-wide data (Figs. SI
C_12, SI C_13). Despite the slightly reduced power as compared to the maximum likelihood
approach, our results indicate that, given the asymptotic properties, both the l1 and the l2
distance should perform reasonably well when used in a rejection-based ABC analysis.
Finally, we investigated the effect of lumping (i.e., aggregating the higher-frequency classes of
the SFS into a single entry after a given threshold i) on the performance of our estimator. In
contrast to Eldon et al. (2015), who found that lumping can improve the power to distinguish
between multiple-merger coalescent models and models of population growth, we find that
estimates based on the lumped SFS (using i = 5 and i = 15) show considerably more
error (Tables SI D_8, SI D_9). While ψ can again be reasonably well estimated, ρ̂ – in
particular when ψ and/or ρ are large – is orders of magnitude more inaccurate when higher
frequency classes are lumped. The reason is that when trying to differentiate between different
coalescent or growth models, lumping can reduce the noise associated with the individual
higher frequency classes and thus increases the power, provided that the different candidate
models show different mean behaviors in the lumped classes (Eldon et al. 2015). While this
seems to hold true when considering “pure” coalescent or growth models, the joint footprints
of skewed offspring distributions and (exponential) population growth are more subtle. In
particular, since growth induces a systematic left shift in the SFS towards lower frequency
classes, most of the information to distinguish between a psi-coalescent with or without
growth is lost when aggregated.

Mis-inference of coalescent parameters when neglecting demography
As argued above, both reproductive skew and population growth result in an excess of sin-
gletons (i.e., low-frequency mutations) in the SFS. However, topological differences between
the two generating processes in the right tail of the SFS allows distinguishing between the
two. In particular, fitting an exponential growth model and not accounting for reproductive
skewness results in a vastly (and often unrealistically) overestimated growth rate (Eldon et al.
2015).
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Figure 8 – Boxplot of the deviation of the maximum likelihood estimate from the true ψ for 10,000 data sets assuming
independent sites with k = 100 and θ (eq. 46) with s = 10,000. when not accounting for population growth.
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point within the box ±1.5 times the interquartile range.

Here, we investigate how coalescent parameter estimates (i.e., ψ̂) are affected when not
accounting for (exponential) population growth (i.e., assuming ρ = 0) when both processes
act simultaneously. As expected we find that ψ̂ is consistently overestimated (Fig. 8) and that
the estimation error – independent of ψ – increases with larger (unaccounted for) growth rates.
This is because, unless the underlying genealogy is star-shaped (e.g., when ψ = 1), growth
will always left-shift the SFS and hence increase the singleton class. Thus, when assuming
ρ = 0, increasing ψ compensates for the “missing” singletons. Interestingly though, the
estimation error changes non-monotonically with ψ, and for large ρ can be as great as twice
the value of the true underlying coalescent parameter. Furthermore, for low to intermediate
ψ, even small growth rates can result in a relative error of up to 23%. Overall, not accounting
for demography can lead to serious biases in ψ with broad ecological implications when trying
to understand the variation in reproductive success.

Application to sardine data
Finally, we applied our joint inference framework to a derived SFS for the control region of
mtDNA in Japanese sardine (Sardinops melanostictus; File E1). Niwa et al. (2016) recently
analyzed this data to test whether the observed excess in singletons was more likely caused
by a recent population expansion or by sweepstake reproductive events and found that the
latter is the more likely explanation. However, there is of course no a priori reason to believe
that both reproductive skew and population growth could not have acted simultaneously.
When estimated jointly, the maximum likelihood estimate is (ψ̂, ρ̂) = (0.46, 0), which implies
considerable reproductive skew, but no (exponential) population growth (Fig. 9; see FigSI. SI
C_14 for the corresponding l1 and l2 distance estimates). While our analysis confirms their
results at first glance there are two points that warrant caution with this interpretation.
First, as indicated by the contour lines in the plot there is some probability that the Japanese
sardine population underwent a recent population expansion, though if it did, it only grew at a
very low rate. Second, our inference is based on a single non-recombining locus (i.e., mtDNA)
implying that there is correlation between sites. Our approximation, though, is exact only
if there is independence between sites. While violations of the independence assumption
seem to be robust on the genome-wide scale (see above; Fig. 7), per-locus estimates can vary
drastically and might not be representative for the true underlying coalescent process (not
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shown).

ρ

ψ

Figure 9 – Likelihood surface (eq. 14) of the unfolded SFS (given the ML rooted tree) of the sardine mtDNA sequences
with k = 106 and s = 78. Contours show the 0.95, 0.9675, 0.975, 0.99, 0.99225, 0.9945, 0.99675, 0.999, 0.99945
and 0.9999 quantiles. Likelihoods below the 0.95 quantile are uniformly colored in gray. The black star shows
the maximum likelihood estimates ψ̂ = 0.46 and ρ̂ = 0.

Concluding remarks
This study marks the first multiple-merger coalescent with time-varying population sizes de-
rived from a discrete time random mating model, and provides the first in-depth analyses of
the joint inference of coalescent and demographic parameters. Since the Kingman coalescent
represents a special case of the general class of multiple-merger coalescents (Sagitov 1999; Pit-
man 1999; Schweinsberg 2000; Donnelly and Kurtz 1999; Spence et al. 2016), it is interesting
and encouraging to see that our analytical results – i.e., the time-change function (eq. 41) and
the first expected coalescence times (eq. 45) – are generalizations of results derived for the
Kingman coalescent (Griffiths and Tavaré 1998; Polanski and Kimmel 2003). In fact, when
growth rates are measured within the corresponding coalescent framework (e.g., as ρ̃ = ργ
for the psi-coalescent) these formulas should extend to other, more general multiple-merger
coalescents. This also holds true for the challenges arising when calculating the normalized
expected SFS (eq. 13) which is central to estimating coalescent parameters and growth rates:
Because of catastrophic cancellation errors – mainly due to summing over alternating sums
and numerical representations of the exponential integral Ei(x) – computations have to be
carried out using multi-precision libraries (Spence et al. 2016).
While both ψ and ρ can generally be estimated precisely, accurate estimation of the latter
requires sufficient information (i.e., a large number of segregating sites) especially when
offspring distributions are heavily skewed (i.e., if ψ is large). However, since strong recurrent
sweepstake reproductive events – analogous to recurrent selective sweeps – constantly erase
genetic variation (i.e., reduce the number of segregating sites), there might be little power to
accurately infer ρ in natural populations in these cases. In accordance with previous findings
derived for the Kingman coalescent (Terhorst and Song 2015), increasing sample size does
not improve the accuracy of demographic inference (i.e., estimating ρ) for a fixed (expected)
number of segregating sites s. However, unlike in the Kingman coalescent where s increases
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logarithmically with sample size, genetic variation in ψ increases linearly for large ψ which
could offset – or at least the hamper – this effect.
More importantly, these results have proven to be robust to violations of the assumptions
underlying the approximate likelihood framework (eq. 14), namely that the expectation of
a ratio can be approximated by the ratio of two expectations (i.e., ϕ(k)

i ), allowing ψ and ρ
to be estimated accurately on a genome-wide scale. Interestingly, the performance of the
estimators seemed to improve when considering more independent loci (while keeping the
number of segregating sites constant). Note though, that we have used a very simplistic
genetic architecture, in particular one where sites within each locus are maximally depen-
dent and there is no correlation among genealogies across different loci (i.e., where loci are
independent). While these assumptions might be met for some loci and sites, they generally
mark the endpoint of a continuum of correlations. Importantly, these linkage (dis)equilibria
(i.e., the extent of statistical independence between sites) depend not only on the rate of
recombination but also on the specifics of the reproduction parameters – and can potentially
be elevated despite frequent recombination or largely absent despite infrequent recombination
in the MMC setting (Eldon and Wakeley 2008; Birkner et al. 2012), potentially biasing re-
sults. For instance, when trying to estimate the duration and the rate of exponential growth
under the Kingman coalescent, Bhaskar et al. (2015) found that linkage equilibria cause the
approximate likelihood equation(eq. 14) to become increasingly inaccurate, and thus bias
estimates. Likewise, Schrider et al. (2016) recently found that linked positive selection can
severely bias demographic estimates. While their analyses assumed a Kingman framework,
positive selection and recurrent selective sweeps typically result in multiple merger events
(Durrett and Schweinsberg 2004, 2005; Neher and Hallatschek 2013). Thus, if neutral re-
gions are tightly linked to selected site they will – at least partially – share the genealogical
relationship with the selected region and potentially skew inference. Despite the fact that our
model here considers organisms with skewed offspring distributions under neutrality owing
to the specifics of their reproductive biology, increasing ψ is tantamount to increasing the
strength of positive selection under a non-neutral model, which is thus relevant to a very
broad class of organisms indeed. It is important to note that while both processes – selection
and sweepstake reproductive events – have a similar effect on the SFS (i.e., an excess of
low-frequency alleles and a slight increase in high-frequency alleles), there are of course vast
qualitative differences in the underlying processes and their causes. First, in the presence of
selection, offspring no longer choose their parents at random, such that selected alleles need
to be tracked along the genealogy (e.g., see the ancestral selection graph under the Kingman
coalescent (Krone and Neuhauser 1997) or under the Λ-coalescent (Etheridge et al. 2010)).
Second, similar to the effects of demography, sweepstake reproductive events should have
a genome-wide impact, whereas traces of selection should remain local, unless selection is
very strong such that only a single individual gives rise to the entire next generation. Thus,
it should in principle be possible to discriminate between the two processes, though, also
analogous to demography, it will be important to investigate the conditions under which
positively selected loci will be expected to reside in the tails of genomic distributions under
such models (see Thornton and Jensen 2007).
Overall, our analyses emphasize the importance of accounting for demography and illuminates
the serious biases that can arise in the inferred coalescent model if ignored. Such bias can have
broad implications on inferred patterns of genetic variation (Eldon and Wakeley 2006; Tellier
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and Lemaire 2014; Niwa et al. 2016), including misguiding conservation efforts (Montano
2016), and obscuring the extent of reproductive skew.
Finally, most of the current analytical and computational tools have been derived and de-
veloped under the Kingman coalescent. In order to achieve the overall aim of generalizing
the Kingman coalescent model (Wakeley 2013), these tools, though often computationally
challenging, need to be extended. Great efforts have recently been undertaken towards devel-
oping a statistical inference framework allowing for model selection (Birkner and Blath 2008;
Eldon 2011; Birkner et al. 2011, 2012, 2013; Steinrücken et al. 2013; Eldon et al. 2015; Spence
et al. 2016). By setting up a discrete-time random mating model and deriving the ancestral
process, along with providing the analytical tools necessary to enable the joint inference of
offspring distribution and demography, this study makes an important contribution towards
this goal.
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Supporting Information

Detailed derivation of results
In this Supporting Information we will give a detailed derivation of the results which in the
main text have been abbreviated to keep formulas concise. First, Equation 23 showing that
∆(n)
N is bounded for all n ∈ N is derived as

lim
N→∞

∆(n)
N = lim

N→∞
(Nn −Nn+1)

= lim
N→∞

N (
1− ρ ψ

2

Nγ

)n
−N

(
1− ρ ψ

2

Nγ

)n+1


= lim
N→∞

N

(
1− ρ ψ

2

Nγ

)n (
1−

(
1− ρ ψ

2

Nγ

))

= lim
N→∞

N

(
1− ρ ψ

2

Nγ

)n (
ρ
ψ2

Nγ

)

≤ lim
N→∞

Nρ
ψ2

Nγ

= 0, (S1)

given γ > 1. Note that in the second to last line we have used that ∆(n)
N is always the largest

for n = 0 (i.e., the population grows the largest from the previous to the current generation).
Second, the step function FN(s) (eq. 31) for the ancestral process is derived as

FN(s) =
s∑

n=1
c

(n)
N

=
s∑

n=1

ψ2

Nγ
n

= ψ2

Nγ

s∑
n=1

 1(
1− ρ ψ2

Nγ

)γ
n

= ψ2

Nγ

(
1− ρ ψ

2

Nγ

)−γ ((1− ρ ψ2

Nγ

)−γs
− 1

)
(
1− ρ ψ2

Nγ

)−γ
− 1

. (S2)

Then, by solving for s the time-change function G−1
N (t) (eq. 32) for the ancestral process can

be derived as
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G−1
N (t) = inf {s > 0 : FN(bsc) > t} − 1

∼ inf
s > 0 : [s] >

log
[
1 + tNγ

ψ2

(
1− (1− ργψ2

Nγ

)]
−γ log

[(
1− ρψ2

Nγ

)]
− 1

∼

 log [1 + ργt]
−γ log

[(
1− ρψ2

Nγ

)]


∼
[

log [1 + ργt]
ργ

Nγ

ψ2

]
, (S3)

where we have used that log
[
1− ρψ2

Nγ

]
∼ −ρψ2

Nγ for sufficiently large N . Finally, the derivation
showing that the ancestral process of the Moran model converges to a (time-inhomogeneous)
psi-coalescent (eq. 39) is given by
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lim
N→∞
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Extended Moran model simulations
In this Supporting Information we compare a set of tree statistics obtained from the ancestral
process

(
Aψ,ρbt/cN (0)c,k

)
t∈R≥0

from the underlying extended Moran model to those obtained from

the coalescent process
(
Πψ,ρ
t,k

)
t≥0

for different values of ρ ∈ R≥0, ψ ∈ (0, 1) with γ = 1.5 (i.e., in
the regime where sweepstake reproductive events dominate and the corresponding ancestral
process is a time-inhomogeneous psi-coalescent). Coalescent simulations follow the algorithm
outlined in the main text.
The rational behind the extended Moran model simulations is outlined in Figure SI B_1.

..
.... ...

..
.

..
.

time

Figure SI B_1 – Illustration of genealogical relation in the extended Moran model with exponential growth. Circles
denote individuals; time increases from left to right with the rightmost individuals constituting the
present population. Green circles denote sampled individuals. Connecting lines between circles show
the genealogical relationship between individuals; the genealogy of the sampled individuals is
highlighted with blue. Pink lines illustrate that population size increases (forward in time)
exponentially with rate ρ.

