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Abstract14

Background In addition to the processes structuring free-living communities, host-associated microbial communi-15

ties (i.e., microbiotas) are directly or indirectly shaped by the host. Therefore, microbiota data have a hierarchical16

structure where samples are nested under one or several variables representing host-specific features. In addition, mi-17

crobiota data are often collected across multiple levels of biological organization. Current statistical methods do not18

accommodate this hierarchical data structure, and therefore cannot explicitly account for the effects of host-specific19

features on structuring the microbiota.20

Methods We introduce a unifying model-based framework developed specifically for analyzing host-microbiota21

data spanning multiple levels of biological organization. While we chose to discern among the effects of host species22

identity, host phylogeny, and host traits in structuring the microbiota, the presented framework can straightforwardly23

accommodate any recorded data that includes host-specific features. Other key components of our modeling frame-24

work are the powerful yet familiar outputs: (i) model-based ordination to visualize the main patterns in the data,25

(ii) co-occurrence networks to visualize microbe-to-microbe associations, and (iii) variance partitioning to asses the26

explanatory power of the included host-specific features and how influential these are in structuring the microbiota.27

Results The developed framework was applied to published data on marine sponge-microbiota. We found that a28

series of host traits that are likely phylogenetically conserved underpinned differences in both abundance and species29

richness among sites. When controlling for these differences, microbiota composition among sites was confounded by30

numerous site and host-specific features. At the host level, host traits always emerged as the prominent host-specific31

feature structuring the microbiota.32

Conclusions The proposed framework can readily be applied to a wide range of microbiota systems spanning mul-33

tiple levels of biological organization, allowing researchers to systematically tease apart the relative importance of34

recorded and/or measured host-specific features in structuring microbiota. The study of free-living species communi-35

ties have significantly benefited from the increase in model-based approaches. We believe that it is time for research36

on host-microbiota to leverage the strengths of a unifying model-based framework.37
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Introduction38

Ecological communities are the product of both stochastic and deterministic processes. While environmental factors39

may set the upper bound on carrying capacity, competitive and facilitative interactions within and among taxa deter-40

mine the identity of the species present in local communities. Ecologists are often interested in inferring ecological41

processes from patterns and determining their relative importance for the community under study ([39]). During the42

last few years, there has been a growing interest in developing new statistical methods aimed toward ecologists and the43

analysis of multivariate community data (see e.g., [17] and references within). There are many metrics for analyzing44

such data, however, these have a number of drawbacks, including uncertainty of selecting the most appropriate null45

models/randomization tests, low statistical power, and the lack of possibilities for making predictions. One framework46

which has become increasingly popular in ecology is joint species distribution models (JSDMs,[28, 40, 25]). JSDMs47

are an extension of generalized linear mixed models (GLMMs, [3]) where multiple species are analyzed simultane-48

ously, with or without measured environmental data, revealing community-level responses to environmental change.49

Because JSDMs are an extension of GLMMs, they can partition variance among fixed and random effects to assess the50

relative contribution of different ecological processes, such as habitat filtering, biotic interactions and environmental51

variability ([25]). Also, with the increase of trait-based and phylogenetic data in community ecology, together with the52

growing appreciation that species interactions are constrained by the “phylogenetic baggage” they inherit from their53

ancestors ([34]), this type of models can further accommodate information on both species traits and phylogenetic54

relatedness among species ([14, 15, 1, 25]). As such, JSDMs represents a rigorous statistical framework which allows55

ecologists to gain a more mechanistic view of the processes structuring ecological communities ([40]).56

In parallel to recent developments in community ecology, there is the growing field of microbial ecology studying57

both free-living and host-associated communities (i.e., microbiotas). While microbial ecologists can adapt many of the58

new statistical approaches developed for traditional multivariate abundance data (see e.g., [4]), researchers studying59

microbiotas need to consider an additional layer of processes structuring the focal community: microbiotas are also60

shaped directly or indirectly by their hosts. Interactions between hosts and microbes often involve long-lasting and61

sometimes extremely intimate relationships where the host animal may have evolved a capacity to directly control the62

identity and/or abundance of its microbial symbionts ([21]). Similarly to an environmental niche, host-specific features63

can be viewed as a multidimensional composite of all the host-specific factors governing microbial abundances and/or64

occurrences within a host. These may represent everything from broad evolutionary relationships among host species65

