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Abstract

The Genetic Analysis Center (GAC) of the Hispanic Community Health Study/Study of Latinos

(HCHS/SOL) developed an Integrated Computing and Tracking system (ICT) in order to perform

genome-wide and other genetic association studies automatically and efficiently, while documenting all

analysis specifications. This system provides easy-to-use analysis set-up and computing procedures,

automatic reports, and analysis search functionality due to integration with an on-site database. In this

paper we describe the ICT and demonstrate how it satisfies key principles of reproducible research, while

respecting constraints and challenges arising from using very large, restricted access, human-subjects

data. This case study may benefit other groups that have similar requirements for high-throughput

analysis execution and management.

Introduction

The Genetic Analysis Center of the Hispanics Community Health Study/Study of Latinos (HCHS/SOL

GAC, GAC henceforth), was established to perform genetic association analyses in collaboration with

thirteen working groups, each focusing on a specific family of health outcomes and their genetic bases.

To better perform and track these analyses, the GAC developed an Integrated Computing and Tracking

(ICT) system for analysis execution and management to efficiently perform standardized analysis tasks,

while implementing many key principles of reproducible research.

∗amstilp@uw.edu
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To support investigators studying the associations of genetic variants with a trait, the GAC performed

many Genome-Wide Association Studies (GWAS), as well as other follow-up analyses such as generation

of LocusZoom plots (Pruim et al., 2010), heritability analyses, and others (Dunn et al., 2016; Schick

et al., 2016; Brown et al., 2017; Sanders et al., 2017). All primary analyses belong to a relatively small

set of GWAS types: linear models, linear mixed models, logistic mixed models, etc. A unique challenge

of the GAC was to efficiently perform hundreds of analyses centrally for a large group of collaborators,

while ensuring standardization, reproducibility and proper methods documentation for publication. While

there are existing analysis pipelines for biological data analysis (Sloggett et al., 2013; Sadedin et al., 2012;

Goecks et al., 2010), they do not generally address the use of very large data sets containing protected

human-subjects data. To ensure efficiency and reproducibility of research results, the GAC integrated its

analysis pipeline with an on-site SQL database that tracks the input genetic data files, the phenotype

data, software versions and the parameters of all analyses run by GAC analysts.

In this manuscript we describe the ICT, composed of (1) an analysis pipeline implemented using

both Python scripts to manage jobs on a compute cluster and R scripts for statistical analysis; (2)

an SQL database for managing genotypes, phenotypes and analysis parameters; and (3) a dedicated

R package for interaction between the database and the analysis pipeline. We note that this system

provides reproducible analyses in the sense that internal GAC users can fully reproduce an analysis based

on information stored in the database (input parameters and software versions). This case study presents

a productive implementation of many principles of reproducibility, given limitations on data sharing as

well as large datasets required for genomic analyses, and may be useful to other groups with similar

requirements for efficient analysis performance, tracking and management.

Methods

Fundamental requirements from the ICT

Based on the genetic analysis workflows, these are the core functions we required from the ICT:

1. Efficient specification of a core set of analyses by the analysts. Analyses consist of a
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primary GWAS which include association tests and summary figures such as quantile-quantile and

Manhattan plots, as well as optional follow-up analyses, such as LocusZoom plots, forest plots,

and others. The primary GWAS analysis requires specification of sample set, outcome, covariates,

data transformations, covariance matrices for a mixed model analysis, and the appropriate set of

principal components to adjust for population stratification. Follow-up analyses use results from a

specific, existing GWAS, and typically require information such as unique SNP identifiers or kinship

coefficient thresholds.

2. Tracking of both GWAS properties and results. For communication of scientific results,

reproducibility purposes, and potential replication in other studies, it is important to track the

specific variables (including transformations) and participants analyzed, inclusion and exclusion

criteria leading to the specific sample of participants, and other model specifications. Tracking of

analyses also allows for communication with investigators about the specific results presented in a

manuscript, and for easy verifications and spot-checks if needed. It is also necessary to store the

version of code used to run each GWAS for reproducibility purposes, as results could potentially

depend on which software version was used for calculations.

