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Abstract

Cholesterol and glycosphingolipids (GSL) are the major species that accumulate in
plasma membrane lipid rafts. These complexes imbue the membrane with increased
order, which in turn, plays a central role in the transmembrane signaling foci lipid
rafts provide. In addition, both GSL and cholesterol binding can mediate (separate)
signal pathways. We have shown that cholesterol and GSLs however, form a
complex in which the GSL sugar is reoriented from a membrane perpendicular to
parallel format, becoming largely unavailable for exogenous ligand binding.
Similarly, the steroid hydroxyl is masked, restricting access of cholesterol ligands.
This was observed in model and cell membranes and in human tumour frozen tissue
sections. We now show the order of exogenous ligand binding plays a significant
role to determine the extent of GSL or cholesterol receptor activity. Ligand binding
to cholesterol enhances subsequent GSL recognition and vice versa, suggesting that
ligand binding to “free” receptor (membrane perpendicular GSL carbohydrate,
nonmasked cholesterol) can result in partial dissociation of the GSL/cholesterol
complex to allow additional GSL ligand and cholesterol ligand binding. Since many
GSLs can complex with membrane cholesterol, the binding of a single cholesterol
ligand may unmask cholesterol-complexed GSL for increased binding of both a
single or multiple GSL-specific ligands. We show that multiple cholesterol-masked
GSLs can be coincident in tissues. This provides a mechanism for GSL-dependent
signal amplification and diversification, representing a biological ‘transistor’,
regulating amplitude and potentially, diversity of GSL signaling. The process
represents a new mechanism of ‘cross-talk’ between GSL and cholesterol signaling.
This is of clinical importance since we have found cholesterol/GSL masking applies
to monoclonal anti GSL antibodies in development and in current use as
antineoplastic therapeutics.
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Introduction

GSLs are involved in many signal transduction pathways[1], both directly[2] and as
modulators of the transduction of other signals[3,4]. Their increased concentration,
together with cholesterol[5], in membrane lipids rafts[6] provide the appropriate
location for modulating [7] these foci of transmembrane signaling[8].

While aberrant GSL metabolism is the direct cause of the lysosomal GSL storage
diseases[9], GSLs play a major role in other human diseases, such that inhibition of
their synthesis results in the amelioration of clinical and animal disease model
symptoms[10-13].

Errors in cholesterol homeostasis are widespread causes of disease [14-20].
Membrane cholesterol can transduce signals[21] and, via lipid rafts, modulate the
activity of many trafficking[22,23]and signaling processes[24-26].

The sugar-lipid conjugate nature of GSL structure results in complex modulationof
membrane GSL receptor function [27-30]. One of the best defined mechanisms for
this modulation is the masking of membrane GSL expression within the
cholesterol/GSL complex [31-34]. This cholesterol -induced conformational change
in the GSL carbohydrate, from ligand available, membrane perpendicular
(uncomplexed GSL), to ligand unavailable membrane parallel (cholesterol
complexed) GSL conformers is dependent on an H-bond network between the
steroid hydroxyl and the anomeric oxygen and amino function of the GSL [32].
Cholesterol masking is maximized under conditions of minimal membrane acyl
chain mismatch[33]. Increased acyl chain mismatch promotes lipid rafts [35] so
cholesterol masking of GSLs may be also modulated at the raft-membrane interface
[7].

Due to the increased levels of cholesterol in tumours [36], GSL masking is a
common feature observed in human tumour biopsies[34] and may be a means to
escape immune surveillance, providing a rationale for cholesterol depletion in
tumour immunotherapy.

Significantly, several Mabs approved and in development for human cancer
treatment, turn out to target tumour GSLs [37-39]. In our studies, we found that
several GSL antigens were cholesterol masked in the same location in tumour frozen
sections (e.g. Gbz and SSEA1 in colon cancer[34]). This led to our consideration of
the effect of cholesterol masking of one GSL on the cholesterol masking of another.

From our previous study on the effect of sequential ligand binding to Gbsz and
to cholesterol in prostate cancer sections[34], we now propose a model in which
cholesterol masking may provide a switch (transistor) for GSL antigen exposure and
hence, a network of ligand activated, GSL dependent signal transduction.

Materials and Methods
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Tissue staining

Frozen tumor tissues were obtained from the Department of Pediatric Laboratory
Medicine at this hospital and the Ontario Institute for Cancer Research Tumor Bank
(Toronto, Ont, Canada). Cryosections (6 pm) were dried and fixed with 4%
paraformaldehyde in phosphate-buffered saline (PBS) for 10min then treated +10
mM MCD in PBS for 30 min at room temperature (RT). Under these conditions, MCD
preferentially extracts cholesterol [40] and we routinely observed negative section
staining with filipin.