([11]) to distinct ecological processes, such as the production of specific biomolecules within a single host species66
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([18]). Furthermore, microbiotas often encompass multiple levels of biological organization, as e.g., samples may67

be collected from different body sites on numerous host individuals, and/or from different host species across larger68

spatial scales. At each level of biological organization, a different set of processes are likely to be influencing the69

microbiota.70

While a few recent JSDMs have been applied to microbiota data ([1, 5, 36, 44]), none of these models explicitly and71

transparently account for the aforementioned host-specific features. This extra layer of processes creates a hierarchical72

data structure where samples are nested under one or several nominal variables representing recorded and/or measured73

host-specific features. On the other hand, as JSDMs are naturally multi-levelled, they can easily account for such a74

hierarchical data structure, including the hierarchy implicit in data spanning multiple levels of biological organization75

([24, 20]). An example of such a data set is the gut microbiota of the Amboselli baboons (see e.g., [37]), where76

individual baboons are raised in matriarchal family groups which are part of larger social groups. Individuals may77

disperse from their family groups to other social groups when reaching adulthood. Individual baboons are therefore78

nested within both family and social groups, and researchers may want to investigate what processes acting on which79

social level of organization are most likely governed the gut microbiota.80

Discerning among processes through joint distribution models81

How processes related to host-specific features structure the microbiota are largely unknown. At the same time, to82

analyze such data requires a unifying, model-based framework capable of discerning amongst various host-specific83

features spanning multiple levels of biological organization. To fill this gap, we propose a novel JSDM framework84

specifically aimed at analyzing microbiota data which explicitly accounts for host-specific features across multiple85

levels of biological organization. Other key components of our proposed modeling framework include: (i) model-86

based ordination to visualize the main patterns in the data (ii) co-occurrence networks to visualize microbe-to-microbe87

associations, and (iii) variance partitioning to asses the explanatory power of the included host-specific features and88

their influence in structuring the microbiota (Figure 2). While our models can discern among the effects of host89

species identity, host phylogeny and host traits, they can straightforwardly accommodate any recorded and/or measured90

data on host-specific features. However, information on host phylogenetic relatedness and host traits are particularly91

useful in order to disentangle whether the microbiota under study is non-randomly structured among the branches of92

a host phylogeny such that related host species harbor more similar microbes (i.e., indicating vertical transmission) or93

whether the microbiota is non-randomly structured among environments reflecting different host traits (i.e., indicating94

horizontal transmission).95
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By applying our developed modeling framework to sponge-microbiota data, we set out to investigate a set of96

fundamental, but non-mutually exclusive questions of interest. Broadly, we are interested in whether the sponge97

microbiota are governed by processes at the site and/or host species level. More specifically we ask whether the98

microbiota associated with: (i) the same host species and/or (ii) phylogenetically closely related host species and/or99

(iii) host species with similar traits, are more similar irrespective of the spatial distance between the sites where they100

were collected. We also investigate whether host species in closely located areas harbor more similar microbiotas101

than host species collected in sites farther apart. Finally, we generate microbe-to-microbe association networks using102

our proposed framework, but acknowledge that we do not have any a-priori hypotheses regarding which microbes are103

more or less likely to be co-occur. To our knowledge, this is the first unifying model-based framework specifically104

developed for analyzing host-microbiota.105

Materials and methods106

Sponge microbiota as a case study107

To illustrate our modeling framework, we acquired data on marine sponge-microbiota from different host species108

collected at different geographic sites across the globe (Figure 1, Table S1). As marine sponges are commonly divided109

into two groups reflecting a suit of morphological and physiological traits– coined High and Low Microbial Abundance110