Starting from the present (i.e., n = 0) and choosing k random samples, these were followed
successively backwards in time thus creating a coalescent tree from the leaves to the root.
At each time step the population size was adjusted (shrinking backward in time; eq. 6) and
the type of the reproductive event (eq. 5) along with the corresponding number of offspring
UN(n) (eq. 4) were (randomly) determined . Finally, to determine whether a merger event
has occurred – i.e., if one of the k active lineages had found its parent in the previous time
step – UN(n) Bernoulli random numbers Y = (Yi)i=1,2,...,UN (n) with parameter

k −∑i
j=1 1yi

Nn − i
are drawn. Note that the denominator changes with the number of individuals that have
not been assigned to a parent in the previous time step, while the nominator changes with
the number of active lineages that have found their parent in the previous time step. In
particular, ∑UN (n)

j=1 1yi denotes the total number of active lineages that found their parent in
the previous time step. Thus, if ∑UN (n)

j=1 1yi > 1 a coalescent event has occurred, and the
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Figure SI B_2 – The left figure shows a comparison of T tot based on simulated trajectories of

(
Aψ,ρbt/cN (0)c,4

)
t≥0

and(
Πψ,ρt,4

)
t≥0

for ρ = 0.1, γ = 1.5, and different values of ψ. The right figure depicts the corresponding

empirical distributions of T (i)
tot for ψ = 0.1. Averages were taken over 100,000 replicates. Other

parameters: N = 100,000.
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Figure SI B_3 – The left figure shows a comparison of TMRCA based on simulated trajectories of
(
Aψ,ρbt/cN (0)c,4

)
t≥0

and
(
Πψ,ρt,4

)
t≥0

for ρ = 0.1, γ = 1.5, and different values of ψ. The right figure depicts the

corresponding empirical distributions of T (i)
MRCA for ψ = 0.1. Averages were taken over 100,000

replicates. Other parameters: N = 100,000.

number of active lineages in the next time step becomes k − ∑UN (n)
j=1 1yi . This process is

repeated until k = 0, that is until all samples have found their most recent common ancestor.
For both processes the total tree length Ttot, the time to the most recent common ancestor
TMRCA, and the ratio of the sum of the length of all branches with i descendants over the
total tree length Ti/Ttot were recorded. While the number of samples was limited to k = 4
for computational reasons, the match between coalescent and Moran model simulations was
almost perfect across the entire range of ψ (Fig. SI B_2-SI B_4). Only for very small ψwere
slight deviations observed.
These results highlight two important points. First and reassuringly these results indicate
that for large initial population sizes N the extended Moran model can be described by
its limiting ancestral process (i.e., the psi-coalescent). Second, simulating the population
dynamics forward in time is computationally intensive and prohibitively slow. However,
since the ancestral process accurately captures the forward-in-time population dynamics, the
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Figure SI B_4 – A comparison of (Ti/T tot)i=1,2,3 based on simulated trajectories of
(
Aψ,ρbt/cN (0)c,4

)
t≥0

and(
Πψ,ρt,4

)
t≥0

for ρ = 0.1, γ = 1.5, and different values of ψ. Averages were taken over 100,000 replicates.
Other parameters: N = 100,000.

coalescent process can be used to simulate the process quickly and efficiently over a large
parameter space and for large sample sizes.
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Figure SI C_1 – The normalized expected (lumped) SFS for the psi-coalescent for an exponentially growing population
(eq. 18) with sample size k = 100 (A) for different values of ρ and fixed ψ = 0.15 and (B) for different
values of ψ and fixed ρ = 1. The sixth entry in the SFS contains the aggregate of the higher frequency
classes.
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Figure SI C_2 – The normalized expected last entry of the SFS (eq. 18) as a function of ψ for various values of ρ with
sample size (A) k = 20 and (B) k = 100.
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Figure SI C_3 – Boxplot of the relative error of the maximum likelihood estimate from the true (A) ψ and (B) ρ for
10,000 data sets assuming independent sites with k = 100 and θ (eq. 46) with s = 10,000. Boxes
represent the interquartile range (i.e., the 50% C.I.) and whiskers extend to the highest/lowest data
point within the box ±1.5 times the interquartile range.
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Figure SI C_4 – Boxplot of the deviation of the maximum likelihood estimate from the true (A) ψ and (B) ρ for
10,000 data sets assuming independent sites with k = 200 and and θ (eq. 46) with s = 10,000. Boxes
represent the interquartile range (i.e., the 50% C.I.) and whiskers extend to the highest/lowest data
point within the box ±1.5 times the interquartile range.
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Figure SI C_5 – Boxplot of the deviation of the maximum likelihood estimate from the true (A) ψ and (B) ρ for
10,000 data sets assuming independent sites with k = 200 and θ (eq. 46) with s = 1,000,000. Boxes
represent the interquartile range (i.e., the 50% C.I.) and whiskers extend to the highest/lowest data
point within the box ±1.5 times the interquartile range. As the number of segregating sites s
increases the variance of the estimator decreases and approaches its true underlying value.
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Figure SI C_6 – Boxplot of the deviation of the maximum likelihood estimate from the true (A) ψ and fixed ρ = 10,
and (B) ρ and fixed ψ = 0.3 for 10,000 data sets assuming independent sites for different sample sizes
k and θ (eq. 46) with s = 10,000. Boxes represent the interquartile range (i.e., the 50% C.I.) and
whiskers extend to the highest/lowest data point within the box ±1.5 times the interquartile range.

37

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/137497doi: bioRxiv preprint 

https://doi.org/10.1101/137497
http://creativecommons.org/licenses/by-nc-nd/4.0/


���� ����� = ������
���� ����� = �����

� � ��
-��

-�

�

�

��

��

��

ρ

ρ
-
ρ

�

-��
�
��
���
���
���
���

ρ = ���

���� ����� = ������
���� ����� = �����

� ���� ��� ���� ��� ���� ���
-����

-����

����

����

����

ψ

ψ
-
ψ

�

Figure SI C_7 – Boxplot of the deviation of the maximum likelihood estimate from the true (A) ψ and fixed ρ = 10,
and (B) ρ and fixed ψ = 0.3 for 10,000 data sets assuming independent sites for different segregating
sites s with k = 100. Boxes represent the interquartile range (i.e., the 50% C.I.) and whiskers extend
to the highest/lowest data point within the box ±1.5 times the interquartile range.
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Figure SI C_8 – Surface of the l1 (left) and the l2 (right) distance of the idealized SFS with k = 100, ψ = 0.3, ρ = 10

and s = 10,000. Contours show the 0.95, 0.9675, 0.975, 0.99, 0.99225, 0.9945, 0.99675, 0.999, 0.99945
and 0.9999 quantiles. Distances below the 0.95 quantile are uniformly colored in gray. The green
square shows the true ψ and ρ. The black star shows the minimum distance estimates ψ̂ and ρ̂.
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Figure SI C_9 – Heatplot of the frequency of the maximum likelihood estimates (left), the l1 distance (middle), and

the l2 distance (right) for 10,000 data sets assuming independent sites with k = 100, ψ = 0.3, ρ = 10
and s = 10,000. Counts increase from blue to red with grey squares showing zero counts. The green
square shows the true ψ and ρ. The black star shows the median (and mean) of the maximum
likelihood respectively the minimum distance estimates ψ̂ and ρ̂.
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Figure SI C_10 – Boxplot of the deviation of the L1-distance estimate from the true (A) ψ and fixed ρ = 10, and (B)
ρ and fixed ψ = 0.3 for 10,000 data sets assuming independent sites with k = 100 and θ (eq. 46) with
s = 10,000. Boxes represent the interquartile range (i.e., the 50% C.I.) and whiskers extend to the
highest/lowest data point within the box ±1.5 times the interquartile range.
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Figure SI C_11 – Boxplot of the deviation of the L2-distance estimate from the true (A) ψ and fixed ρ = 10, and (B)
ρ and fixed ψ = 0.3 for 10,000 data sets assuming independent sites with k = 100 and θ (eq. 46) with
s = 10,000.. Boxes represent the interquartile range (i.e., the 50% C.I.) and whiskers extend to the
highest/lowest data point within the box ±1.5 times the interquartile range.
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Figure SI C_12 – Boxplot of the deviation of the l1 distance estimate from the true (A) ψ and (B) ρ for 10,000
whole-genome data sets with ` = 100, k = 100, γ = 1.5, and θ (eq. 46) with s = 1,000. Boxes
represent the interquartile range (i.e., the 50% C.I.) and whiskers extend to the highest/lowest data
point within the box ±1.5 times the interquartile range.
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Figure SI C_13 – Boxplot of the deviation of the l2 distance estimate from the true (A) ψ and (B) ρ for 10,000
whole-genome data sets with ` = 100, k = 100, γ = 1.5, and θ (eq. 46) with s = 1,000. Boxes
represent the interquartile range (i.e., the 50% C.I.) and whiskers extend to the highest/lowest data
point within the box ±1.5 times the interquartile range.
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Figure SI C_14 – Likelihood (left), l1 distance, and l2 distance surface of the unfolded SFS (given the ML rooted tree)
of the sardine mtDNA sequences with k = 106 and s = 81. Contours show the corresponding
0.95, 0.9675, 0.975, 0.99, 0.99225, 0.9945, 0.99675, 0.999, 0.99945 and 0.9999 quantiles. Likelihoods
respectively distances below their corresponding 0.95 quantile are uniformly colored in gray. The
black star shows the maximum likelihood respectively minimum distance estimates: ψ̂ML = 0.46 and
ρ̂ML = 0, ψ̂l1 = 0.43 and ρ̂l1 = 0, and ψ̂l2 = 0.42 and ρ̂l2 = 0.

41

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/137497doi: bioRxiv preprint 

https://doi.org/10.1101/137497
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supporting Tables

42

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/137497doi: bioRxiv preprint 

https://doi.org/10.1101/137497
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table SI D_1 – Overview of the (marginal) accuracy ψ̂ when assuming independent sites. Each cell shows the mean difference (first row), the mean squared error (second row) and
the median difference (third row) of ψ̂ calculated over 10,000 data sets assuming independent sites. Colors within each sub-table range from light yellow to dark red
and scale between the minimal and the maximal absolute value to aid interpretation.

s = 100 s = 1,000 s = 10,000

k
=

20

Mean deviation ψ
100 1.651×10-2 6.872×10-3 1.994×10-2 2.34×10-2 2.326×10-2 2.101×10-2 5.245×10-3

10 1.47×10-2 1.042×10-3 3.166×10-3 2.536×10-3 1.528×10-3 8.321×10-3 2.725×10-3

1 1.405×10-2 -1.112×10-3 -6.19×10-4 -3.425×10-3 -5.412×10-3 -5.5×10-5 -1.18×10-3

0 1.167×10-2 -8.289×10-3 -1.258×10-2 -1.718×10-2 -1.685×10-2 -7.74×10-3 -6.32×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 9.222×10-4 4.056×10-3 1.118×10-2 1.645×10-2 1.86×10-2 1.405×10-2 4.967×10-3

10 7.383×10-4 2.555×10-3 6.731×10-3 1.146×10-2 1.408×10-2 1.15×10-2 4.33×10-3

1 7.091×10-4 2.2×10-3 4.414×10-3 7.452×10-3 9.62×10-3 8.181×10-3 3.165×10-3

0 5.046×10-4 1.782×10-3 3.1×10-3 5.064×10-3 6.262×10-3 5.259×10-3 2.419×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. -1.×10-2 -1.×10-2 -2.×10-2 -2.×10-2 -2.×10-2

10 0. 0. 0. 0. -1.×10-2 -1.×10-2 -1.×10-2

1 0. 0. 1.×10-2 1.×10-2 0. -1.×10-2 0.

0 0. 1.×10-2 1.×10-2 2.×10-2 1.×10-2 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 5.254×10-3 1.34×10-4 3.39×10-4 -2.99×10-4 -3.7×10-4 1.837×10-3 1.857×10-3

10 4.623×10-3 -1.83×10-4 3.31×10-4 -3.53×10-4 6.47×10-4 4.59×10-4 3.2×10-5

1 3.519×10-3 -2.461×10-3 -4.052×10-3 -4.482×10-3 -4.155×10-3 -1.903×10-3 -3.64×10-4

0 4.115×10-3 1.5×10-4 -4.08×10-4 -5.25×10-4 -8.63×10-4 -5.81×10-4 -1.566×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 1.242×10-5 4.402×10-5 9.372×10-5 1.449×10-4 1.361×10-4 1.1×10-4 7.279×10-5

10 9.15×10-6 3.048×10-5 6.235×10-5 9.792×10-5 9.049×10-5 7.076×10-5 4.615×10-5

1 5.2×10-6 1.51×10-5 2.85×10-5 4.59×10-5 4.851×10-5 4.363×10-5 2.84×10-5

0 7.65×10-6 1.7×10-5 2.829×10-5 3.966×10-5 3.828×10-5 3.023×10-5 1.651×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 5.254×10-3 1.34×10-4 3.39×10-4 -2.99×10-4 -3.7×10-4 1.837×10-3 1.857×10-3

10 4.623×10-3 -1.83×10-4 3.31×10-4 -3.53×10-4 6.47×10-4 4.59×10-4 3.2×10-5

1 3.519×10-3 -2.461×10-3 -4.052×10-3 -4.482×10-3 -4.155×10-3 -1.903×10-3 -3.64×10-4

0 4.115×10-3 1.5×10-4 -4.08×10-4 -5.25×10-4 -8.63×10-4 -5.81×10-4 -1.566×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 9.596×10-5 3.76×10-4 8.794×10-4 1.424×10-3 1.412×10-3 1.094×10-3 6.627×10-4

10 7.647×10-5 2.455×10-4 5.73×10-4 9.476×10-4 8.765×10-4 6.572×10-4 4.085×10-4

1 4.981×10-5 1.868×10-4 3.839×10-4 6.244×10-4 5.987×10-4 4.476×10-4 2.582×10-4

0 6.197×10-5 1.439×10-4 2.472×10-4 3.861×10-4 3.939×10-4 2.955×10-4 1.685×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

50

Mean deviation ψ
100 6.085×10-3 1.833×10-2 5.233×10-2 4.463×10-2 2.955×10-2 1.869×10-2 -1.36×10-4

10 5.694×10-3 5.203×10-3 1.932×10-2 1.643×10-2 1.315×10-2 1.278×10-2 5.26×10-4

1 5.739×10-3 1.625×10-3 4.265×10-3 -2.936×10-3 -1.011×10-3 6.308×10-3 -2.545×10-3

0 4.959×10-3 -5.943×10-3 -1.299×10-2 -1.697×10-2 -1.547×10-2 -1.634×10-3 -5.349×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 1.377×10-4 6.289×10-3 2.632×10-2 3.417×10-2 3.504×10-2 2.608×10-2 1.113×10-2

10 1.172×10-4 2.501×10-3 1.498×10-2 2.37×10-2 2.74×10-2 2.375×10-2 9.574×10-3

1 1.279×10-4 1.559×10-3 7.698×10-3 1.365×10-2 1.916×10-2 1.666×10-2 8.77×10-3

0 9.551×10-5 9.75×10-4 3.946×10-3 8.438×10-3 1.218×10-2 1.072×10-2 7.004×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. -2.×10-2 -1.×10-2 -2.×10-2 -2.×10-2 -1.×10-2

10 0. 0. 0. 0. -1.×10-2 -2.×10-2 -1.×10-2

1 0. 0. 1.×10-2 0. -1.×10-2 -1.×10-2 -1.×10-2

0 0. 1.×10-2 1.×10-2 1.×10-2 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 1.541×10-3 1.25×10-3 1.645×10-3 -1.3×10-3 6.38×10-4 2.394×10-3 2.217×10-3

10 1.439×10-3 5.34×10-4 3.1×10-4 -8.13×10-4 -3.×10-6 5.32×10-4 8.2×10-4

1 1.066×10-3 -1.974×10-3 -4.133×10-3 -4.449×10-3 -2.269×10-3 -5.46×10-4 1.04×10-4

0 1.4×10-3 2.7×10-4 -2.18×10-4 -4.23×10-4 4.6×10-5 -2.79×10-4 -8.52×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 1.581×10-5 2.962×10-4 1.381×10-3 1.852×10-3 1.536×10-3 1.222×10-3 7.077×10-4

10 1.467×10-5 1.96×10-4 8.15×10-4 1.161×10-3 8.51×10-4 5.908×10-4 3.785×10-4

1 1.072×10-5 1.22×10-4 5.176×10-4 7.447×10-4 4.617×10-4 3.356×10-4 2.199×10-4

0 1.404×10-5 8.294×10-5 2.741×10-4 4.69×10-4 3.137×10-4 2.245×10-4 1.457×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 4.×10-6 1.68×10-4 3.01×10-4 -1.23×10-4 -1.3×10-5 3.5×10-5 -9.4×10-5

10 5.×10-6 4.9×10-5 -1.35×10-4 -1.85×10-4 -8.7×10-5 1.1×10-5 -4.8×10-5

1 0. 4.6×10-5 -1.63×10-4 -1.5×10-5 -8.3×10-5 -2.24×10-4 -3.88×10-4

0 2.×10-6 2.4×10-5 1.59×10-4 1.32×10-4 1.8×10-5 5.1×10-5 4.1×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 4.×10-8 3.51×10-5 1.131×10-4 1.364×10-4 1.026×10-4 8.561×10-5 5.838×10-5

10 5.×10-8 2.437×10-5 8.095×10-5 9.197×10-5 6.515×10-5 5.331×10-5 3.8×10-5

1 0. 5.2×10-6 3.643×10-5 5.327×10-5 4.157×10-5 3.422×10-5 2.314×10-5

0 2.×10-8 5.78×10-6 2.921×10-5 4.486×10-5 3.356×10-5 2.529×10-5 1.379×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

10
0

Mean deviation ψ
100 2.761×10-3 4.207×10-2 7.383×10-2 4.841×10-2 3.005×10-2 1.086×10-2 -9.639×10-3