For brightfield microscopy of sections stained with horseradish peroxidase (,HRP)
endogenous peroxidase blocker (Universal Block, KPL, Inc., Gaithersburg, MD) was
added for 20 min, then samples were blocked with 1% normal goat serum (NGS) in
PBS (1% NGS) for 20 min. Sections were treated with primary antibodies or VT1-B
subunit. All reagents were diluted in 1% NGS, and all toxin/antibody reactions were
for 30 min. VT1-B subunit (1 pg/mL) was purified in our laboratory [41]. VTB
incubation was followed by rabbit polyclonal anti-VT1-B-6869 [42]diluted 1:1000.
Unituxin (dinutuximab anti-GD2 mAb, humanized chimeric mAb 14.18) was
generously provided by United Therapeutics Inc NC, USA and Mab F77 was a gift
from Dr M Greene, University of Pennsylvania.Pa. USA. Primary antibodies were
used at 2ug/mL Secondary antibodies conjugated to HRP were applied (1:500):
HRP-goat anti-rabbit IgG , HRP-goat anti-mouse IgG, or HRP-goat anti-human IgG
(Bio-Rad, 172-1050). HRP-goat anti-mouse IgG (Bio-RAD, Hercules, CA,, 170-6516).
Sections were incubated for 5 min with peroxidase substrate (ImmPACT
diaminobenzidine, Vector Laboratories, Burlingame, CA). Nuclei were weakly
counterstained with aqueous Mayer’s hematoxylin (Vector Laboratories,
Burlingame, CA). Slides were dehydrated in ethanol, cleared with xylene and
mounted in Permount (Fisher, Ottawa, ON Canada). Images were recorded with a
Nikon microscope (Eclipse E4000) using the Nikon ACT-1 software, version 2.70
and a Sony camera using Infinity Lumenara software, version 6.5.4. Pixel
quantification was performed on digital images using Image | software.

For fluorescence microscopy of filipin-stained sections, filipin III (Sigma, St Louis,
MO, F4767) was dissolved in dimethyl sulfoxide/PBS (1:4) (50 pg/mL) and added to
sections for 30 min. After rinsing, slides were mounted in aqueous fluorescent-
mounting medium (Dako Cytomation, Glostrup, Denmark). Images were recorded
with a Leica microscope (DMI 6000 B) using the LA SAF software, version 2.2.1.
For double staining, sections were stained with filipin and VTB /antibodies. When
filipin was used first, it was followed by VTB, primary antibody, then HRP
conjugated secondary antibodies. When VTB, antibody was reacted first, filipin was
added after the HRP-conjugated secondary antibody, followed by incubation with
the peroxidase substrate. All incubations were at RT. Slides were mounted in the
aqueous fluorescent-mounting medium and recorded with the Leica microscope.

s

Results and Discussion

Cholesterol/GSL masking provides a basis for amplification of GSL signaling
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Our results on the effect of sequential binding of Verotoxin B subunit (to Gbz GSL)
and filipin (to cholesterol) in prostate cancer biopsy frozen sections[34], have been
reconstructed in figure 1A, and provide the basis of our ‘transistor’ model (figure
1B) for the regulation of GSL receptor function in membrane GSL signaling.

An electrical transistor is a semiconductor which provides a switch mechanism for
regulating current flow in an external circuit. A small current pulse through a
transistor can induce the flow of a much larger pulse in the receiver (amplifier). The
transistor can also allow a single electric input pulse to be split to many
downstream receivers

Using serial prostate cancer frozen sections, a binding comparison was made
when VTB or filipin was added first or second, and the detection of each ligand
separately assessed and compared (fig 1A). The binding of filipin prior to VTB (right
panels), resulted in increased detection of Gbs by VTB compared to the same tubular
structures in the tumour stained first with VTB (fig 1A top right, arrowed tubules).
Not all VTB stained tubules show this amplification. Similarly, cholesterol detection
with filipin was greater following initial VTB binding (left lower panel). Filipin
staining was particularly elevated for tubules (fig 1 A lower panel left, arrows) not
susceptible to filipin-increased VTB binding. This could be due to differential
membrane cholesterol vs Gbs concentrations.