(HMA/LMA) sponges–collection sites are nested within host species which are further nested within one of the two111

traits. While the HMA-LMA division in a strict sense refers to the abundance of microbes harbored by the host, HMA112

sponges have a denser interior, including narrower aquiferous canals and smaller choanocytes compared to LMA113

sponges whose architecture are more fitted for pumping large volumes of water ([38]). As a consequence, HMA and114

LMA sponges tend to harbor different microbiotas, with the latter often showing a higher similarity to the free-living115

microbial community present in the surrounding sea water ([2, 33]).116

Data compilation117

To assess variation in microbial abundances and co-occurrences across different sponges species collected at different118

sites, we compiled a data set of sponge-associated bacterial 16S rRNA gene clone-library sequences published in119

NCBI GenBank (http://www.ncbi.nlm.nih.gov) between September 2007 and August 2014. All sponge species in120

the data set were required to be present in at least two different collection sites and be associated with at least 10121
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different sequences per site. The final data set contained a total of 3874 nearly full-length 16S rRNA gene sequences122

from 9 HMA and 10 LMA sponge species collected at 48 different sites (nHMA=28, nLMA=20) across the Atlantic,123

Pacific Ocean, Mediterranean and Red Seas (Figure 1, Table S1). The 16S rRNA gene sequences were aligned and124

clustered into operational taxonomic units (OTUs) representing family-level (at 90% nucleotide similarity, [42, 32])125

using mothur v.1.32.1 ([31]). At higher and lower sequence similarities, OTU clusters tended to become either too126

narrow or too broad, generating too sparse data for our models. Finally, as clone-libraries do not circumvent the need127

for cultivation, the OTUs modelled here correspond to the most common members of the sponge-microbiota.128

Phylogenetic reconstructions129

We retrieved nearly full-length sponge 18S rRNA gene sequences published in NCBI GenBank (http://www.ncbi.nlm.nih.gov)130

(see e.g., [10]). Sequences were aligned using the default options in ClustalW (1.83) ([16]). The phylogenetic relation-131

ship between the sponge species were reconstructed by implementing a HKY + Γ4 substitution model using BEAST132

(1.7.4) ([6]). For a few host species (I. oros, H. simulans, M. methanophila and X. testudinaria), the 18S rRNA gene133

sequence was unavailable. In these cases, we constrained the sponge species to the clade containing its genera.134

A posterior distribution of phylogenies were sampled using Markov Chain Monte Carlo (MCMC) simulations as135

implemented in BEAST. We ran 4 independent chains each for 20 million generations saving every 4000th sample and136

discarding the first 25% as burn-in. This resulted in 20,000 generations from the posterior distribution. Convergence137

was evaluated using Tracer (v1.5) ([30]). We summarized the output of the four chains as a consensus phylogeny.138

Assumeing Brownian motion so that each covariance between host species i and host species j is proportional to their139

shared branch length from the most recent common ancestor ([7]), we used the variance-covariance matrix of the140

consensus phylogeny Σ(phylo) as prior information in Equation 3, such that µ(phylo)s ∼ MVN (0,Σ(phylo)). Note141

that as the host species-specific variance i.e., the diagonal elements of the variance-covariance matrix is scaled to one142

by the construction of Σ(phylo), we multiplied it with a scaling factor τ as seen in the formulation in (3).143

Joint species distribution models144

We developed a Bayesian joint species distribution modeling framework to jointly model the abundance and co-145

occurrence of OTUs across multiple sites, while also accounting for host species identity, host phylogenetic related-146

ness, and host traits (HMA and LMA, hereafter termed ecotype). Another important feature of the models we propose147

is the inclusion of latent factors, serving three main purposes. First, they allow for a parsimonious yet flexible way148
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of modeling correlations between a large number of taxa. That is, given the number of taxa recorded often has the149

same order or exceeds the number of sites, as is characteristic of most multivariate abundance data including the one150

analyzed here, modeling the covariation between all taxa using an unstructured correlation matrix is often unreliable151