10 2.663×10-3 1.13×10-2 4.51×10-2 3.609×10-2 2.332×10-2 9.201×10-3 -7.217×10-3

1 2.789×10-3 2.279×10-3 1.121×10-2 1.376×10-2 1.658×10-2 6.898×10-3 -5.467×10-3

0 2.495×10-3 -6.641×10-3 -1.14×10-2 -9.422×10-3 -5.978×10-3 6.771×10-3 -9.075×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 9.705×10-4 3.823×10-3 1.06×10-2 1.666×10-2 1.904×10-2 1.346×10-2 4.801×10-3

10 7.076×10-4 2.695×10-3 6.746×10-3 1.15×10-2 1.417×10-2 1.086×10-2 4.115×10-3

1 7.14×10-4 2.149×10-3 4.649×10-3 7.723×10-3 9.018×10-3 7.653×10-3 3.127×10-3

0 4.85×10-4 1.763×10-3 2.94×10-3 4.996×10-3 6.336×10-3 4.506×10-3 2.323×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. -1.×10-2 -1.×10-2 -1.×10-2 -2.×10-2 -2.×10-2 -1.×10-2

10 0. 0. -1.×10-2 -1.×10-2 -2.×10-2 -2.×10-2 -1.×10-2

1 0. 0. 0. 0. -1.×10-2 -1.×10-2 -1.×10-2

0 0. 1.×10-2 2.×10-2 1.×10-2 0. -1.×10-2 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 1.85×10-4 1.462×10-3 4.935×10-3 -1.088×10-3 7.78×10-4 6.001×10-3 4.631×10-3

10 1.8×10-4 8.11×10-4 1.115×10-3 -2.06×10-3 -2.534×10-3 6.76×10-4 5.47×10-4

1 1.06×10-4 -2.096×10-3 -4.096×10-3 -3.165×10-3 -1.29×10-3 -1.56×10-4 -1.04×10-4

0 2.08×10-4 1.03×10-4 -9.87×10-4 -3.28×10-4 -3.91×10-4 -2.61×10-4 -9.06×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 1.85×10-6 4.54×10-4 2.765×10-3 2.645×10-3 2.997×10-3 2.134×10-3 9.241×10-4

10 1.8×10-6 2.697×10-4 1.429×10-3 1.464×10-3 1.449×10-3 7.213×10-4 4.446×10-4

1 1.06×10-6 1.643×10-4 8.186×10-4 7.845×10-4 4.921×10-4 2.685×10-4 2.153×10-4

0 2.08×10-6 9.103×10-5 4.097×10-4 5.404×10-4 3.265×10-4 1.734×10-4 1.182×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 1.44×10-4 -1.87×10-4 -1.46×10-4 1.74×10-4 -9.×10-6 -7.3×10-5

10 0. 8.8×10-5 -8.5×10-5 -8.2×10-5 -7.7×10-5 -1.9×10-5 -8.2×10-5

1 0. 4.9×10-5 -2.24×10-4 -1.76×10-4 -1.×10-4 -2.55×10-4 -3.25×10-4

0 0. 6.9×10-5 9.7×10-5 1.61×10-4 -2.3×10-5 -1.×10-5 -5.5×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 4.446×10-5 1.169×10-4 1.032×10-4 7.946×10-5 6.679×10-5 4.765×10-5

10 0. 3.172×10-5 8.593×10-5 6.862×10-5 5.195×10-5 4.231×10-5 2.952×10-5

1 0. 6.89×10-6 4.812×10-5 4.902×10-5 3.492×10-5 2.729×10-5 1.719×10-5

0 0. 5.81×10-6 3.489×10-5 4.251×10-5 2.835×10-5 1.858×10-5 8.73×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

20
0

Mean deviation ψ
100 1.081×10-3 6.896×10-2 6.647×10-2 3.937×10-2 2.225×10-2 2.201×10-3 -5.686×10-3

10 1.026×10-3 2.947×10-2 6.577×10-2 4.053×10-2 2.576×10-2 6.371×10-3 -9.039×10-3

1 1.131×10-3 4.905×10-3 3.402×10-2 3.618×10-2 1.66×10-2 5.692×10-3 -1.095×10-2

0 9.35×10-4 -7.076×10-3 -5.297×10-3 7.709×10-3 2.335×10-3 -7.03×10-4 -1.716×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. -1.×10-2 0. 0. -2.×10-2 -2.×10-2 -1.×10-2

10 0. 0. -1.×10-2 -1.×10-2 -2.×10-2 -2.×10-2 -1.×10-2

1 0. 1.×10-2 -1.×10-2 -1.×10-2 -1.×10-2 -2.×10-2 -1.×10-2

0 0. 1.×10-2 1.×10-2 0. -1.×10-2 -1.×10-2 -1.×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 1.093×10-5 3.201×10-2 5.369×10-2 6.548×10-2 7.074×10-2 5.763×10-2 2.712×10-2

10 1.034×10-5 1.353×10-2 4.943×10-2 6.161×10-2 6.558×10-2 5.48×10-2 2.827×10-2

1 1.149×10-5 3.963×10-3 2.917×10-2 5.008×10-2 5.875×10-2 5.221×10-2 2.969×10-2

0 9.35×10-6 1.643×10-3 1.35×10-2 3.062×10-2 4.452×10-2 4.391×10-2 3.065×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 3.734×10-3 1.255×10-2 7.77×10-3 1.55×10-2 2.348×10-2 1.099×10-2

10 1.×10-6 1.22×10-3 1.759×10-3 -5.016×10-3 -1.763×10-3 7.567×10-3 5.074×10-3

1 0. -2.33×10-3 -3.408×10-3 -4.551×10-3 -2.77×10-3 3.96×10-4 7.3×10-4

0 0. -4.58×10-4 -2.147×10-3 -2.406×10-3 -9.66×10-4 -3.1×10-5 -3.57×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 1.032×10-3 5.787×10-3 7.377×10-3 9.967×10-3 6.766×10-3 1.819×10-3

10 1.×10-8 5.024×10-4 2.988×10-3 3.105×10-3 4.298×10-3 2.833×10-3 1.222×10-3

1 0. 2.832×10-4 1.475×10-3 1.554×10-3 1.219×10-3 7.876×10-4 5.043×10-4

0 0. 1.349×10-4 6.781×10-4 8.811×10-4 5.669×10-4 2.04×10-4 1.688×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 1.41×10-4 -2.39×10-4 -6.3×10-5 1.85×10-4 -3.4×10-5 -4.5×10-5

10 0. -6.9×10-5 -3.24×10-4 -5.×10-6 5.1×10-5 4.1×10-5 -1.4×10-5

1 0. -8.3×10-5 -5.07×10-4 -1.37×10-4 -1.07×10-4 -1.45×10-4 -2.06×10-4

0 0. 1.06×10-4 9.×10-5 -8.6×10-5 -3.3×10-5 8.×10-6 -2.2×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 5.637×10-5 1.07×10-4 8.667×10-5 7.211×10-5 6.388×10-5 4.159×10-5

10 0. 4.125×10-5 7.664×10-5 5.507×10-5 4.461×10-5 3.893×10-5 2.542×10-5

1 0. 1.365×10-5 5.695×10-5 4.145×10-5 2.961×10-5 2.339×10-5 1.292×10-5

0 0. 9.18×10-6 4.2×10-5 3.88×10-5 2.329×10-5 1.604×10-5 6.6×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9
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Table SI D_2 – Overview of the (marginal) accuracy ρ̂ when assuming independent sites. Each cell shows the mean difference (first row), the mean squared error (second row) and
the median difference (third row) of ρ̂ (right column) calculated over 10,000 data sets assuming independent sites. Colors within each sub-table range from light
yellow to dark red and scale between the minimal and the maximal absolute value to aid interpretation.

s = 100 s = 1,000 s = 10,000

k
=

20

Mean deviation ρ
100 1.436×101 1.532×102 2.183×102 2.546×102 2.504×102 2.017×102 8.541×101

10 2.568×10-1 9.901 3.288×101 6.972×101 1.085×102 1.177×102 1.075×102

1 1.363×10-1 6.295×10-1 1.354 3.595 1.531×101 2.648×101 4.193×101

0 8.86×10-2 2.101×10-1 2.848×10-1 4.211×10-1 1.01 4.821 1.21×101

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 1.42×104 1.279×105 1.978×105 2.391×105 2.442×105 2.117×105 1.203×105

10 4.689×101 2.084×103 1.764×104 5.032×104 8.937×104 9.893×104 9.109×104

1 7.681×10-1 3.619 7.991×101 1.079×103 1.077×104 2.041×104 3.276×104

0 9.08×10-2 2.783×10-1 5.066×10-1 3.405 2.581×102 3.566×103 8.951×103

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -2.×101 2. 5. 6. -1.3×101 -4.9×101 -9.×101

10 -1. 0. 1. 1. 1. -1. -7.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -4.881 1.597×101 3.31×101 5.573×101 7.804×101 1.053×102 1.491×102

10 -3.652×10-1 6.057×10-1 1.041 1.743 2.216 3.863 1.309×101

1 2.78×10-2 1.285×10-1 1.842×10-1 2.275×10-1 2.456×10-1 3.278×10-1 6.395×10-1

0 0. 1.2×10-3 6.8×10-3 1.21×10-2 1.96×10-2 3.36×10-2 1.103×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 6.409×102 4.343×103 1.364×104 3.037×104 5.078×104 7.806×104 1.306×105

10 3.649 1.184×101 2.468×101 5.182×101 8.744×101 3.004×102 4.306×103

1 2.94×10-2 1.353×10-1 2.208×10-1 3.113×10-1 3.702×10-1 7.058×10-1 4.543

0 0. 1.2×10-3 6.8×10-3 1.21×10-2 1.96×10-2 3.36×10-2 1.187×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -8. 1. 2. 2. 2. 0. -8.

10 -1. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -1.571 1.22 2.706 4.346 5.217 7.304 1.723×101

10 -8.48×10-2 6.94×10-2 1.012×10-1 1.956×10-1 2.097×10-1 2.567×10-1 6.537×10-1

1 0. 0. 8.×10-4 4.2×10-3 1.07×10-2 2.75×10-2 1.065×10-1

0 0. 0. 0. 0. 0. 0. 3.×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 7.459×101 2.509×102 4.801×102 7.448×102 1.003×103 1.744×103 5.071×103

10 4.84×10-1 1.151 1.828 2.594 3.356 4.951 1.369×101

1 0. 0. 8.×10-4 4.2×10-3 1.07×10-2 2.75×10-2 1.089×10-1

0 0. 0. 0. 0. 0. 0. 3.×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -1. 0. 0. 1. 0. 0. -1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

50

Mean deviation ρ
100 6.98 1.909×102 2.544×102 2.492×102 2.017×102 5.316×101 -5.471×101

10 6.93×10-2 2.108×101 8.506×101 1.338×102 1.554×102 1.006×102 2.692×101

1 1.416×10-1 9.732×10-1 5.577 2.171×101 4.32×101 5.077×101 2.916×101

0 7.89×10-2 2.477×10-1 6.592×10-1 2.943 1.107×101 1.812×101 1.947×101

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 8.162×103 1.703×105 2.448×105 2.476×105 2.185×105 9.23×104 3.614×104

10 3.416×101 8.224×103 6.452×104 1.121×105 1.385×105 8.38×104 2.853×104

1 6.748×10-1 1.593×101 2.483×103 1.547×104 3.611×104 4.326×104 2.583×104

0 8.09×10-2 3.855×10-1 1.729×102 1.866×103 9.06×103 1.58×104 1.779×104

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -1.7×101 1. -5. -2.5×101 -6.2×101 -8.6×101 -9.5×101

10 -1. 0. 1. 1. -1. -5. -8.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -2.411 2.269×101 6.648×101 1.068×102 1.272×102 1.679×102 2.22×102

10 -2.044×10-1 8.257×10-1 2. 3.43 5.598 1.066×101 3.559×101

1 2.71×10-2 1.52×10-1 2.201×10-1 2.648×10-1 3.163×10-1 4.51×10-1 1.134

0 0. 2.6×10-3 1.17×10-2 1.68×10-2 2.01×10-2 4.89×10-2 1.694×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 4.938×102 8.062×103 4.011×104 7.674×104 9.851×104 1.432×105 2.028×105

10 3.162 1.882×101 5.929×101 4.092×102 1.175×103 3.094×103 2.045×104

1 2.75×10-2 1.714×10-1 3.121×10-1 4.126×10-1 5.771×10-1 1.426 5.895×101

0 0. 2.6×10-3 1.17×10-2 1.68×10-2 2.01×10-2 4.89×10-2 2.208×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -4. 0. 1. 6. 3. 2. 4.

10 0. 0. 0. 0. 0. 0. 1.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 3.191×10-1 1.989 4.104 7.149 9.681 1.692×101 3.469×101

10 2.82×10-2 1.188×10-1 1.81×10-1 2.247×10-1 3.246×10-1 5.361×10-1 1.116

1 0. 5.×10-4 6.5×10-3 8.7×10-3 1.69×10-2 5.59×10-2 1.568×10-1

0 0. 0. 0. 0. 0. 0. 5.×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 3.627×101 4.257×102 8.059×102 1.304×103 2.2×103 4.709×103 1.446×104

10 3.23×10-1 1.736 2.844 3.599 5.253 9.37 2.348×101

1 0. 5.×10-4 6.5×10-3 8.7×10-3 1.69×10-2 5.59×10-2 1.682×10-1

0 0. 0. 0. 0. 0. 0. 5.×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. -1. 0. 1. 0. 0. 1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

10
0

Mean deviation ρ
100 5.578 2.318×102 2.504×102 2.087×102 9.925×101 1.238×101 -5.634×101

10 1.477×10-1 5.218×101 1.383×102 1.699×102 1.407×102 9.103×101 2.952×101

1 1.694×10-1 2.239 2.268×101 5.007×101 6.778×101 7.37×101 3.066×101

0 8.18×10-2 3.419×10-1 2.73 1.023×101 2.698×101 3.695×101 3.027×101

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 5.902×103 2.186×105 2.523×105 2.203×105 1.443×105 9.306×104 4.385×104

10 3.088×101 3.405×104 1.177×105 1.523×105 1.302×105 9.391×104 3.801×104

1 6.92×10-1 4.724×102 1.647×104 4.172×104 5.999×104 7.138×104 3.109×104

0 8.26×10-2 9.047×10-1 1.516×103 7.922×103 2.37×104 3.485×104 3.021×104

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -1.3×101 -4. -2.7×101 -6.2×101 -8.8×101 -9.6×101 -9.8×101

10 -1. 1. 1. 0. -5. -8. -9.

1 0. 0. 0. 0. 0. 0. -1.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 7.299×10-1 4.613×101 1.098×102 1.62×102 1.93×102 2.184×102 2.576×102

10 9.32×10-2 1.357 4.104 1.047×101 1.791×101 2.889×101 7.312×101

1 3.24×10-2 1.931×10-1 3.018×10-1 3.65×10-1 4.533×10-1 7.361×10-1 4.228

0 0. 9.9×10-3 2.63×10-2 2.81×10-2 4.07×10-2 8.57×10-2 2.375×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 3.558×102 2.438×104 8.17×104 1.309×105 1.658×105 1.969×105 2.453×105

10 2.663 3.602×101 4.002×102 4.085×103 9.166×103 1.564×104 5.394×104

1 3.3×10-2 2.563×10-1 5.846×10-1 1.125 3.184 1.028×101 1.688×103

0 0. 9.9×10-3 2.65×10-2 2.95×10-2 4.37×10-2 9.03×10-2 4.667×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -1. 1. 3. 9. 8. 4. 5.