Based on this data, we propose (figure1B) that ligand -receptor binding can
partially unmask the cholesterol/GSL complex to amplify GSL or cholesterol
mediated signaling pathways. In the GSL/cholesterol complex (represented by the
red rhomboid, and blue triangle fig 1B), the availability of each lipid for ligand
binding is restricted. This complex will, however, be in equilibrium with the free
fraction of the membrane lipids. Ligand binding to either free lipid will drive the
equilibrium a little to the right. This complex dissociation will provide additional
unmasking of the other lipid to amplify binding of the second ligand. Thus, GSL
binding increases the cholesterol available to bind an appropriate ligand (in this
case, filipin). Such a ligand could contain a cholesterol binding motif[43,44], for
example. Theoretically, due to the widespread nature of GSL masking by
cholesterol[31,34], any GSL specific ligand[45] may unmask otherwise unavailable
cholesterol. In the reverse case, a cholesterol binding ligand will similarly partially
dissociate the GSL/cholesterol complex to partially unmask membrane GSL for
increased ligand binding.

Our finding that the filipin cholesterol binding was increased more than VTB Gbs
binding is consistent with the proposal that more than one molecule of cholesterol is
involved in the GSL/cholesterol complex[33] i.e. more cholesterol than Gbsz would be
unmasked. This increased lipid receptor availability could take the form of allowing
a lower concentration of the second ligand to bind the membrane lipid and would
thus function as a ‘switch’, activated by the binding of the first ligand.
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The signal amplification can be quantitated by AfreeGSL=k(nL2) or
Afreechol=k(nL1) where k is the coefficient of complex dissociation and L1 and
L2 are the two ligands.

Since many GSLs are cholesterol masked[31], its is likely that any cholesterol
binding species[44] could unmask a variety different GSLs if present, allowing
diversification and/or amplification of a signaling route.

If two or more masked GSLs are masked within the same cholesterol domain, it is
possible that, subsequent to GSL 1 ligand binding, a cholesterol binding ligand may
then unmask both GSLs, resulting in signal diversification and the binding of one
GSL ligand would result in the unmasking of other GSLs. This signal diversification
would permit location dependent signal cross talk.

Cholesterol is also involved in many signal transduction pathways [21,46-48] and
this model provides an interface between between GSL recognition and these
pathways.

From analysis of figure 1A, we propose by analogy, that a biological ligand binding
to a membrane GSL, which itself is either complexed, or not complexed to
membrane cholesterol, can both amplify the signal transduced and split the signal
into multiple downstream, GSL/cholesterol dependent signaling pathways. Thus,
although by entirely different mechanisms, GSL/cholesterol signaling can therefore
behave as a biological equivalent of a transistor.

Mab anti tumour GSLs are subject to cholesterol masking

To emphasize the clinical relevance, particularly in cancer, we have investigated the
effect of cholesterol masking on the tumour binding of two antiGSL Mabs developed
for the treatment of human cancers.

A) Mab F77.This Mab was raised by immunization with a human prostate
cancer cell line[37]. Prostate cancer is the cancer in which cholesterol plays a major
role[49,50]. This antibody binds a H-blood group related carbohydrate expressed on
GSLs and mucin[51]. Figure 2 shows the binding of Mab F77 to serial frozen tissue
sections from a primary human prostate cancer biopsy, before and after beta-methyl
cyclodextrin mediated cholesterol extraction. Mab F77 staining to the same tissue
components was increased by 350% following MCD cholesterol
extraction(primarily tubular structures [52]).

B) Mab anti GD2 (Unituxin) is the first FDA approved Mab for pediatric cancer
(neuroblastoma [39,53]). Binding of this humanized mouse anti GD2 ganglioside
antibody was increased to156% following cholesterol depletion, (figure 3). This
significant increase in tumour binding offers the opportunity to increase the clinical
efficacy of this antineoplastic approach. In this regard, it is of interest to note that a
cyclodextrin based method to deplete membrane cholesterol in pediatric patients
has been developed for Niemann-Pick disease [54], which is without apparent long
term side effects.
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Coincident unmasking of different GSL antigens. Our transistor model implies that
ligand binding to one masked GSL could result in unmasking of a second masked
GSL if it were in the same location. We therefore investigated whether two GSL
could be masked in the same location. Figure 4 shows the localization of unmasked
GD2 and Gbs in colon cancer serial sections. MCD untreated sections show weak
GD2 staining within the tumour. Cholesterol depletion markedly unmasks GD2
which is largely uniformly distributed within the tumour, but is not found in the
columnar epithelial cells (fig 4B*). Gbz is not detectable in untreated sections, except
in these epithelial cells (fig 4C*). Significant Gbz is unmasked (fig 4D) which is more
widely distributed and overlaps unmasked GD2 (fig 4B,D arrows). Non-coincidental
GSL unmasking demonstrates the selectivity of cholesterol-based GSL masking (i.e.
it is not a non-selective general enhancement, but rather depends on the presence of
specific GSLs). Co-incidental unmasking of different GSLs indicates locations in
which our transistor model of signal diversification could operate.