3. Searching and management of tracked analyses. The ability to work with analysis parameters

in a centralized system offers useful functionality given the large number of manuscripts supported by

the GAC. First, analyses can be more easily compared to each other when needed. For example, in

early stages of the research, we studied which set of principal components best controlled population

stratification (Conomos et al., 2016a). Therefore, we sought to compare summary measures across

analyses that used the different sets of PCs. The ICT facilitated this comparison by allowing us

to more easily find and process results from the two sets of analyses. Second, search capabilities

are useful for fixing errors, when needed in multiple analyses. For instance, after running multiple

analyses of binary outcomes using linear mixed models (LMMs), we developed a method to fit a

generalized linear model (GLM) for the complex HCHS/SOL data set (Chen et al., 2016). Using

search capabilities, we were able to find analyses that used LMM and re-run them using the new

method. Moreover, if bugs are fixed in the analysis code, we can quickly identify and rerun analyses
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that used affected code versions.

4. Automatic packaging and generation of reports. After running an analysis, GAC analysts

provide the GWAS results to the working group investigators who requested it. The ICT allows GAC

analysts to create consistent results packages with all necessary files, including data dictionaries and

annotations, for any analysis with a single command. Attached reports provide both the GWAS

properties as well as data provenance for investigators.

5. Quality control. We sought to implement both automatic and manual procedures to check and

report errors in submitted analyses. Automatic procedures in the analysis scripts can identify

known problems, such as lack of convergence of a mixed model algorithm, and manual procedures

can be used to perform searches once a new, previously unknown, problem arises. For instance, a

few months after the GAC changed the default parameters of a GWAS to allow for heterogeneous

variances among the HCHS/SOL ethnic groups, one analyst reported that a sex-stratified analysis

failed. In a manual search in the database according to analyses characteristics, we found that the

meta-analysis phase of a sex-stratified analysis fails when heterogeneous variances are allowed and

we adapted our code accordingly. We also searched for other analyses with similar characteristics

to report this problem to the analysts who ran them.

The ICT design

There are two major components to the ICT. The first is a database that holds information on all data

components (traits, principal components, location of genotype data files, etc.), and on all specific analyses

that are run. The second component is code that interacts with the database to set up the analyses, run

both the GWAS and follow up analyses, package the results, and provide an interface to the analysis

results for interactive work by GAC analysts.

Figure 1 portrays a workflow of an analysis and its interaction with the ICT. An analysis starts with

a preparation stage, in which traits are selected, exclusion criteria are applied, model parameters are

tuned, and checks are performed for model fit. The analyst prepares a set of configuration files in which

all information necessary for the analysis is specified. Next an analysis shell is created with a standard
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directory structure and information about the analysis is written in the database, including the assignment

of a unique analysis id that is used for all future interactions with this analysis. Finally, the analysis is

run and results, as well as figures and a report, are written to files in the previously built directories.

Additional follow-up analyses may be run later.

The database

Table 1 provides a list of database tables and a brief description of their function. The database schema

is provided as S1 Figure in the supporting information. The database stores all information necessary to

recreate an analysis. It also stores phenotype data and the principal component sets describing population

structure, with unique identifiers assigned by the database. Larger data, such as covariance matrices or

genotype datasets, are not stored directly in the database but instead are identified by a path to their

location on disk. Unique identifiers for each matrix or genotype dataset, and for their various versions,

are assigned. GAC analysts use these unique identifiers (e.g., trait id, principal component id, matrix id)

to pull data from the database and to prepare setup files for an analysis. The database also stores the

exact sample set used in the analysis after excluding participants for reasons relating to the phenotype

being tested (e.g., extreme phenotype values or medication use) or because they had missing data in any

of the covariate models. When an analysis and its details are added to the database, a unique analysis id

is automatically assigned to that analysis, which is then used by all analysis scripts, and by all functions

querying the database regarding the analysis and its results. Finally, the version of the code that is used

for an analysis is stored in the ICT analysis table.