due to the large number of elements in the matrix that need to be estimated ([40]). Using latent factors instead of-152

fers a more practical solution, via rank reduction, to model correlations in such high dimensional settings. Second,153

latent factors allow for performing model-based unconstrained and residual ordination in order to visualize the main154

patterns in the data ([12, 13]). While traditional distance-based ordination techniques easily confound location and155

dispersion effects ([41]), model-based ordination properly models the mean-variance relationship, and can therefore156

accurately detect differences between the two. Third, latent factors allow for inferring associative networks identified157

by correlations and partial correlations ([24]).158

We considered two response types commonly encountered in ecology and biogeography; negative binomial re-159

gression for overdispersed counts and probit regression for presence-absence. As such, the response matrix being160

modelled consisted of either counts or presence-absence of n OTUs observed at m sites. The rows of the response161

matrix have a hierarchical structure typical for many microbiota data. Specifically, the m = 48 sites are nested within162

the s = 19 host species, with the 19 host species nested within one of r = 2 ecotypes (Figure 2). Due to their lack of163

information, OTUs with less than 5 presences across sites and with a total abundance of less than 5 were removed,164

resulting in 65 modelled OTUs.165

NB model: Due to the presence of overdispersion in the counts, a negative binomial distribution with a quadratic166

mean-variance relationship was assumed for the response matrix yij , such that Var(yij ) = υij +φjυ2ij where φj is the167

OTU-specific overdispersion parameter. The mean abundance was related to the covariates using a log link function.168

We denote the response and mean abundance of OTU j at site i by yij and υij , respectively.169

Probit model: Presence (yij = 1) or absence (yij = 0) of OTU j at site i was modelled by a probit regression,170

implemented as yij = 1zij>0 where the latent liability zij is a linear function of the covariates, including the probit link171

function. Below, we present specifications for the negative binomial (NB) model only, as the probit model description172

is similar except the distribution assumed at the response level of the model (S1).173

LetN (µ,σ2) denote a normal distribution with mean µ and variance σ2, and analogously, letMVN (µ,Σ) denote

a multivariate normal distribution with mean vector and covariance matrix Σ. Then, we have the model formulation
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as follows

yij ∼ Negative-Binomial(υij ,φj ); i = 1, . . . ,48; j = 1, . . . ,65 (1)

log(υij |zi) = αi + βj +
2∑
q=1

ZSiqλ
S
qj +

2∑
q=1

ZHs[i]qλ
H
qj ; q = 1, . . . ,2 (2)

βj ∼ Cauchy(0,2.5)

αi ∼N (µi ,σ
2(host))

µi = µ(host)s[r] + τ ∗µ(phylo)s; r = 1,2; s = 1, . . . ,19 (3)

µ(host)s[r] ∼N (µ(ecotype)r ,σ
2(ecotype))

µ(ecotype)r ∼ Cauchy(0,2.5)

µ(phylo)s ∼MVN (0,Σ(phylo))

To clarify the above formulation, the subscript r indexes ecotype, s indexes host species and i indexes sites, such that174

“s[i]” and “s[r]” means “site i nested within host species s” and “host species s nested within ecotype r”, respectively.175

In Equation (2), the quantities αi and βj represent site and OTU-specific effects, respectively. The former adjusts for176

differences in site total abundance (species richness in the probit case), whereas the latter controls for differences in177

OTU total abundance (OTU prevalence across sites in the probit case). From a purely statistical point of view, this178

can be thought of as a model-based analog of studying alpha and beta diversity, respectively. The inclusion of αi179

serves two main purposes. First and foremost, including αi allows us to account for the hierarchical structure of the180

data and its effect on site total abundance (species richness in the probit case) specifically. In particular, to account181

for site i being nested within host species s which in turn is nested within ecotype r, the site effects αi’s are drawn182

from a normal distribution with a mean that is a linear function of both a host-specific mean µ(host)s[r] and a host-183