10 0. 0. 0. 0. 0. 1. 1.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 2.116×10-1 3.439 7.672 1.148×101 1.788×101 3.061×101 6.399×101

10 2.33×10-2 1.424×10-1 2.447×10-1 3.365×10-1 5.683×10-1 8.485×10-1 1.9

1 0. 2.8×10-3 1.38×10-2 1.78×10-2 3.9×10-2 9.14×10-2 2.131×10-1

0 0. 0. 0. 0. 0. 0. 1.6×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 2.911×101 6.86×102 1.447×103 2.463×103 5.142×103 1.198×104 3.757×104

10 2.891×10-1 2.529 3.79 5.197 9.15 1.731×101 5.396×101

1 0. 2.8×10-3 1.38×10-2 1.78×10-2 3.9×10-2 9.28×10-2 2.537×10-1

0 0. 0. 0. 0. 0. 0. 1.6×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. -1. 0. 1. 0. 1. 3.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

20
0

Mean deviation ρ
100 8.796 2.49×102 2.373×102 1.538×102 8.927×101 2.796×101 -5.612×101

10 6.47×10-1 1.04×102 1.86×102 1.923×102 1.498×102 1.058×102 3.542×101

1 2.132×10-1 1.073×101 6.091×101 1.005×102 1.214×102 1.029×102 4.541×101

0 8.89×10-2 1.219 1.476×101 3.374×101 6.514×101 7.533×101 4.599×101

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 5.109×103 2.441×105 2.424×105 1.913×105 1.514×105 1.123×105 4.568×104

10 3.321×101 8.245×104 1.668×105 1.821×105 1.481×105 1.133×105 4.524×104

1 7.04×10-1 5.969×103 5.131×104 9.189×104 1.163×105 1.036×105 4.706×104

0 9.13×10-2 4.245×102 1.138×104 2.961×104 6.136×104 7.484×104 4.671×104

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -7. -1.2×101 -5.1×101 -7.6×101 -9.2×101 -9.8×101 -1.×102

10 0. 1. 0. -4. -8. -9. -1.×101

1 0. 0. 0. 0. 0. -1. -1.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 1.318 8.682×101 1.593×102 2.147×102 2.348×102 2.298×102 1.78×102

10 1.332×10-1 2.585 1.328×101 3.018×101 4.896×101 7.3×101 1.029×102

1 3.33×10-2 2.713×10-1 4.769×10-1 6.799×10-1 1.982 3.339 1.188×101

0 0. 2.72×10-2 5.17×10-2 6.37×10-2 1.939×10-1 1.826×10-1 6.622×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 2.697×102 5.838×104 1.326×105 1.898×105 2.165×105 2.264×105 1.96×105

10 2.344 1.07×102 4.957×103 1.721×104 3.376×104 5.555×104 8.665×104

1 3.33×10-2 4.689×10-1 1.885 8.42 8.179×102 1.62×103 7.646×103

0 0. 2.72×10-2 5.29×10-2 8.49×10-2 1.05×102 1.006×101 1.348×102

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 4. 4. 8. 6. -9. -1.7×101

10 0. 0. 1. 1. 1. 1. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 2.104×10-1 5.879 1.179×101 2.257×101 3.995×101 6.942×101 1.119×102

10 2.36×10-2 2.402×10-1 3.942×10-1 5.348×10-1 9.013×10-1 1.707 3.766

1 0. 1.15×10-2 2.29×10-2 3.77×10-2 8.03×10-2 1.575×10-1 2.866×10-1

0 0. 0. 0. 0. 0. 3.×10-4 9.6×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 2.517×101 1.126×103 2.658×103 6.79×103 1.792×104 4.172×104 8.264×104

10 2.81×10-1 3.687 5.348 8.758 1.837×101 4.537×101 2.61×102

1 0. 1.15×10-2 2.29×10-2 3.77×10-2 8.03×10-2 1.689×10-1 4.54×10-1

0 0. 0. 0. 0. 0. 3.×10-4 9.6×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 1. 2. 2. 2.5 3.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9
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Table SI D_3 – Comparison of the (marginal) accuracy of ψ̂ (left column) and ρ̂ (right column) for k = 100 (i.e., the
reference) and k = 200 when assuming independent sites. Each cell shows the difference of the absolute
mean difference (|MDk=100| − |MDk=200|; first row), the difference of the mean absolute difference
(MADk=100 −MADk=200; third row) and the difference of the mean squared error
(MSEk=100 −MSEk=200; third row) each calculated over 10,000 data sets assuming independent sites
and θ (eq. 46) with s = 10,000. Colors within each sub-table range from light yellow to dark red and
scale between the minimal and the maximal absolute value to aid interpretation.

Mean deviation ψ
100 0. -3.×10-6 -5.2×10-5 8.3×10-5 1.1×10-5 -2.5×10-5 2.8×10-5

10 0. -1.57×10-4 -2.39×10-4 7.7×10-5 1.28×10-4 6.×10-5 6.8×10-5

1 0. -1.32×10-4 -2.83×10-4 3.9×10-5 -7.×10-6 1.1×10-4 1.19×10-4

0 0. 3.7×10-5 -7.×10-6 -2.47×10-4 -1.×10-5 1.8×10-5 3.3×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ψ
100 0. 7.31×10-4 -6.66×10-4 -8.41×10-4 -3.57×10-4 -1.53×10-4 -4.32×10-4

10 0. 7.59×10-4 -5.51×10-4 -8.55×10-4 -5.46×10-4 -2.24×10-4 -3.86×10-4

1 0. 5.48×10-4 5.63×10-4 -5.61×10-4 -4.87×10-4 -3.94×10-4 -4.25×10-4

0 0. 3.37×10-4 5.71×10-4 -3.31×10-4 -4.96×10-4 -2.54×10-4 -2.13×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 1.191×10-5 -9.92×10-6 -1.653×10-5 -7.35×10-6 -2.91×10-6 -6.06×10-6

10 0. 9.53×10-6 -9.29×10-6 -1.355×10-5 -7.34×10-6 -3.38×10-6 -4.1×10-6

1 0. 6.76×10-6 8.83×10-6 -7.57×10-6 -5.31×10-6 -3.9×10-6 -4.27×10-6

0 0. 3.37×10-6 7.11×10-6 -3.71×10-6 -5.06×10-6 -2.54×10-6 -2.13×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -1.2×10-3 2.44 4.12 1.109×101 2.208×101 3.881×101 4.789×101

10 3.×10-4 9.78×10-2 1.495×10-1 1.983×10-1 3.33×10-1 8.583×10-1 1.866

1 0. 8.7×10-3 9.1×10-3 1.99×10-2 4.13×10-2 6.61×10-2 7.35×10-2

0 0. 0. 0. 0. 0. 3.×10-4 8.×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ρ
100 -3.506×10-1 4.916 7.299 1.567×101 2.781×101 4.425×101 5.498×101

10 -6.3×10-3 2.798×10-1 2.567×10-1 4.643×10-1 7.464×10-1 1.252 2.421

1 0. 8.7×10-3 9.1×10-3 1.99×10-2 4.13×10-2 6.63×10-2 8.77×10-2

0 0. 0. 0. 0. 0. 3.×10-4 8.×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 -3.933 4.399×102 1.211×103 4.327×103 1.277×104 2.974×104 4.507×104

10 -8.1×10-3 1.158 1.558 3.562 9.222 2.806×101 2.07×102

1 0. 8.7×10-3 9.1×10-3 1.99×10-2 4.13×10-2 7.61×10-2 2.003×10-1

0 0. 0. 0. 0. 0. 3.×10-4 8.×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Table SI D_4 – Comparison of the (marginal) accuracy of ψ̂ (left column) and ρ̂ (right column) for k = 100 (i.e., the
reference) and k = 50 when assuming independent sites. Each cell shows the difference of the absolute
mean difference (|MDk=100| − |MDk=50|; first row), the difference of the mean absolute difference
(MADk=100 −MADk=50; third row) and the difference of the mean squared error
(MSEk=100 −MSEk=50; third row) each calculated over 10,000 data sets assuming independent sites
and θ (eq. 46) with s = 10,000. Colors within each sub-table range from light yellow to dark red and
scale between the minimal and the maximal absolute value to aid interpretation.

Mean deviation ψ
100 -4.×10-6 -2.4×10-5 -4.88×10-4 -2.3×10-5 1.87×10-4 -4.4×10-5 2.1×10-5

10 -5.×10-6 3.9×10-5 5.×10-5 1.03×10-4 1.×10-5 -3.×10-5 -3.4×10-5

1 0. 3.×10-6 -6.1×10-5 -1.61×10-4 -1.7×10-5 -3.1×10-5 6.3×10-5

0 -2.×10-6 4.5×10-5 -6.2×10-5 2.9×10-5 -4.1×10-5 -6.1×10-5 -9.6×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ψ
100 -4.×10-6 7.5×10-4 3.2×10-5 -1.345×10-3 -1.143×10-3 -9.92×10-4 -7.11×10-4

10 -5.×10-6 6.83×10-4 1.82×10-4 -1.181×10-3 -8.2×10-4 -8.3×10-4 -7.48×10-4

1 0. 1.41×10-4 7.89×10-4 -1.95×10-4 -4.93×10-4 -6.27×10-4 -5.87×10-4

0 -2.×10-6 3.×10-6 5.18×10-4 -1.93×10-4 -4.65×10-4 -6.59×10-4 -5.06×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 -4.×10-8 9.36×10-6 3.84×10-6 -3.323×10-5 -2.315×10-5 -1.882×10-5 -1.073×10-5

10 -5.×10-8 7.35×10-6 4.98×10-6 -2.335×10-5 -1.32×10-5 -1.1×10-5 -8.48×10-6

1 0. 1.69×10-6 1.169×10-5 -4.25×10-6 -6.65×10-6 -6.93×10-6 -5.95×10-6

0 -2.×10-8 3.×10-8 5.68×10-6 -2.35×10-6 -5.21×10-6 -6.71×10-6 -5.06×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -1.075×10-1 1.451 3.568 4.329 8.194 1.369×101 2.93×101

10 -4.9×10-3 2.36×10-2 6.37×10-2 1.118×10-1 2.437×10-1 3.124×10-1 7.841×10-1

1 0. 2.3×10-3 7.3×10-3 9.1×10-3 2.21×10-2 3.55×10-2 5.63×10-2

0 0. 0. 0. 0. 0. 0. 1.1×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ρ
100 -4.677×10-1 4.008 5.534 7.753 1.259×101 1.904×101 3.482×101

10 -3.01×10-2 2.264×10-1 1.869×10-1 2.874×10-1 4.997×10-1 7.032×10-1 1.259

1 0. 2.3×10-3 7.3×10-3 9.1×10-3 2.21×10-2 3.55×10-2 5.75×10-2

0 0. 0. 0. 0. 0. 0. 1.1×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 -7.165 2.603×102 6.41×102 1.159×103 2.942×103 7.269×103 2.311×104

10 -3.39×10-2 7.926×10-1 9.461×10-1 1.597 3.897 7.94 3.048×101

1 0. 2.3×10-3 7.3×10-3 9.1×10-3 2.21×10-2 3.69×10-2 8.55×10-2

0 0. 0. 0. 0. 0. 0. 1.1×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Table SI D_5 – Comparison of the (marginal) accuracy of ψ̂ (left column) and ρ̂ (right column) for θ (eq. 46) with
s = 10,000 (i.e., the reference) and s = 1,000 when assuming independent sites. Each cell shows the
difference of the absolute mean difference (|MDs=10,000| − |MDs=1,000|; first row), the difference of
the mean absolute difference (MADs=10,000 −MADs=1,000; third row) and the difference of the mean
squared error (MSEs=10,000 −MSEs=1,000; third row) each calculated over 10,000 data sets assuming
independent sites and k = 100. Colors within each sub-table range from light yellow to dark red and
scale between the minimal and the maximal absolute value to aid interpretation.

Mean deviation ψ
100 -1.85×10-4 -1.318×10-3 -5.122×10-3 9.42×10-4 -6.04×10-4 -6.01×10-3 -4.704×10-3

10 -1.8×10-4 -7.23×10-4 -1.2×10-3 1.978×10-3 2.457×10-3 -6.95×10-4 -6.29×10-4

1 -1.06×10-4 2.145×10-3 3.872×10-3 2.989×10-3 1.19×10-3 -9.9×10-5 -2.21×10-4

0 -2.08×10-4 -3.4×10-5 1.084×10-3 4.89×10-4 3.68×10-4 2.51×10-4 8.51×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ψ
100 -1.85×10-4 -1.148×10-2 -2.683×10-2 -2.55×10-2 -2.563×10-2 -2.16×10-2 -1.623×10-2

10 -1.8×10-4 -9.249×10-3 -1.973×10-2 -1.877×10-2 -1.668×10-2 -1.32×10-2 -1.129×10-2

1 -1.06×10-4 -8.285×10-3 -1.638×10-2 -1.488×10-2 -1.127×10-2 -9.423×10-3 -8.225×10-3

0 -2.08×10-4 -5.996×10-3 -1.112×10-2 -1.26×10-2 -9.61×10-3 -7.885×10-3 -6.773×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 -1.85×10-6 -4.095×10-4 -2.648×10-3 -2.541×10-3 -2.917×10-3 -2.067×10-3 -8.765×10-4

10 -1.8×10-6 -2.38×10-4 -1.343×10-3 -1.396×10-3 -1.397×10-3 -6.79×10-4 -4.151×10-4

1 -1.06×10-6 -1.574×10-4 -7.705×10-4 -7.355×10-4 -4.572×10-4 -2.412×10-4 -1.981×10-4

0 -2.08×10-6 -8.522×10-5 -3.748×10-4 -4.979×10-4 -2.982×10-4 -1.548×10-4 -1.095×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -5.183×10-1 -4.269×101 -1.022×102 -1.505×102 -1.752×102 -1.878×102 -1.936×102

10 -6.99×10-2 -1.214 -3.859 -1.013×101 -1.734×101 -2.804×101 -7.122×101

1 -3.24×10-2 -1.903×10-1 -2.88×10-1 -3.472×10-1 -4.143×10-1 -6.447×10-1 -4.015

0 0. -9.9×10-3 -2.63×10-2 -2.81×10-2 -4.07×10-2 -8.57×10-2 -2.359×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ρ
100 -1.025×101 -6.374×101 -1.282×102 -1.744×102 -2.004×102 -2.152×102 -2.228×102

10 -9.499×10-1 -2.874 -5.814 -1.203×101 -1.954×101 -3.041×101 -7.379×101

1 -3.3×10-2 -2.177×10-1 -3.472×10-1 -3.95×10-1 -4.851×10-1 -8.077×10-1 -4.365

0 0. -9.9×10-3 -2.63×10-2 -2.81×10-2 -4.07×10-2 -8.57×10-2 -2.359×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 -3.267×102 -2.37×104 -8.025×104 -1.284×105 -1.607×105 -1.85×105 -2.078×105

10 -2.374 -3.349×101 -3.964×102 -4.08×103 -9.157×103 -1.562×104 -5.389×104

1 -3.3×10-2 -2.535×10-1 -5.708×10-1 -1.107 -3.145 -1.018×101 -1.688×103

0 0. -9.9×10-3 -2.65×10-2 -2.95×10-2 -4.37×10-2 -9.03×10-2 -4.651×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9
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Table SI D_6 – Comparison of the (marginal) accuracy of ψ̂ (left column) and ρ̂ (right column) for the maximum
likelihood-based estimate (i.e., the reference) and the L1-distance-based estimate when assuming
independent sites. Each cell shows the difference of the absolute mean difference
(|MDMLE | − |MDL1|; first row), the difference of the mean absolute difference
(MADMLE −MADL1; third row) and the difference of the mean squared error
(MSEMLE −MSEL1; third row) each calculated over 10,000 data sets assuming independent sites,
k = 100, and θ (eq. 46) with s = 10,000. Colors within each sub-table range from light yellow to dark
red and scale between the minimal and the maximal absolute value to aid interpretation.