Analysis submission scripts and code

We developed an analysis R package containing statistical analysis software (the mixed model code from

this package was later incorporated into the GENESIS (Conomos et al., 2016b) and MetaCor (Sofer

et al., 2016) packages), and a second R package to interact with the database by recording analysis

details. extracting data values, and reading analysis results. Because we are using protected human-

subjects data in our analyses, the database is only accessible from GAC computers. The analysis code
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also includes scripts that call functions within the R packages to obtain analysis configuration information,

run analyses, and write files to disk.

Before running an analysis, the analysts first runs a script in the ICT that checks setup files for

consistency, and generates diagnostic plots to assess the quality of a basic model that includes all adjusting

covariates and random effects (if needed), but excludes the genetic variants that will be tested later. The

analyst inspects the diagnostics tests and verifies that there are no errors, e.g. a singular design matrix,

and then directs the ICT, by running a script, to add the analysis to the database. In turn, the ICT

adds appropriate entries to the database and builds directories. Once the analysis is added, it is identified

using its automatically-assigned unique analysis id. The analysis jobs are then submitted to the cluster

using Python scripts, which perform some general checks (e.g. Is the submitting user the one who

owns the analysis? Have certain pieces of the analysis already been run?) and submits the appropriate

R scripts, which are different for analyses using different statistical tests. For example, mixed model

analyses require estimation of variance components, but linear model analyses do not. For all analyses,

a report is automatically generated using a Sweave (Leisch, 2002) template that records all details of the

given analysis based on the information stored in the database (see S1 File for an example report). After

all standard analysis scripts have finished, a final script is run that checks for the success of all jobs,

organizes the output files, updates the database with the analysis status (i.e. completed or failed), and

write-protects the directory to make it more difficult for a user to accidentally delete or overwrite results.

Follow-up analyses may be run via additional Python submission scripts, all of which require the unique

analysis identifier of the primary analysis.

Reproducible analyses

The analysis report documents analysis properties and components, and is helpful in reproducing research

(running the same analysis). A more precise and automated way for reproducing an analysis is via an

R command that obtains all properties of a specific analysis using its analysis identifier and parameters

stored in the database. This function generates all configuration files allowing for running the same

analysis, which can be submitted as is or easily altered to specify a similar analysis based on the original
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analysis. For instance, one may need to run the same analysis but with additional sample exclusions

as a sensitivity analysis or with additional adjusting variables (e.g. a genetic variant that was already

associated with the outcome for a conditional association analysis).

Data integrity verification

In addition to checks immediately before and after an analysis is submitted, we also run a nightly cron

job to check for consistency between the database and analysis results. This script verifies that all

input files tracked in the database exist (e.g., genotype datasets and covariance matrix files); that all

analyses in the database have a corresponding directory on disk; that all analysis directories on disk have

a corresponding entry in the database; and that all chromosomes marked “completed” in the database for

a given analysis have results files in the proper location on disk. This setup provides timely warning of

potential problems. For example, it has occasionally uncovered unexpected, accidental changes made by

an analyst, e.g., renaming an analysis directory or moving an analysis directory to a different directory.

The GAC is able to quickly remedy these problems due to automated detection and alerts by the cron

job.

Discussion

In this manuscript, we describe the ICT implemented in the HCHS/SOL GAC, a center that provided

large scale genetic analysis services for HCHS/SOL investigators. Our system was designed to facilitate

fast, simple, high-quality, and well-documented analyses to our community of collaborators while adhering

to many principles of reproducibility. While the GAC’s system is tailored to running GWAS, the principles

behind the ICT can be applied to any pipeline designed to run and track sets of similar analyses.

Reproducibility is first and foremost a tool for enforcing transparency and allowing for error detection.

These characteristics are built into our ICT. Many researchers promoting reproducible research have

suggested complete data availability with publication of manuscripts, so that other investigators could

repeat the same analysis. This standard is difficult to implement with human subject data and large,

genotypic datasets, despite data availability in controlled-access repositories such as dbGaP. For example,
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the same dataset that was used in one analysis may not be available in exactly the same form for future

investigators due to ongoing changes in study participants’ consent or updates to the data themselves.