specific phylogenetic effect µ(phylo)s (Equation 3). Furthermore, the host effects themselves are drawn from a normal184

distribution with a ecotype-specific mean µ(ecotype)r . Second, it means the resulting ordinations constructed by the185

latent factors at the site ZSiq and host species ZHs[i]q level are in terms of composition only, as opposed to a composite186

of site total abundance (species richness in the probit case) and composition (i.e. microbiota structure) when site187

effects are not included ([12]). In other words, by accounting for the hierarchical structure present in the data, the188

model-based ordinations are able to distinguish between microbiota composition and structure. It also means that the189

corresponding factor loadings λSqj and λHqj which quantify each OTU’s response to the latent factors and subsequently190
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the correlations among OTUs at the two different levels of biological organization are driven by OTU-specific effects191

only, as opposed to correlations additionally induced by site and host-specific features.192

Note that, in contrast to the means µ’s, the variance parameters σ2(host) and σ2(ecotype) are common across all193

hosts and ecotypes. This implies that, a-priori, hosts and ecotypes can differentiate in location (mean) but not in194

dispersion (variance). However, as we will see later in the Results section, the ordinations for hosts and ecotypes can195

still, a-posteriori, vary substantially in terms of location and dispersion. We fitted each model with and without site196

effects αi included, so that two types of ordinations and association networks were constructed. When site effects were197

included, the ordinations on both levels of biological organization are in terms of microbiota composition, whereas198

when site effects are not included, the ordinations represent microbiota structure. The inclusion of αi also allows us to199

discern among OTU-to-OTU correlations induced by OTU-specific effects from those induced by site and host-specific200

features. For the model without site effects αi included, its associated nested structure were removed from Equation201

(2), such that log(υij |zi) = βj +
2∑
q=1

ZSiqλ
S
qj +

2∑
q=1

ZHs[i]qλ
H
qj . As is conventional with ordination, we set q = 2 so that202

once fitted, the latent factors Zi,q = (Zi1,Zi2) were plotted on a scatter plot to visualize the main patterns in the data203

([12]). From the corresponding factor loadings λqj , a variance-covariance matrix was computed as Ω = λ1j (λ2j )T ,204

and subsequently converted to a correlation matrix and plotted as a OTU-to-OTU association network ([24]).205

To complete the above formulation, we assigned priors to the appropriate hyperparameters. For the OTU-specific206

overdispersion parameters φj (Equation 1), we chose to assign a weakly-informative Gamma prior, Gamma(0.1,0.1).207

The standard deviations for host σ (host) and ecotype σ (ecotype) in Equations (2)-(3) were assigned uniform priors208

Unif(0,30). The latent factors in Equation (2) on the site ZSiq and host species ZHiq level were assigned normal priors209

N (0,1). The corresponding OTU-specific coefficients, i.e., the λSqj ’s and the λHqj ’s in Equation (2) were assigned210

Cauchy priors with center and scale parameters of 0 and 2.5, respectively, while taking to account the appropriate211

constraints for parameter identifiability (see citeHui2015, for details). The Cauchy distribution was used because it is212

good example of a weakly-informative normal prior ([9]). Finally, the phylogenetic scale parameter τ was drawn from213

a weakly-informative exponential prior with a rate parameter of 0.1.214

Variance partitioning215

One of the main advantages of the differing levels in the hierarchy in Equations (1)-(3) is that we can calculate the216

total variance of the µi’s and partition this variance into components reflecting variation in site total abundance (species217

richness in the probit case) attributable to differences in host species identity µ(host)s, host phylogenetic relatedness218

µ(phylo)s and host traits µ(ecotype)r . This means that we can asses the explanatory power of the host-specific features219
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and how influential each of them are in structuring the microbiota. Such a variance decomposition is analogous to220

sum-of-squares and variance decompositions seen in Analysis of Variance (ANOVA) and linear mixed models ([23]).221