Mean deviation ψ
100 0. 8.2×10-4 8.69×10-4 -4.6×10-4 -3.68×10-3 -3.199×10-3 -1.855×10-3

10 0. 1.657×10-3 1.964×10-3 1.93×10-4 -1.776×10-3 -1.367×10-3 -8.17×10-4

1 0. 3.35×10-4 5.25×10-4 3.59×10-4 8.72×10-4 8.58×10-4 1.085×10-3

0 0. -8.2×10-5 -2.46×10-4 -2.51×10-4 -6.8×10-4 -8.66×10-4 -6.37×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ψ
100 0. -1.312×10-3 -2.411×10-3 -1.644×10-3 -2.588×10-3 -2.183×10-3 -1.591×10-3

10 0. -2.417×10-3 -2.674×10-3 -2.555×10-3 -2.37×10-3 -1.805×10-3 -1.187×10-3

1 0. -5.81×10-4 -1.437×10-3 -4.461×10-3 -7.436×10-3 -5.316×10-3 -2.657×10-3

0 0. -1.24×10-4 -7.8×10-4 -3.173×10-3 -6.072×10-3 -5.778×10-3 -3.067×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. -1.94×10-5 -7.673×10-5 -4.336×10-5 -6.426×10-5 -5.795×10-5 -2.885×10-5

10 0. -3.309×10-5 -6.956×10-5 -5.697×10-5 -4.438×10-5 -2.807×10-5 -1.461×10-5

1 0. -1.029×10-5 -3.401×10-5 -1.006×10-4 -1.603×10-4 -8.158×10-5 -2.871×10-5

0 0. -1.24×10-6 -9.74×10-6 -5.615×10-5 -1.153×10-4 -8.318×10-5 -3.237×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -5.3×10-2 -3.625 -3.333 3.69×10-1 5.232 5.551 6.545

10 -2.37×10-2 -5.611×10-1 -3.631×10-1 -7.87×10-2 1.231×10-1 1.006×10-1 1.193×10-1

1 0. -2.09×10-2 -1.39×10-2 -8.7×10-3 -2.5×10-3 -8.2×10-3 -5.9×10-3

0 0. 0. 0. 0. 0. 0. -1.8×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ρ
100 -5.524×10-1 -3.669 -3.737 -2.608×10-1 1.827 3.124 4.392

10 -1.353×10-1 -5.783×10-1 -2.187×10-1 -1.985×10-1 -5.77×10-2 -2.4×10-2 1.69×10-2

1 0. -2.09×10-2 -1.39×10-2 -8.7×10-3 -2.5×10-3 -8.2×10-3 -6.7×10-3

0 0. 0. 0. 0. 0. 0. -1.8×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 -7.912 -3.216×102 -7.552×102 -6.735×101 7.574×102 1.389×103 3.317×103

10 -1.627×10-1 -2.876 -2.108 -1.015 -2.465×10-1 -7.18×10-2 4.427×10-1

1 0. -2.19×10-2 -1.47×10-2 -8.7×10-3 -2.5×10-3 -8.×10-3 -1.09×10-2

0 0. 0. 0. 0. 0. 0. -1.8×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Table SI D_7 – Comparison of the (marginal) accuracy of ψ̂ (left column) and ρ̂ (right column) for the maximum
likelihood-based estimate (i.e., the reference) and the L2-distance-based estimate when assuming
independent sites. Each cell shows the difference of the absolute mean difference
(|MDMLE | − |MDL2|; first row), the difference of the mean absolute difference
(MADMLE −MADL2; third row) and the difference of the mean squared error
(MSEMLE −MSEL2; third row) each calculated over 10,000 data sets assuming independent sites,
k = 100, and θ (eq. 46) with s = 10,000. Colors within each sub-table range from light yellow to dark
red and scale between the minimal and the maximal absolute value to aid interpretation.

Mean deviation ψ
100 0. -3.1×10-5 2.45×10-4 -1.×10-6 -8.×10-5 8.×10-6 1.14×10-4

10 0. 6.96×10-4 1.698×10-3 7.59×10-4 2.34×10-4 2.24×10-4 2.61×10-4

1 0. 3.591×10-3 7.75×10-4 9.73×10-4 2.308×10-3 4.3×10-3 3.438×10-3

0 0. -3.6×10-5 -1.15×10-4 -1.7×10-5 -3.57×10-4 -9.7×10-5 1.4×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ψ
100 0. -3.21×10-4 -5.21×10-4 -8.47×10-4 -1.45×10-3 -1.462×10-3 -1.13×10-3

10 0. -2.444×10-3 -1.656×10-3 -1.857×10-3 -1.56×10-3 -1.3×10-3 -8.95×10-4

1 0. -3.465×10-3 -1.639×10-3 -5.071×10-3 -8.96×10-3 -9.492×10-3 -4.87×10-3

0 0. -1.76×10-4 -8.83×10-4 -3.507×10-3 -7.059×10-3 -8.729×10-3 -5.538×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. -4.15×10-6 -1.459×10-5 -2.069×10-5 -3.264×10-5 -3.044×10-5 -2.106×10-5

10 0. -3.274×10-5 -3.908×10-5 -4.055×10-5 -2.686×10-5 -1.884×10-5 -1.039×10-5

1 0. -7.933×10-5 -4.135×10-5 -1.223×10-4 -2.186×10-4 -2.197×10-4 -6.98×10-5

0 0. -1.76×10-6 -1.103×10-5 -6.429×10-5 -1.434×10-4 -1.742×10-4 -7.414×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -7.07×10-2 -2.19×10-1 -7.627×10-1 -2.985×10-1 -1.897×10-1 -3.855×10-1 -2.083×10-1

10 -6.5×10-3 -2.908×10-1 -2.655×10-1 -1.046×10-1 -3.49×10-2 -3.64×10-2 -7.4×10-2

1 0. -1.865×10-1 -1.61×10-2 -1.39×10-2 -9.1×10-3 -1.03×10-2 -9.1×10-3

0 0. 0. 0. 0. 0. 0. -8.×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviations ρ
100 -6.495×10-1 -1.064 -1.025 -6.313×10-1 -6.939×10-1 -6.215×10-1 -1.239×10-1

10 -1.423×10-1 -5.144×10-1 -5.05×10-2 -1.738×10-1 -7.05×10-2 -5.66×10-2 -8.26×10-2

1 0. -1.867×10-1 -1.61×10-2 -1.39×10-2 -9.1×10-3 -1.03×10-2 -1.29×10-2

0 0. 0. 0. 0. 0. 0. -8.×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 -9.463 -8.017×101 -1.524×102 -1.201×102 -1.278×102 -2.592×102 -3.915×101

10 -1.705×10-1 -2.247 -9.005×10-1 -7.872×10-1 -6.197×10-1 -8.216×10-1 -2.714

1 0. -2.497×10-1 -2.19×10-2 -1.39×10-2 -9.1×10-3 -1.03×10-2 -1.85×10-2

0 0. 0. 0. 0. 0. 0. -8.×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Table SI D_8 – Comparison of the (marginal) accuracy of ψ̂ (left column) and ρ̂ (right column) for the maximum
likelihood estimate based on the full SFS (i.e., the reference) and the lumped SFS where the i = 5
entry in the SFS contains the aggregate of the higher frequency classes when assuming independent
sites.. Each cell shows the difference of the absolute mean difference (|MDi=0| − |MDi=5|; first row),
the difference of the mean absolute difference (MADi=0 −MADi=5; third row) and the difference of
the mean squared error (MSEi=0 −MSEi=5; third row) each calculated over 10,000 data sets
assuming independent sites, k = 100, and θ (eq. 46) with s = 10,000. Colors within each sub-table
range from light yellow to dark red and scale between the minimal and the maximal absolute value to
aid interpretation.
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Mean deviation ψ
100 0. -7.104×10-3 -4.435×10-2 -5.599×10-2 -5.365×10-2 -4.04×10-2 -5.625×10-2

10 0. -4.676×10-3 -4.175×10-2 -3.283×10-2 -1.369×10-2 3.921×10-3 -2.135×10-2

1 0. -1.734×10-3 -1.64×10-2 2.939×10-3 1.397×10-2 5.69×10-2 2.731×10-3

0 0. 1.14×10-4 2.138×10-2 5.896×10-2 8.471×10-2 8.712×10-2 1.423×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ψ
100 0. -1.804×10-2 -9.674×10-2 -1.424×10-1 -1.575×10-1 -1.336×10-1 -7.916×10-2

10 0. -1.507×10-2 -1.01×10-1 -1.434×10-1 -1.539×10-1 -1.371×10-1 -5.207×10-2

1 0. -9.932×10-3 -7.733×10-2 -1.244×10-1 -1.382×10-1 -1.047×10-1 -2.857×10-2

0 0. -3.18×10-4 -2.144×10-2 -5.987×10-2 -8.863×10-2 -9.293×10-2 -2.057×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. -1.144×10-3 -2.133×10-2 -3.625×10-2 -3.527×10-2 -2.398×10-2 -7.472×10-3

10 0. -7.316×10-4 -2.092×10-2 -3.297×10-2 -3.295×10-2 -2.933×10-2 -5.476×10-3

1 0. -4.698×10-4 -8.935×10-3 -2.134×10-2 -2.785×10-2 -2.333×10-2 -2.421×10-3

0 0. -7.58×10-6 -2.1×10-3 -1.094×10-2 -2.187×10-2 -2.489×10-2 -2.193×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 2.×10-4 -1.455×101 -1.532×102 -2.159×102 -2.167×102 -1.719×102 6.548×101

10 -3.2×10-3 -6.417×10-1 -1.25×101 -4.546×101 -7.281×101 -8.314×101 -1.309×101

1 0. -1.175×10-1 -1.136 -4.147 -6.834 -9.952 -7.571×10-1

0 0. -3.2×10-3 -2.698×10-1 -9.28×10-1 -1.8 -2.185 -1.789×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ρ
100 3.×10-3 -2.104×10-1 -4.002×101 -1.224×102 -1.418×102 -6.335×101 -7.009×101

10 -1.12×10-2 -8.42×10-2 -2.421 -7.039 -9.535 -6.267 -3.542×101

1 0. -5.1×10-3 -1.858×10-1 -5.43×10-1 -5.8×10-1 -2.645×10-1 -2.322

0 0. 0. -1.×10-3 -4.46×10-2 -1.006×10-1 -1.91×10-2 -3.919×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 -4.058×10-1 -7.101×103 -1.355×105 -2.096×105 -2.266×105 -2.056×105 -2.273×104

10 -4.86×10-2 -2.757×101 -1.428×103 -2.029×104 -4.815×104 -6.248×104 -1.16×104

1 0. -3.277×10-1 -1.014×101 -1.292×102 -7.836×102 -2.839×103 -2.058×102

0 0. -3.2×10-3 -3.892×10-1 -4.678 -3.102×101 -1.047×102 -4.275×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Table SI D_9 – Comparison of the (marginal) accuracy of ψ̂ (left column) and ρ̂ (right column) for the maximum
likelihood estimate based on the full SFS (i.e., the reference) and the lumped SFS where the i = 15
entry in the SFS contains the aggregate of the higher frequency classes when assuming independent
sites.. Each cell shows the difference of the absolute mean difference (|MDi=0| − |MDi=15|; first row),
the difference of the mean absolute difference (MADi=0 −MADi=15; third row) and the difference of
the mean squared error (MSEi=0 −MSEi=15; third row) each calculated over 10,000 data sets
assuming independent sites, k = 100, and θ (eq. 46) with s = 10,000. Colors within each sub-table
range from light yellow to dark red and scale between the minimal and the maximal absolute value to
aid interpretation.

Mean deviation ψ
100 0. -8.9×10-5 -7.793×10-3 -1.807×10-2 -4.014×10-2 -6.248×10-2 -7.883×10-3

10 0. -1.02×10-4 -4.438×10-3 -7.786×10-3 -8.974×10-3 -3.399×10-2 1.876×10-2

1 0. 1.01×10-4 1.903×10-3 3.985×10-3 2.064×10-2 7.852×10-3 2.682×10-2

0 0. -2.1×10-5 5.1×10-5 5.61×10-3 1.49×10-2 2.39×10-3 2.098×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ψ
100 0. -1.27×10-4 -2.519×10-2 -7.137×10-2 -1.014×10-1 -9.353×10-2 -4.608×10-2

10 0. -3.18×10-4 -1.939×10-2 -5.674×10-2 -6.939×10-2 -6.557×10-2 -4.57×10-2

1 0. -1.25×10-4 -9.675×10-3 -3.673×10-2 -3.444×10-2 -2.095×10-2 -3.629×10-2

0 0. -5.5×10-5 -8.63×10-4 -8.544×10-3 -2.117×10-2 -9.636×10-3 -2.6×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. -1.81×10-6 -1.845×10-3 -1.068×10-2 -1.907×10-2 -1.607×10-2 -4.656×10-3

10 0. -3.74×10-6 -1.079×10-3 -5.946×10-3 -1.02×10-2 -1.01×10-2 -6.738×10-3

1 0. -2.13×10-6 -6.9×10-4 -3.929×10-3 -3.339×10-3 -1.511×10-3 -5.75×10-3

0 0. -5.5×10-7 -1.569×10-5 -7.567×10-4 -2.463×10-3 -5.216×10-4 -4.653×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 8.×10-4 1.96×10-1 -1.699×101 -8.785×101 -9.527×101 -2.532 -3.133×101

10 2.×10-4 7.×10-3 -5.581×10-1 -3.813 -6.43 -1.991 -3.359×101

1 0. -5.1×10-3 -1.208×10-1 -3.394×10-1 -5.264×10-1 -2.145×10-1 -2.223

0 0. 0. -1.×10-3 -4.46×10-2 -1.006×10-1 -1.91×10-2 -3.919×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ρ
100 3.×10-3 -2.104×10-1 -4.002×101 -1.224×102 -1.418×102 -6.335×101 -7.009×101

10 -1.12×10-2 -8.42×10-2 -2.421 -7.039 -9.535 -6.267 -3.542×101

1 0. -5.1×10-3 -1.858×10-1 -5.43×10-1 -5.8×10-1 -2.645×10-1 -2.322

0 0. 0. -1.×10-3 -4.46×10-2 -1.006×10-1 -1.91×10-2 -3.919×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 8.×10-4 -1.3×101 -9.289×103 -7.059×104 -1.026×105 -4.002×104 -5.47×104

10 -1.1×10-2 -3.286×10-1 -2.313×101 -2.029×102 -7.475×102 -8.405×102 -2.005×104

1 0. -5.1×10-3 -1.952×10-1 -9.908×10-1 -1.99 -9.893×10-1 -1.277×102

0 0. 0. -1.×10-3 -4.46×10-2 -1.038×10-1 -2.15×10-2 -2.175

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9
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Table SI D_10 – Comparison of the (marginal) accuracy of ψ̂ (left column) and ρ̂ (right column) for the maximum
likelihood estimate based for ` = 100 (i.e., the reference) and ` = 1,000. Each cell shows the difference
of the absolute mean difference (|MD`=100| − |MD`=1,000|; first row), the difference of the mean
absolute difference (MAD`=100 −MAD`=1,000; third row) and the difference of the mean squared
error (MSE`=100 −MSE`=1,000; third row) each calculated over 10,000 data sets assuming
independent sites, k = 100, and θ (eq. 46) with s = 1,000 for ` = 100 and s = 100 for ` = 1,000.
Colors within each sub-table range from light yellow to dark red and scale between the minimal and
the maximal absolute value to aid interpretation.