In breast tumour (figure 5), these antigens are, interestingly, partially colocalized
within the tubular ducts of the tumour. GD2 is expressed within the tumour stroma
and also within the outer layers of ducts (figure 5A). Increased GD2 expression is
observed in both locations after cholesterol depletion (figure 5B). In contrast, Gbs s
expressed in a few blood vessels in the untreated section, but following cholesterol
extraction, blood vessel staining is strongly increased, together with staining of the
middle and inner layers of the duct structures. Thus, these unmasked GSL antigens
overlap within the middle layer of the ducts but are distinct in the outer (GD2) and
inner (Gbz) tumour duct layers.

Thus, a transistor based signal might be selectively propagated to the middle layer
interface cells of the duct structures from either ligation of the outer GD2 masked
layer or the inner Gbz masked layer.

Significance

Our studies demonstrate a new mechanism for the physicochemical regulation of
cellular GSL and cholesterol receptor function, whereby molecules within a
membrane lipid complex can ‘talk’ to each other. The transistor-like mechanism for
signaling we have demonstrated in (what was) living tissue, can likely be mimicked
in model membranes, since cholesterol masking of GSLs is readily apparent in such
vesicles [31], opening the possibility that such a biological transistor might be useful
in bridging biological and semiconductor based computation [55]. Biological
computer prototypes have been made based on synthetic DNA[56] or RNA[57] but
the present model would be the first ‘transistor’ operating in normal unmodified
cells.
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Legends

Figurel. Double labeling of Gb3 and filipin to illustrate function of membrane GSL
transistor. (A). Serial sections of a prostate cancer biopsy were co stained either
with VTB/peroxidase (to detect Gbs, brown) or filipin-fluorescence (to detect
cholesterol, green) or filipin first followed by VTB) [34]. Bar=200pum. Adding VTB
first (top left) promoted subsequent filipin staining (bottom left). Filipin staining
was most increased for vesicle showed the greatest initial VTB (Gbz) staining (lower
left panel, arrows). In contrast, adding filipin first (top right) promoted VTB binding
(not to all vesicles but see vesicles arrowed). (B) The explanation for this effect
provides the basis of the GSL/cholesterol transistor. Binding of either ligand (VTB or
filipin) to the small fraction of non-complexed lipid will result in a shift in the
complexed vs. free equilibrium to the right, and thus dissociate a fraction of the
complex, to promote the binding of the second ligand. This can be a switch or
amplification for the second ligand binding.

Figure 2. F77 Mab binding to prostate tumour is markedly increased by MCD
cholesterol depletion. F77 binding to serial prostate cancer biopsy before and after
cholesterol depletion. A few tubular structures are labeled before but many more
after MCD extraction.

Figure 3 AntiGD2 staining of pediatric neuroblastoma

Anti GD2 (Unituxin) showed extensive staining of neuroblastoma sections (left
panels) but cholesterol extraction resulted in a significant increase in tumour
reactivity (right panels). Bar=250um.

Figure 4 Colabelling of unmasked GD2 ganglioside and Gbs in colon carcinoma
biopsy sections. Serial human colon carcinoma frozen sections were stained for GD2
(A) or Gb3 (B) using Unituxin or VTB, prior to (A,B) or after (C,D), MCD cholesterol
extraction. A marked increase is staining or these glycolipids within the bulk of the
tumour was observed (arrows).* marks columnar epithelial cells. Inverted images
are shown. Bar=50pum.

Figure 5 Colabelling of unmasked GD2 ganglioside and Gbs3 in breast carcinoma
biopsy sections. Serial human breast carcinoma frozen sections were stained for
GD2 (A,B) or Gb3 (C,D) using Unituxin or VTB, prior to (A,C) or after (B,D), MCD
cholesterol extraction. Little initial VTB blood vessel staining was markedly
increased after cholesterol depletion and the central and luminal cells of tumour
ducts were labeled. More of the tumour stromal tissue was initially antiGD2 labelled
(A*) as were outer layer cells of tumour ducts(A arrow). Both were significantly
increased by MCD cholesterol extraction. Bar=100pum.
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