Another limitation for such “complete reproducibility” is the change in software over time, and the use

of internal packages. Although in the GAC we track all versions of our data, our analysis packages are

still internally implemented, and the public packages that grew from this internal code may be slightly

different from our pipeline code used at any given time (even though the statistical algorithms may be

the same). Therefore, our version records will not be as helpful for external investigators. This drawback

could be alleviated in future work by publishing all internal analysis code in public repositories from the

beginning of the project, even if it is in the research stage, but it would still not solve problems arising

from the changing nature of human-subjects datasets.

Another limitation for reproducibility is that the overall process from the first analysis of association

of a trait with genetic variants to publication of a manuscript is not completely in-house. For instance,

after GWAS is run by the GAC, results are transferred to investigators on a different study site, who may

meta-analyze the results with results from other studies, use summary statistics for additional analyses, or

apply some filtering on the analysis results. This model requires the cooperation of external investigators

at multiple institutions, who typically do not have a standardized system like the ICT in place, and the

GAC is unable to track their post-GWAS steps in the same robust way as the original GWAS.

Over the course of the project, we have identified some characteristics that could lead to future

improvements in the reproducibility and the scientific utility of the ICT. We list them here with a brief

explanation and discussion for each.

• Store GWAS results in the database. Currently, results for an analysis are stored as

chromosome-level files within a results subdirectory of the analysis directory. While the analy-

sis results and directory are both write-protected, it is theoretically possible for these files to be

corrupted or accidentally deleted. These problems are mitigated by backups and the nightly cron

job that checks for the existence of the expected results files. If the results were stored in the

database, the analysis results will be subject to the same conditions as the rest of the analysis

meta-data, increasing the data integrity. From a scientific standpoint, it would also be easier to
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run complex queries about specific results, such as cross-analysis exploration. For example, upon

finding a significant association in one analysis, one could quickly find any other related outcomes

that also had a significant association in the same region. However, storing results in the database

presents logistical challenges. The set of results stored for each genetic variant may differ depending

on the type of test used (e.g., a score test versus a Wald test), so the database schema would need

to be designed to accommodate some differences based the statistical test used.

• Require investigators to provide analysis identifiers in published manuscripts. Due

to the collaborative nature of the GAC, there is a missing link in data accessibility between the

database, which is accessible only by GAC analysts, and external investigators, who are often the

main authors of publications. Including the analysis identifier in publications would allow better

follow-up analyses, as, given the need, a GAC analysts could more immediately pull analysis details

or results using the analysis identifier linked in the publication. We have done this with some, but

not all, publications resulting from our analyses.

• Build an interface allowing external investigators to access a given set of analyses. A

direct interface for the external investigators to look up both details and results for their analysis

may reduce potential miscommunication errors between GAC analysts and investigators. Such an

interface would require a substantial amount of human time to build, especially considering the

security restrictions required for accessing the data.

• Better job tracking and error recovery. Currently, only one version of the code used and

only some stages of the analysis are tracked in the database. Jobs can fail due to memory issues

on a compute node, but recovery is difficult because only certain stages are tracked. A future

improvement would be to add a table that tracks exactly which jobs were submitted, which version

of the code was used for each job (if some pieces were run with updated versions), job completion

status (currently running, success, warning, or failure), and the output log file. The Python script

to submit analysis jobs given an analysis id could then inspect that table and submit only the

jobs necessary to complete the analysis. This proposed table could also provide better tracking
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of followup analyses such as Locus Zoom plots or heritability analyses, which are currently not

recorded in the database.

To summarize, we provide an example of the ICT that allows for efficient and automated computation

of large scale association testing, recording of the analyses results, and generation of reports. In addition to

increasing the efficiency of the analyses performed in the Genetic Analysis Center, the ICT also increases

the integrity of the data due to the link between the analysis pipeline and the trait and analyses database,

and the ability to search for analysis properties. As we expect that such systems will be more and more

common due to the increasingly large modern data sets, our case study can benefit others in the design

of their systems.

Supporting information

S1 Fig. Database schema.

S1 File. Example analysis report.
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Figure 1: A diagram of a workflow of an analysis, and the interaction of the analysis with the database. Incoming

arrows to the middle column indicates data read from the database, and outgoing arrows indicates writing of

information to the database and to the file system.
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