Mean squared error ψ
100 0. 1.876×10-5 4.064×10-5 4.031×10-5 3.812×10-5 3.464×10-5 2.491×10-5

10 0. 2.119×10-5 4.776×10-5 4.428×10-5 4.127×10-5 3.604×10-5 2.467×10-5

1 0. -7.89×10-6 5.498×10-5 3.77×10-5 4.105×10-5 3.777×10-5 2.489×10-5

0 1.×10-7 3.848×10-5 1.1×10-4 1.115×10-4 6.475×10-5 4.893×10-5 2.944×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 8.4×10-5 4.×10-6 3.1×10-5 2.4×10-5 -2.8×10-5 -7.3×10-5

10 0. 4.3×10-5 7.4×10-5 -1.2×10-5 5.9×10-5 8.×10-6 -9.3×10-5

1 0. 2.999×10-3 3.456×10-3 1.196×10-3 3.37×10-4 2.35×10-4 -7.9×10-5

0 1.×10-5 1.86×10-4 2.95×10-4 -2.72×10-4 6.5×10-5 8.3×10-5 -3.02×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ψ
100 0. 1.864×10-3 2.98×10-3 3.111×10-3 3.156×10-3 3.084×10-3 2.449×10-3

10 0. 2.111×10-3 3.716×10-3 3.648×10-3 3.675×10-3 3.36×10-3 2.449×10-3

1 0. -1.619×10-3 2.72×10-4 1.258×10-3 3.463×10-3 3.533×10-3 2.473×10-3

0 1.×10-5 3.676×10-3 6.577×10-3 6.5×10-3 5.125×10-3 4.395×10-3 2.884×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 9.×10-4 2.248 3.121 5.727 9.103 1.533×101 2.812×101

10 2.33×10-2 1.37×10-1 2.293×10-1 2.865×10-1 5.279×10-1 7.009×10-1 1.541

1 1.×10-4 -8.78×10-2 -1.282×10-1 -1.159×10-1 -1.144×10-1 -4.1×10-2 1.008×10-1

0 0. 0. 3.×10-4 4.×10-4 9.×10-4 4.9×10-3 3.7×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean absolute deviation ρ
100 1.267 1.164×101 1.21×101 1.588×101 2.081×101 2.742×101 4.276×101

10 2.271×10-1 1.036 1.092 1.37 1.7 2.13 3.205

1 1.×10-4 0. 4.4×10-3 1.×10-2 2.46×10-2 6.12×10-2 1.703×10-1

0 0. 0. 3.×10-4 4.×10-4 9.×10-4 4.9×10-3 3.7×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 8.817 6.373×102 1.005×103 1.81×103 3.243×103 6.306×103 1.717×104

10 2.283×10-1 3.591 5.515 8.877 1.431×101 2.483×101 6.311×101

1 1.×10-4 0. 8.8×10-3 2.×10-2 4.98×10-2 1.286×10-1 4.412×10-1

0 0. 0. 3.×10-4 4.×10-4 9.×10-4 4.9×10-3 3.72×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9
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Table SI D_11 – Overview of the (marginal) accuracy ψ̂ estimated from whole-genome simulations with ` = 100. Each cell shows the mean difference (first row), the mean squared
error (second row) and the median difference (third row) of ψ̂ calculated over 10,000 data sets assuming independent sites. Colors within each sub-table range from
light yellow to dark red and scale between the minimal and the maximal absolute value to aid interpretation.

s = 100 s = 1,000 s = 10,000

k
=

20

Mean deviation ψ
100 2.638×10-3 7.6×10-5 3.87×10-4 4.14×10-4 5.37×10-4 2.03×10-4 2.66×10-4

10 2.793×10-3 -5.6×10-5 1.99×10-4 4.63×10-4 7.63×10-4 2.33×10-4 5.4×10-5

1 3.081×10-3 -8.48×10-4 -2.098×10-3 -3.869×10-3 -3.048×10-3 -1.637×10-3 -7.4×10-4

0 4.923×10-3 2.49×10-4 9.2×10-5 -3.93×10-4 -7.93×10-4 -6.23×10-4 -1.535×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 2.996×10-5 1.094×10-4 2.245×10-4 3.881×10-4 4.572×10-4 3.665×10-4 2.187×10-4

10 3.307×10-5 1.077×10-4 2.038×10-4 3.611×10-4 4.253×10-4 3.415×10-4 1.834×10-4

1 3.959×10-5 1.143×10-4 2.341×10-4 4.42×10-4 4.664×10-4 3.584×10-4 1.879×10-4

0 8.643×10-5 1.824×10-4 3.068×10-4 5.153×10-4 5.521×10-4 4.289×10-4 2.088×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 2.027×10-3 5.6×10-5 2.72×10-4 7.03×10-4 6.37×10-4 2.32×10-4 1.4×10-4

10 2.437×10-3 -2.2×10-5 1.23×10-4 4.86×10-4 6.48×10-4 2.81×10-4 2.07×10-4

1 2.895×10-3 -6.41×10-4 -1.71×10-3 -3.228×10-3 -2.919×10-3 -1.636×10-3 -8.5×10-4

0 4.693×10-3 2.8×10-4 1.96×10-4 -1.59×10-4 -4.34×10-4 -5.42×10-4 -1.471×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 2.157×10-5 7.9×10-5 1.452×10-4 2.66×10-4 3.406×10-4 2.8×10-4 1.593×10-4

10 2.675×10-5 8.594×10-5 1.569×10-4 2.865×10-4 3.502×10-4 2.795×10-4 1.507×10-4

1 3.545×10-5 9.589×10-5 2.018×10-4 3.791×10-4 4.135×10-4 3.182×10-4 1.648×10-4

0 8.041×10-5 1.699×10-4 2.816×10-4 4.705×10-4 4.96×10-4 4.031×10-4 1.941×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 1.976×10-3 1.1×10-5 2.52×10-4 6.25×10-4 5.54×10-4 2.72×10-4 1.37×10-4

10 2.403×10-3 -1.6×10-5 1.17×10-4 4.83×10-4 6.92×10-4 3.11×10-4 1.34×10-4

1 2.889×10-3 -5.26×10-4 -1.609×10-3 -3.109×10-3 -2.922×10-3 -1.65×10-3 -9.37×10-4

0 4.715×10-3 2.62×10-4 1.83×10-4 -1.59×10-4 -3.61×10-4 -5.67×10-4 -1.48×10-3

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 2.07×10-5 7.525×10-5 1.385×10-4 2.519×10-4 3.319×10-4 2.692×10-4 1.537×10-4

10 2.635×10-5 8.362×10-5 1.514×10-4 2.756×10-4 3.445×10-4 2.747×10-4 1.467×10-4

1 3.529×10-5 9.3×10-5 1.954×10-4 3.754×10-4 4.114×10-4 3.142×10-4 1.621×10-4

0 8.079×10-5 1.689×10-4 2.791×10-4 4.668×10-4 4.933×10-4 4.054×10-4 1.917×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

50

Mean deviation ψ
100 1.13×10-4 1.3×10-4 1.17×10-4 -2.49×10-4 2.91×10-4 3.2×10-5 7.7×10-5

10 1.66×10-4 2.7×10-4 2.93×10-4 -2.38×10-4 1.82×10-4 8.9×10-5 1.46×10-4

1 2.77×10-4 -3.37×10-4 -1.986×10-3 -2.913×10-3 -1.238×10-3 -7.7×10-4 -4.59×10-4

0 9.71×10-4 2.56×10-4 3.64×10-4 -4.86×10-4 1.5×10-4 -9.3×10-5 -4.88×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 1.13×10-6 5.382×10-5 1.855×10-4 2.491×10-4 1.979×10-4 1.656×10-4 1.057×10-4

10 1.66×10-6 4.77×10-5 1.617×10-4 2.126×10-4 1.616×10-4 1.32×10-4 8.082×10-5

1 2.77×10-6 4.511×10-5 1.662×10-4 2.404×10-4 1.623×10-4 1.247×10-4 7.463×10-5

0 9.71×10-6 6.176×10-5 1.895×10-4 2.969×10-4 1.991×10-4 1.408×10-4 7.938×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 9.×10-6 1.03×10-4 2.21×10-4 5.9×10-5 1.27×10-4 2.×10-6 4.4×10-5

10 4.4×10-5 1.4×10-4 2.68×10-4 -3.34×10-4 1.85×10-4 -1.2×10-5 6.1×10-5

1 1.32×10-4 -8.4×10-5 -1.16×10-3 -2.363×10-3 -1.×10-3 -8.03×10-4 -4.55×10-4

0 7.88×10-4 2.36×10-4 3.04×10-4 -2.65×10-4 3.1×10-5 -7.8×10-5 -3.26×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 9.×10-8 2.803×10-5 9.021×10-5 1.302×10-4 1.147×10-4 9.55×10-5 5.946×10-5

10 4.4×10-7 3.032×10-5 9.622×10-5 1.377×10-4 1.068×10-4 9.126×10-5 5.459×10-5

1 1.32×10-6 3.392×10-5 1.232×10-4 1.883×10-4 1.29×10-4 9.741×10-5 5.789×10-5

0 7.88×10-6 5.48×10-5 1.672×10-4 2.502×10-4 1.701×10-4 1.211×10-4 6.85×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 5.×10-6 1.07×10-4 1.95×10-4 -5.7×10-5 1.92×10-4 -4.1×10-5 3.9×10-5

10 3.5×10-5 1.61×10-4 2.68×10-4 -3.46×10-4 1.33×10-4 3.×10-6 5.6×10-5

1 1.19×10-4 -4.1×10-5 -1.077×10-3 -2.28×10-3 -9.78×10-4 -7.62×10-4 -4.87×10-4

0 8.06×10-4 2.14×10-4 3.94×10-4 -2.57×10-4 3.2×10-5 -7.2×10-5 -3.71×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 5.×10-8 2.435×10-5 8.131×10-5 1.202×10-4 1.067×10-4 8.891×10-5 5.507×10-5

10 3.5×10-7 2.861×10-5 9.038×10-5 1.294×10-4 1.027×10-4 8.689×10-5 5.188×10-5

1 1.19×10-6 3.251×10-5 1.18×10-4 1.834×10-4 1.259×10-4 9.452×10-5 5.589×10-5

0 8.06×10-6 5.406×10-5 1.637×10-4 2.467×10-4 1.664×10-4 1.192×10-4 6.753×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

10
0

Mean deviation ψ
100 0. 1.99×10-4 -1.26×10-4 -3.21×10-4 8.7×10-5 1.81×10-4 -1.17×10-4

10 0. 1.37×10-4 1.65×10-4 -3.5×10-5 1.5×10-4 4.1×10-5 4.3×10-5

1 0. -3.38×10-4 -1.918×10-3 -1.342×10-3 -6.89×10-4 -4.81×10-4 -4.11×10-4

0 2.×10-5 2.93×10-4 3.96×10-4 -4.3×10-4 4.7×10-5 5.8×10-5 -3.89×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 5.733×10-5 1.665×10-4 1.46×10-4 1.173×10-4 1.017×10-4 6.543×10-5

10 0. 4.765×10-5 1.384×10-4 1.161×10-4 8.826×10-5 7.259×10-5 4.933×10-5

1 0. 3.848×10-5 1.407×10-4 1.246×10-4 7.909×10-5 6.405×10-5 3.953×10-5

0 2.×10-7 4.693×10-5 1.586×10-4 1.669×10-4 9.367×10-5 6.704×10-5 3.893×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 1.02×10-4 8.8×10-5 -7.4×10-5 6.7×10-5 -8.7×10-5 -1.42×10-4

10 0. 1.52×10-4 1.46×10-4 1.4×10-5 5.×10-5 -2.×10-5 3.1×10-5

1 0. 4.4×10-5 -9.32×10-4 -8.96×10-4 -4.09×10-4 -3.45×10-4 -3.57×10-4

0 1.×10-5 2.09×10-4 2.77×10-4 -3.44×10-4 1.9×10-5 4.4×10-5 -3.03×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 2.124×10-5 6.306×10-5 6.×10-5 5.349×10-5 4.621×10-5 2.868×10-5

10 0. 2.37×10-5 6.772×10-5 5.904×10-5 4.904×10-5 4.078×10-5 2.595×10-5

1 0. 2.502×10-5 9.106×10-5 8.206×10-5 5.421×10-5 4.377×10-5 2.589×10-5

0 1.×10-7 3.963×10-5 1.287×10-4 1.318×10-4 7.275×10-5 5.296×10-5 2.995×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 1.×10-4 2.2×10-5 -7.4×10-5 6.5×10-5 -4.×10-5 -1.36×10-4

10 0. 1.4×10-4 1.06×10-4 -4.×10-5 6.5×10-5 -3.2×10-5 1.1×10-5

1 0. 1.25×10-4 -8.11×10-4 -8.39×10-4 -3.62×10-4 -3.93×10-4 -3.66×10-4

0 6.×10-6 2.67×10-4 3.91×10-4 -3.52×10-4 1.1×10-4 2.8×10-5 -2.43×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 1.596×10-5 5.306×10-5 5.254×10-5 4.637×10-5 4.094×10-5 2.462×10-5

10 0. 2.05×10-5 6.07×10-5 5.352×10-5 4.581×10-5 3.776×10-5 2.303×10-5

1 0. 2.383×10-5 8.473×10-5 7.779×10-5 5.12×10-5 4.213×10-5 2.458×10-5

0 6.×10-8 3.949×10-5 1.251×10-4 1.284×10-4 7.034×10-5 5.126×10-5 2.891×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

20
0

Mean deviation ψ
100 0. 1.43×10-4 -6.14×10-4 -2.33×10-4 2.55×10-4 -1.×10-5 -1.06×10-4

10 0. 1.78×10-4 -2.21×10-4 4.7×10-5 2.4×10-4 5.×10-6 -1.51×10-4

1 0. -5.94×10-4 -1.635×10-3 -7.14×10-4 -2.28×10-4 -1.68×10-4 -1.99×10-4

0 0. 1.21×10-4 -3.2×10-5 1.×10-5 2.35×10-4 1.08×10-4 -1.86×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 6.531×10-5 1.44×10-4 1.082×10-4 9.111×10-5 7.65×10-5 5.072×10-5

10 0. 5.376×10-5 1.092×10-4 7.607×10-5 6.13×10-5 5.289×10-5 3.441×10-5

1 0. 4.088×10-5 1.184×10-4 7.398×10-5 4.936×10-5 4.18×10-5 2.429×10-5

0 0. 4.269×10-5 1.29×10-4 9.456×10-5 4.971×10-5 4.036×10-5 2.218×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 1.48×10-4 -1.3×10-5 -8.1×10-5 5.5×10-5 -8.×10-6 -1.24×10-4

10 0. 1.15×10-4 -1.09×10-4 -1.5×10-5 1.2×10-4 -5.1×10-5 -1.02×10-4

1 0. -8.8×10-5 -5.47×10-4 -3.26×10-4 -1.19×10-4 -1.66×10-4 -1.28×10-4

0 0. 1.06×10-4 -1.69×10-4 -1.23×10-4 1.72×10-4 5.2×10-5 -1.19×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 1.724×10-5 3.903×10-5 3.191×10-5 2.971×10-5 2.514×10-5 1.268×10-5

10 0. 1.913×10-5 3.961×10-5 3.073×10-5 2.574×10-5 2.245×10-5 1.048×10-5

1 0. 2.044×10-5 5.717×10-5 3.774×10-5 2.559×10-5 2.25×10-5 8.92×10-6

0 0. 3.292×10-5 9.059×10-5 6.525×10-5 3.288×10-5 2.676×10-5 1.157×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 1.05×10-4 1.7×10-5 -4.8×10-5 4.3×10-5 -3.9×10-5 -3.4×10-5

10 0. 1.36×10-4 -1.46×10-4 -6.2×10-5 7.7×10-5 1.×10-5 -3.5×10-5

1 0. -3.8×10-5 -5.3×10-4 -3.3×10-4 -1.73×10-4 -2.×10-4 -1.03×10-4

0 0. 1.44×10-4 -2.4×10-4 -1.52×10-4 1.8×10-4 2.6×10-5 -1.28×10-4

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 1.001×10-5 3.047×10-5 2.37×10-5 2.275×10-5 1.929×10-5 7.76×10-6

10 0. 1.484×10-5 3.312×10-5 2.53×10-5 2.141×10-5 1.852×10-5 7.07×10-6

1 0. 1.846×10-5 5.378×10-5 3.402×10-5 2.305×10-5 2.02×10-5 7.05×10-6

0 0. 3.222×10-5 8.71×10-5 6.254×10-5 3.154×10-5 2.632×10-5 1.07×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9
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Table SI D_12 – Overview of the (marginal) accuracy ρ̂ estimated from whole-genome simulations with ` = 100. Each cell shows the mean difference (first row), the mean squared
error (second row) and the median difference (third row) of ρ̂ calculated over 10,000 data sets assuming independent sites. Colors within each sub-table range from
light yellow to dark red and scale between the minimal and the maximal absolute value to aid interpretation.

s = 100 s = 1,000 s = 10,000

k
=

20

Mean deviation ρ
100 -3.273 3.384 5.398 9.794 1.5×101 2.492×101 5.264×101

10 -2.602×10-1 1.895×10-1 3.02×10-1 4.576×10-1 6.911×10-1 1.278 2.567

1 3.9×10-3 4.45×10-2 8.97×10-2 1.488×10-1 1.983×10-1 2.483×10-1 3.581×10-1

0 0. 5.×10-4 3.8×10-3 1.25×10-2 2.63×10-2 4.56×10-2 1.157×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -3. 0. 0. 0. 0. 0. -2.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 1.569×102 6.065×102 1.142×103 2.21×103 3.965×103 8.787×103 3.048×104

10 1.22 3.307 5.677 9.86 1.689×101 3.279×101 1.134×102

1 3.9×10-3 4.49×10-2 9.23×10-2 1.652×10-1 2.455×10-1 3.993×10-1 1.054

0 0. 5.×10-4 3.8×10-3 1.25×10-2 2.63×10-2 4.56×10-2 1.185×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -2.792 2.008 3.32 5.409 9.545 1.562×101 3.217×101

10 -2.44×10-1 1.499×10-1 2.143×10-1 3.087×10-1 5.222×10-1 9.701×10-1 1.803

1 1.6×10-3 3.08×10-2 6.98×10-2 1.253×10-1 1.765×10-1 2.248×10-1 3.361×10-1

0 0. 2.×10-4 2.×10-3 8.2×10-3 2.08×10-2 3.99×10-2 1.063×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -3. 0. 0. 0. 0. 0. -1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 9.752×101 3.67×102 6.16×102 1.181×103 2.273×103 4.371×103 1.453×104

10 9.166×10-1 2.424 3.886 7.101 1.248×101 2.294×101 5.975×101

1 1.6×10-3 3.08×10-2 7.1×10-2 1.359×10-1 2.081×10-1 3.348×10-1 8.539×10-1

0 0. 2.×10-4 2.×10-3 8.2×10-3 2.08×10-2 3.99×10-2 1.083×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -2.738 1.914 3.053 5.216 9.132 1.473×101 3.065×101

10 -2.388×10-1 1.387×10-1 2.095×10-1 3.033×10-1 4.941×10-1 9.374×10-1 1.764

1 1.1×10-3 2.87×10-2 6.68×10-2 1.224×10-1 1.734×10-1 2.231×10-1 3.346×10-1

0 0. 2.×10-4 2.1×10-3 8.5×10-3 2.01×10-2 4.05×10-2 1.065×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 -3. 0. 0. 0. 0. 0. -1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 9.165×101 3.412×102 5.743×102 1.086×103 2.141×103 4.015×103 1.337×104

10 8.778×10-1 2.303 3.733 6.798 1.214×101 2.184×101 5.741×101

1 1.1×10-3 2.87×10-2 6.78×10-2 1.336×10-1 2.032×10-1 3.249×10-1 8.32×10-1

0 0. 2.×10-4 2.1×10-3 8.5×10-3 2.01×10-2 4.05×10-2 1.085×10-1

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

50

Mean deviation ρ
100 -2.67×10-2 3.602 8.147 1.284×101 1.835×101 3.096×101 6.07×101

10 6.2×10-3 1.497×10-1 3.257×10-1 4.899×10-1 6.833×10-1 1.142 2.525

1 1.4×10-3 3.12×10-2 8.32×10-2 1.153×10-1 1.464×10-1 2.019×10-1 3.351×10-1

0 0. 0. 1.1×10-3 3.9×10-3 5.9×10-3 1.8×10-2 7.8×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 1. 1. 1. 2. 5.×10-1

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 6.629×101 6.862×102 1.555×103 2.853×103 5.222×103 1.166×104 3.547×104

10 6.666×10-1 3.182 6.009 9.239 1.478×101 2.732×101 9.098×101

1 1.4×10-3 3.12×10-2 8.44×10-2 1.197×10-1 1.55×10-1 2.491×10-1 6.931×10-1

0 0. 0. 1.1×10-3 3.9×10-3 5.9×10-3 1.8×10-2 7.9×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 1.017×10-1 1.664 3.122 5.591 8.05 1.242×101 2.324×101

10 3.×10-2 9.×10-2 1.702×10-1 3.081×10-1 3.874×10-1 6.715×10-1 1.339

1 4.×10-4 1.32×10-2 5.22×10-2 8.75×10-2 1.182×10-1 1.672×10-1 2.663×10-1

0 0. 0. 2.×10-4 1.6×10-3 3.4×10-3 1.18×10-2 5.8×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 1. 1. 1. 1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 2.659×101 3.064×102 5.806×102 1.013×103 1.608×103 2.891×103 7.69×103

10 3.744×10-1 1.92 3.224 5.539 8.14 1.436×101 3.474×101

1 4.×10-4 1.32×10-2 5.22×10-2 8.75×10-2 1.206×10-1 1.86×10-1 4.399×10-1

0 0. 0. 2.×10-4 1.6×10-3 3.4×10-3 1.18×10-2 5.8×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 6.55×10-2 1.384 2.73 5.229 7.122 1.097×101 1.985×101

10 2.×10-2 8.2×10-2 1.605×10-1 2.927×10-1 3.649×10-1 6.374×10-1 1.229

1 1.×10-4 1.16×10-2 4.83×10-2 8.28×10-2 1.136×10-1 1.635×10-1 2.674×10-1

0 0. 0. 1.×10-4 1.5×10-3 3.6×10-3 1.17×10-2 5.68×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 1. 1. 1. 1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 2.279×101 2.635×102 5.083×102 9.24×102 1.403×103 2.438×103 5.992×103

10 3.526×10-1 1.792 3.034 5.215 7.761 1.319×101 3.173×101

1 1.×10-4 1.16×10-2 4.83×10-2 8.3×10-2 1.162×10-1 1.793×10-1 4.204×10-1

0 0. 0. 1.×10-4 1.5×10-3 3.6×10-3 1.17×10-2 5.7×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

10
0

Mean deviation ρ
100 2.063×10-1 5.069 9.636 1.61×101 2.527×101 4.443×101 8.38×101

10 3.4×10-2 2.361×10-1 3.777×10-1 6.118×10-1 8.36×10-1 1.349 3.313

1 1.2×10-3 3.48×10-2 7.96×10-2 1.001×10-1 1.44×10-1 2.145×10-1 3.67×10-1

0 0. 0. 9.×10-4 1.6×10-3 2.1×10-3 1.19×10-2 6.15×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 1. 2. 2. 2. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 3.944×101 9.577×102 2.158×103 4.011×103 8.674×103 2.089×104 5.64×104

10 4.646×10-1 3.95 6.7 1.02×101 1.746×101 3.521×101 1.407×102

1 1.2×10-3 3.48×10-2 7.98×10-2 1.017×10-1 1.486×10-1 2.575×10-1 7.78×10-1

0 0. 0. 9.×10-4 1.6×10-3 2.1×10-3 1.19×10-2 6.21×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 8.6×10-3 1.585 2.937 4.938 7.736 1.23×101 2.164×101

10 2.68×10-2 9.46×10-2 1.738×10-1 3.064×10-1 3.694×10-1 5.353×10-1 1.155

1 1.×10-4 9.9×10-3 3.81×10-2 6.21×10-2 9.08×10-2 1.448×10-1 2.535×10-1

0 0. 0. 3.×10-4 4.×10-4 9.×10-4 4.9×10-3 3.7×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 1. 1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 1.283×101 2.944×102 5.597×102 9.172×102 1.552×103 2.899×103 7.042×103

10 2.358×10-1 1.807 3.078 4.837 7.145 1.192×101 2.693×101

1 1.×10-4 9.9×10-3 3.81×10-2 6.21×10-2 9.14×10-2 1.512×10-1 3.523×10-1

0 0. 0. 3.×10-4 4.×10-4 9.×10-4 4.9×10-3 3.72×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 1. 1. 1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -5.×10-3 1.247 2.543 3.911 6.178 9.525 1.67×101

10 2.45×10-2 8.77×10-2 1.589×10-1 2.775×10-1 3.46×10-1 4.822×10-1 1.019

1 0. 7.1×10-3 3.3×10-2 5.73×10-2 8.65×10-2 1.342×10-1 2.391×10-1

0 0. 0. 2.×10-4 5.×10-4 9.×10-4 4.7×10-3 3.32×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 9.869 2.278×102 4.654×102 7.035×102 1.176×103 2.027×103 4.766×103

10 2.017×10-1 1.612 2.737 4.316 6.319 1.036×101 2.278×101

1 0. 7.1×10-3 3.3×10-2 5.73×10-2 8.71×10-2 1.41×10-1 3.201×10-1

0 0. 0. 2.×10-4 5.×10-4 9.×10-4 4.7×10-3 3.34×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

20
0

Mean deviation ρ
100 6.7×10-2 6.775 1.655×101 2.706×101 4.562×101 7.699×101 1.236×102

10 3.4×10-2 2.882×10-1 5.307×10-1 6.868×10-1 1.345 2.336 5.118

1 7.×10-4 4.53×10-2 8.4×10-2 1.015×10-1 1.583×10-1 2.261×10-1 3.84×10-1

0 0. 1.×10-4 7.×10-4 6.×10-4 1.9×10-3 9.9×10-3 5.51×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 2. 2. 1. 3. 3.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 2.952×101 1.364×103 4.304×103 9.893×103 2.355×104 4.987×104 9.421×104

10 3.84×10-1 5.054 8.451 1.409×101 3.109×101 7.941×101 3.726×102

1 7.×10-4 4.53×10-2 8.46×10-2 1.021×10-1 1.687×10-1 2.887×10-1 8.722×10-1

0 0. 1.×10-4 7.×10-4 6.×10-4 1.9×10-3 9.9×10-3 5.55×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 7.31×10-2 1.132 3.597 5.284 8.507 1.312×101 2.392×101

10 1.83×10-2 9.7×10-2 1.803×10-1 2.526×10-1 3.993×10-1 6.148×10-1 1.114

1 0. 7.3×10-3 2.41×10-2 4.23×10-2 7.38×10-2 1.299×10-1 2.214×10-1

0 0. 0. 0. 0. 2.×10-4 1.8×10-3 1.9×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. -1. 0. 0. 0. 1. 1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 7.324 2.943×102 5.737×102 9.684×102 1.779×103 3.251×103 8.211×103

10 1.549×10-1 1.74 2.824 4.346 7.031 1.19×101 2.541×101

1 0. 7.3×10-3 2.41×10-2 4.25×10-2 7.38×10-2 1.337×10-1 2.818×10-1

0 0. 0. 0. 0. 2.×10-4 1.8×10-3 1.9×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 3.05×10-2 7.185×10-1 2.571 3.794 5.501 8.627 1.434×101

10 2.09×10-2 7.94×10-2 1.602×10-1 2.005×10-1 3.19×10-1 4.755×10-1 8.235×10-1

1 1.×10-4 5.1×10-3 2.04×10-2 3.78×10-2 6.58×10-2 1.21×10-1 1.965×10-1

0 0. 0. 0. 0. 2.×10-4 8.×10-4 1.57×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 1. 1. 1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 5.033 1.847×102 3.971×102 6.377×102 1.052×103 1.83×103 3.62×103

10 1.193×10-1 1.407 2.365 3.526 5.592 9.065 1.771×101

1 1.×10-4 5.1×10-3 2.04×10-2 3.8×10-2 6.58×10-2 1.23×10-1 2.335×10-1

0 0. 0. 0. 0. 2.×10-4 8.×10-4 1.57×10-2

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9
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Table SI D_13 – Overview of the (marginal) accuracy ψ̂ estimated from whole-genome simulations with ` = 1,000. Each cell shows the mean difference (first row), the mean squared
error (second row) and the median difference (third row) of ψ̂ calculated over 10,000 data sets assuming independent sites. Colors within each sub-table range from
light yellow to dark red and scale between the minimal and the maximal absolute value to aid interpretation.

s = 100 s = 1,000 s = 10,000

k
=

20

Mean deviation ψ
100 1.53×10-4 4.3×10-5 9.1×10-5 -6.1×10-5 8.3×10-5 4.6×10-5 -1.×10-4

10 2.37×10-4 1.4×10-5 -5.×10-5 8.9×10-5 -4.×10-6 1.21×10-4 -9.1×10-5

1 3.49×10-4 4.×10-5 2.×10-5 3.3×10-5 -7.×10-6 -8.7×10-5 -5.05×10-4

0 1.056×10-3 1.12×10-4 1.22×10-4 -2.1×10-5 8.1×10-5 1.35×10-4 -2.6×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 1.53×10-6 1.219×10-5 2.811×10-5 4.639×10-5 5.403×10-5 4.472×10-5 2.802×10-5

10 2.37×10-6 1.048×10-5 2.682×10-5 4.409×10-5 5.068×10-5 4.073×10-5 2.317×10-5

1 3.49×10-6 9.×10-6 2.276×10-5 3.575×10-5 4.233×10-5 3.779×10-5 1.989×10-5

0 1.058×10-5 2.296×10-5 3.634×10-5 5.209×10-5 5.333×10-5 4.291×10-5 2.17×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 3.5×10-5 5.5×10-5 1.22×10-4 2.6×10-5 5.4×10-5 1.8×10-5 -1.31×10-4

10 1.1×10-4 -1.7×10-5 -1.6×10-5 1.6×10-5 1.9×10-5 1.6×10-5 -1.17×10-4

1 2.43×10-4 5.×10-5 3.4×10-5 5.4×10-5 4.3×10-5 -9.3×10-5 -4.31×10-4

0 1.007×10-3 1.07×10-4 1.45×10-4 -4.1×10-5 5.6×10-5 6.1×10-5 -4.7×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 3.5×10-7 6.25×10-6 1.794×10-5 3.332×10-5 4.138×10-5 3.53×10-5 1.977×10-5

10 1.1×10-6 6.31×10-6 1.878×10-5 3.572×10-5 4.269×10-5 3.508×10-5 1.833×10-5

1 2.43×10-6 6.92×10-6 2.062×10-5 3.266×10-5 3.769×10-5 3.355×10-5 1.699×10-5

0 1.009×10-5 2.121×10-5 3.421×10-5 4.863×10-5 5.134×10-5 4.051×10-5 2.063×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 3.6×10-5 3.7×10-5 1.36×10-4 8.1×10-5 5.4×10-5 9.×10-6 -1.48×10-4

10 9.4×10-5 -6.×10-6 -3.1×10-5 1.2×10-5 2.5×10-5 5.4×10-5 -1.51×10-4

1 2.43×10-4 2.1×10-5 4.3×10-5 3.8×10-5 8.4×10-5 -6.2×10-5 -4.22×10-4

0 9.77×10-4 1.17×10-4 1.69×10-4 -2.4×10-5 4.2×10-5 7.6×10-5 -6.3×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 3.6×10-7 5.71×10-6 1.656×10-5 3.207×10-5 4.028×10-5 3.403×10-5 1.894×10-5

10 9.4×10-7 5.88×10-6 1.837×10-5 3.48×10-5 4.221×10-5 3.404×10-5 1.799×10-5

1 2.43×10-6 6.73×10-6 2.043×10-5 3.234×10-5 3.694×10-5 3.302×10-5 1.666×10-5

0 9.79×10-6 2.089×10-5 3.397×10-5 4.86×10-5 5.088×10-5 4.056×10-5 2.037×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

50

Mean deviation ψ
100 0. 1.6×10-5 4.8×10-5 -4.6×10-5 1.×10-6 -1.27×10-4 -1.2×10-4

10 0. -6.×10-6 -5.8×10-5 -1.18×10-4 -4.9×10-5 -4.×10-5 -3.7×10-5

1 0. 1.4×10-5 7.4×10-5 -1.23×10-4 -3.9×10-5 -7.4×10-5 -9.6×10-5

0 0. 2.2×10-5 5.3×10-5 -3.5×10-5 -5.4×10-5 2.5×10-5 -4.8×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 1.82×10-6 2.41×10-5 3.074×10-5 2.609×10-5 2.055×10-5 1.002×10-5

10 0. 1.24×10-6 2.076×10-5 2.536×10-5 1.963×10-5 1.566×10-5 6.51×10-6

1 0. 4.×10-7 1.366×10-5 2.379×10-5 1.797×10-5 1.22×10-5 4.2×10-6

0 0. 3.04×10-6 2.367×10-5 3.475×10-5 2.4×10-5 1.613×10-5 5.32×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. -2.×10-6 2.9×10-5 -1.8×10-5 -2.3×10-5 -6.4×10-5 -7.8×10-5

10 0. 1.665×10-20 2.5×10-5 -6.×10-5 4.×10-5 -4.×10-5 -4.×10-5

1 0. 1.943×10-20 3.7×10-5 -1.43×10-4 -1.4×10-5 -2.4×10-5 -6.9×10-5

0 0. 2.×10-5 7.5×10-5 -2.5×10-5 -7.9×10-5 -2.×10-5 -6.4×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 6.×10-8 8.55×10-6 1.51×10-5 1.303×10-5 9.88×10-6 2.64×10-6

10 0. 1.2×10-7 9.27×10-6 1.56×10-5 1.132×10-5 8.12×10-6 2.32×10-6

1 0. 1.4×10-7 9.51×10-6 1.817×10-5 1.236×10-5 7.8×10-6 1.95×10-6

0 0. 2.14×10-6 2.105×10-5 3.127×10-5 2.043×10-5 1.336×10-5 3.82×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 5.551×10-21 4.4×10-5 -2.9×10-5 -1.1×10-5 -7.9×10-5 -4.4×10-5

10 0. -3.×10-6 1.3×10-5 -1.03×10-4 -1.×10-6 -2.3×10-5 -2.5×10-5

1 0. 3.×10-6 4.8×10-5 -1.51×10-4 -3.5×10-5 -1.7×10-5 -6.7×10-5

0 0. 2.7×10-5 6.2×10-5 1.3×10-5 -6.8×10-5 0. -6.5×10-5

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 4.×10-8 6.58×10-6 1.331×10-5 1.111×10-5 8.19×10-6 1.8×10-6

10 0. 9.×10-8 8.41×10-6 1.419×10-5 1.051×10-5 7.65×10-6 1.85×10-6

1 0. 1.1×10-7 9.44×10-6 1.751×10-5 1.205×10-5 7.41×10-6 1.73×10-6

0 0. 2.11×10-6 2.082×10-5 3.079×10-5 2.006×10-5 1.282×10-5 3.63×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

10
0

Mean deviation ψ
100 0. 6.6×10-5 -1.2×10-5 -2.×10-6 1.5×10-5 -5.4×10-5 -7.8×10-5

10 0. 5.×10-6 4.8×10-5 -1.9×10-5 -6.4×10-5 -7.4×10-5 -3.1×10-5

1 0. -2.×10-6 2.1×10-5 -8.5×10-5 -4.7×10-5 -2.8×10-5 -1.7×10-5

0 0. 2.3×10-5 -1.8×10-5 -7.2×10-5 -4.6×10-5 -3.9×10-5 -1.×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 2.2×10-6 1.92×10-5 1.706×10-5 1.253×10-5 9.8×10-6 3.76×10-6

10 0. 9.1×10-7 1.57×10-5 1.173×10-5 7.54×10-6 4.78×10-6 1.31×10-6

1 0. 1.2×10-7 1.041×10-5 1.071×10-5 5.09×10-6 2.84×10-6 4.5×10-7

0 0. 1.15×10-6 1.866×10-5 2.036×10-5 8.×10-6 4.03×10-6 5.1×10-7

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 1.×10-6 -1.×10-5 -2.2×10-5 -3.×10-6 4.×10-6 -1.×10-6

10 0. 0. -1.6×10-5 7.×10-6 -1.5×10-5 0. -3.×10-6

1 0. -1.×10-6 -9.×10-6 -1.7×10-5 -1.8×10-5 -1.7×10-5 -2.×10-6

0 0. 2.×10-5 -1.9×10-5 -4.8×10-5 -2.9×10-5 -1.7×10-5 -2.×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 1.×10-8 3.16×10-6 2.56×10-6 1.55×10-6 9.8×10-7 9.×10-8

10 0. 0. 3.94×10-6 2.63×10-6 1.45×10-6 6.×10-7 3.×10-8

1 0. 1.×10-8 5.31×10-6 4.69×10-6 1.44×10-6 6.7×10-7 6.×10-8

0 0. 6.8×10-7 1.395×10-5 1.55×10-5 4.49×10-6 1.85×10-6 1.×10-7

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 0. 4.×10-6 -1.8×10-5 -1.×10-6 -4.×10-6 0.

10 0. 0. 1.×10-6 -4.×10-6 -1.8×10-5 -6.×10-6 -2.×10-6

1 0. 0. -9.×10-6 5.×10-6 -1.4×10-5 -1.1×10-5 -4.×10-6

0 0. 2.3×10-5 -2.8×10-5 -5.1×10-5 -3.3×10-5 -2.7×10-5 -4.×10-6

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 0. 1.9×10-6 1.78×10-6 9.1×10-7 6.4×10-7 2.×10-8

10 0. 0. 2.87×10-6 1.98×10-6 1.02×10-6 4.2×10-7 2.×10-8

1 0. 0. 4.83×10-6 4.13×10-6 1.16×10-6 5.3×10-7 4.×10-8

0 0. 4.9×10-7 1.33×10-5 1.501×10-5 4.13×10-6 1.75×10-6 1.×10-7

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

20
0

Mean deviation ψ
100 0. 4.6×10-5 -1.6×10-5 0. -4.1×10-5 -2.3×10-5 -2.5×10-5

10 0. 3.3×10-5 -7.6×10-5 -1.6×10-5 -3.6×10-5 -2.1×10-5 3.×10-6

1 0. 7.×10-6 -2.8×10-5 -2.8×10-5 -2.×10-5 1.×10-6 0.

0 0. 2.5×10-5 -9.6×10-5 -6.8×10-5 -2.8×10-5 -2.×10-6 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 3.06×10-6 1.236×10-5 9.46×10-6 6.99×10-6 5.35×10-6 1.01×10-6

10 0. 2.07×10-6 8.66×10-6 4.22×10-6 2.78×10-6 1.57×10-6 2.3×10-7

1 0. 9.×10-8 6.5×10-6 3.22×10-6 1.04×10-6 4.9×10-7 2.×10-8

0 0. 7.5×10-7 1.29×10-5 7.54×10-6 1.48×10-6 5.2×10-7 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 0. -2.×10-6 -2.×10-6 -7.×10-6 0. 0.

10 0. 0. -4.×10-6 -3.×10-6 0. -1.×10-6 0.

1 0. 0. -2.8×10-5 -5.×10-6 -1.×10-6 0. 0.

0 0. 8.×10-6 -5.3×10-5 -5.4×10-5 -1.×10-6 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 0. 4.6×10-7 8.×10-8 1.1×10-7 2.×10-8 0.

10 0. 0. 4.2×10-7 9.×10-8 2.×10-8 1.×10-8 0.

1 0. 0. 1.34×10-6 2.7×10-7 3.×10-8 0. 0.

0 0. 2.×10-7 7.41×10-6 2.88×10-6 2.7×10-7 6.×10-8 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ψ
100 0. 0. 3.×10-6 0. -2.×10-6 0. 0.

10 0. 0. -1.×10-6 1.×10-6 0. 0. 0.

1 0. 0. -2.9×10-5 -7.×10-6 -1.×10-6 0. 0.

0 0. 3.×10-6 -4.5×10-5 -5.1×10-5 -5.×10-6 -2.×10-6 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ψ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ψ
100 0. 0. 1.3×10-7 0. 2.×10-8 0. 0.

10 0. 0. 1.3×10-7 3.×10-8 2.×10-8 0. 0.

1 0. 0. 9.9×10-7 1.5×10-7 1.×10-8 0. 0.

0 0. 1.7×10-7 6.95×10-6 2.45×10-6 1.5×10-7 2.×10-8 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9
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Table SI D_14 – Overview of the (marginal) accuracy ρ̂ estimated from whole-genome simulations with ` = 1,000. Each cell shows the mean difference (first row), the mean squared
error (second row) and the median difference (third row) of ρ̂ calculated over 10,000 data sets assuming independent sites. Colors within each sub-table range from
light yellow to dark red and scale between the minimal and the maximal absolute value to aid interpretation.

s = 100 s = 1,000 s = 10,000

k
=

20

Mean deviation ρ
100 -1.646×10-1 3.664×10-1 5.641×10-1 1.156 1.316 2.187 4.256

10 -2.2×10-3 2.83×10-2 6.69×10-2 5.72×10-2 9.5×10-2 1.051×10-1 2.426×10-1

1 0. 0. 0. 6.×10-4 3.5×10-3 1.2×10-2 6.52×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 1.492×101 6.113×101 1.09×102 1.705×102 2.44×102 3.788×102 8.409×102

10 1.25×10-1 3.647×10-1 6.821×10-1 1.007 1.485 2.138 4.532

1 0. 0. 0. 6.×10-4 3.5×10-3 1.2×10-2 6.52×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 5.2×10-3 1.694×10-1 2.342×10-1 6.404×10-1 9.406×10-1 1.437 3.048

10 2.5×10-3 2.54×10-2 4.03×10-2 4.83×10-2 8.7×10-2 1.047×10-1 1.976×10-1

1 0. 0. 0. 1.×10-4 1.6×10-3 9.×10-3 5.17×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 7.971 3.449×101 6.679×101 1.112×102 1.704×102 2.567×102 5.511×102

10 5.91×10-2 2.416×10-1 5.013×10-1 8.063×10-1 1.214 1.711 3.453

1 0. 0. 0. 1.×10-4 1.6×10-3 9.×10-3 5.17×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -1.2×10-3 1.801×10-1 1.85×10-1 5.281×10-1 8.886×10-1 1.346 3.005

10 3.6×10-3 2.28×10-2 4.41×10-2 4.3×10-2 8.68×10-2 1.045×10-1 1.921×10-1

1 0. 0. 0. 1.×10-4 1.3×10-3 7.8×10-3 4.96×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 7.609 3.194×101 6.124×101 1.052×102 1.61×102 2.427×102 5.184×102

10 5.2×10-2 2.226×10-1 4.883×10-1 7.77×10-1 1.186 1.68 3.341

1 0. 0. 0. 1.×10-4 1.3×10-3 7.8×10-3 4.96×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

50

Mean deviation ρ
100 1.41×10-2 2.25×10-1 8.029×10-1 1.126 1.651 2.572 4.322

10 6.8×10-3 2.94×10-2 6.74×10-2 7.82×10-2 1.×10-1 1.429×10-1 2.182×10-1

1 0. 0. 0. 1.×10-4 5.×10-4 5.3×10-3 3.17×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 5.756 3.883×101 1.333×102 1.806×102 2.677×102 4.251×102 7.8×102

10 2.82×10-2 2.414×10-1 7.04×10-1 9.212×10-1 1.251 1.928 3.689

1 0. 0. 0. 1.×10-4 5.×10-4 5.3×10-3 3.17×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 1.84×10-2 3.97×10-2 3.026×10-1 5.727×10-1 7.693×10-1 1.258 1.882

10 1.2×10-3 1.62×10-2 3.6×10-2 4.98×10-2 5.66×10-2 9.02×10-2 1.369×10-1

1 0. 0. 0. 0. 1.×10-4 1.6×10-3 1.62×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 2.554 1.48×101 5.464×101 8.831×101 1.253×102 1.896×102 3.288×102

10 2.4×10-3 1.1×10-1 4.022×10-1 6.03×10-1 7.962×10-1 1.168 2.116

1 0. 0. 0. 0. 1.×10-4 1.6×10-3 1.62×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 1.91×10-2 2.1×10-2 2.309×10-1 5.508×10-1 6.726×10-1 1.164 1.547

10 1.×10-3 1.5×10-2 3.88×10-2 4.84×10-2 6.14×10-2 8.33×10-2 1.285×10-1

1 0. 0. 0. 0. 1.×10-4 1.3×10-3 1.47×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 2.233 1.334×101 4.553×101 7.789×101 1.106×102 1.662×102 2.844×102

10 1.2×10-3 1.006×10-1 3.748×10-1 5.732×10-1 7.6×10-1 1.092 1.977

1 0. 0. 0. 0. 1.×10-4 1.3×10-3 1.47×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

10
0

Mean deviation ρ
100 7.7×10-3 5.97×10-2 9.369×10-1 1.465 2.349 3.358 6.611

10 3.5×10-3 3.11×10-2 4.67×10-2 6.02×10-2 1.018×10-1 1.672×10-1 2.553×10-1

1 0. 0. 0. 0. 2.×10-4 5.2×10-3 3.02×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 1. 1.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 4.011 5.155×101 1.503×102 2.171×102 3.481×102 5.63×102 1.172×103

10 7.5×10-3 2.463×10-1 7.129×10-1 8.798×10-1 1.316 2.162 4.119

1 0. 0. 0. 0. 2.×10-4 5.2×10-3 3.02×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 6.3×10-3 4.89×10-2 2.913×10-1 5.998×10-1 6.625×10-1 1.14 2.217

10 -1.×10-4 1.78×10-2 2.96×10-2 3.28×10-2 5.09×10-2 6.48×10-2 1.134×10-1

1 0. 0. 0. 0. 1.×10-4 5.×10-4 6.9×10-3

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 1.368 1.409×101 4.399×101 6.928×101 1.105×102 1.72×102 3.191×102

10 1.×10-4 8.84×10-2 3.134×10-1 4.568×10-1 6.577×10-1 1.024 1.856

1 0. 0. 0. 0. 1.×10-4 5.×10-4 6.9×10-3

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -8.×10-4 2.6×10-2 2.053×10-1 4.692×10-1 5.935×10-1 8.361×10-1 1.726

10 0. 1.31×10-2 2.52×10-2 3.75×10-2 4.95×10-2 5.9×10-2 1.042×10-1

1 0. 0. 0. 0. 0. 5.×10-4 6.3×10-3

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 1.091 1.203×101 3.49×101 5.71×101 8.922×101 1.353×102 2.462×102

10 0. 8.07×10-2 2.758×10-1 4.127×10-1 5.965×10-1 9.11×10-1 1.598

1 0. 0. 0. 0. 0. 5.×10-4 6.3×10-3

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

k
=

20
0

Mean deviation ρ
100 2.85×10-2 3.881×10-1 1.549 1.865 3.423 5.716 9.34

10 2.1×10-3 2.12×10-2 5.35×10-2 4.67×10-2 1.131×10-1 2.035×10-1 3.683×10-1

1 0. 0. 0. 0. 3.×10-4 6.1×10-3 4.1×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 1. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 3.03 7.771×101 1.9×102 3.258×102 5.592×102 1.011×103 2.101×103

10 5.3×10-3 3.498×10-1 7.183×10-1 1.065 1.809 3.062 5.843

1 0. 0. 0. 0. 3.×10-4 6.1×10-3 4.1×10-2

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -8.6×10-3 8.18×10-2 3.154×10-1 4.518×10-1 8.583×10-1 1.356 2.103

10 0. 1.96×10-2 2.59×10-2 2.84×10-2 4.58×10-2 7.44×10-2 1.198×10-1

1 0. 0. 0. 0. 0. 2.×10-4 4.1×10-3

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 8.11×10-1 1.462×101 4.009×101 7.114×101 1.195×102 1.96×102 3.4×102

10 0. 8.54×10-2 2.615×10-1 4.378×10-1 6.766×10-1 1.02 1.768

1 0. 0. 0. 0. 0. 2.×10-4 4.1×10-3

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean deviation ρ
100 -4.4×10-3 3.96×10-2 1.972×10-1 2.381×10-1 4.926×10-1 7.655×10-1 1.289

10 0. 1.65×10-2 2.29×10-2 3.12×10-2 3.6×10-2 6.34×10-2 9.06×10-2

1 0. 0. 0. 0. 0. 0. 2.4×10-3

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Median deviation ρ
100 0. 0. 0. 0. 0. 0. 0.

10 0. 0. 0. 0. 0. 0. 0.

1 0. 0. 0. 0. 0. 0. 0.

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9

Mean squared error ρ
100 5.778×10-1 1.115×101 2.875×101 5.055×101 7.871×101 1.277×102 2.152×102

10 0. 6.97×10-2 2.217×10-1 3.768×10-1 5.748×10-1 8.208×10-1 1.384

1 0. 0. 0. 0. 0. 0. 2.4×10-3

0 0. 0. 0. 0. 0. 0. 0.

ρ / ψ 0 0.15 0.3 0.45 0.6 0.75 0.9
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