Let Vtotal denote the total variance of the µi’s, while Vhost, Vphylo and Vecotype denote the variances due to host

species identity, host phylogeny and host ecotype, respectively. Then we have,

Vtotal = Vhost +Vphylo +Vecotype + (µ(ecotype)LMA −µ(ecotype)HMA)
2, where (4)

Vecotype = σ
2(ecotype) (5)

Vhost = σ
2(host) (6)

Vphylo = τ
2 (7)

Where σ2(host) reflects the intraspecific variation among sites nested within host species with small values ofVhost/Vtotal222

implying that sites nested within the same host species are more similar within than between host species. τ2 corre-223

sponds the intraspecific variation among sites nested within host species that can be attributed to hosts’ phylogenetic224

relatedness, meaning that small values of Vphylo/Vtotal provide evidence that the host phylogeny has little influence225

on variation in site total abundance (species richness in probit case). σ2(ecotype) accounts for intraspecific variation226

among host species nested within the two ecotypes, whereas (µ(ecotype)LMA − µ(ecotype)HMA)2 is the difference in227

variation between the two ecotypes. Therefore, (µ(ecotype)LMA−µ(ecotype)HMA)2/Vtotal represents the proportion of228

total variation in site total abundance (species richness in the probit case) driven by ecotype. That is, if the proportion229

Vecotype/Vtotal is small compared to (µ(ecotype)LMA−µ(ecotype)HMA)2/Vtotal, then host species’ microbiota are more230

similar within rather than between ecotypes.231

We used Markov Chain Monte Carlo (MCMC) simulation method by running JAGS ([26]) in R ([29]) through232

the rjags ([19]) package to sample from the joint posterior distribution of the model parameters. We ran 1 chain with233

dispersed initial values for 100,000 iterations saving every 10th sample and discarding the first 50% of samples as234

burn-in. We evaluated convergence of model parameters by visually inspecting trace and density plots using the R235

packages coda ([27]) and mcmcplots ([22]).236

Results237

We did not observe any large qualitative differences between the negative binomial (NB) and probit models of our238

framework. As noted above, an interesting difference between the two models is the interpretation of the row and239
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column totals. Modeling counts means that row and column totals correspond to site and OTU total abundance,240

respectively, rather than species richness and OTU prevalence across sites as in the case of presence-absences. Even if241

the two are very similar, the latter has a more straightforward interpretation as alpha and beta diversity. We present the242

main results for both models below, but relegate figures associated to the probit model to the supplementary material.243

At the site level, without adjusting for differences among sites (i.e. not including αi), host ecotype appeared as the244

major host-specific feature driving differences in microbiota structure (Figure 3A-B, S2A-B). After adjusting for site245

effects, while simultaneously accounting for host species identity, host phylogenetic relatedness and host ecotype, sites246

clustered, i.e., they harbored similar microbiota composition, to a lesser extent by host ecotype (Figure 3C-D, S2C-247

D). The variance partitioning showed that differences among sites in terms of abundance and richness were largely248

driven by host phylogenetic relatedness (Figure 4, S3), suggesting that ecotype is phylogenetically conserved within249

Porifera. It also indicates that composition among sites, similarly to abundance and richness, is confounded by site250

and host-specific features, such as geographic distance, host species identity, host phylogenetic relatedness and host251

ecotype. For example, a few sites clustered by host species (e.g., HMA hosts Aplysina cualiformis, Aplysina fluva,252

Ircinia felix, and Ircinia oros), but at closer inspection, the geographic distance between several of these sites were253

low (Figure 3C, Figure S2C). At the host-species level, hosts always clustered according to ecotype, indicating that254

the set of traits encompassing HMA and LMA hosts are indeed important for structuring the microbiota (Figure 5A-B,255

S4A-B).256

A closer look at αi , the parameter adjusting for site effects, showed that sites belonging to the same host species and257

sites belonging to either of the two host ecotypes often had similar posterior means, with HMA hosts typically having258

narrower credible intervals (Figure 6A, S5A). However, these differences were not present in the mean parameter259

of αi , i.e., the µ(host)s[r] (Figure 6B, S5B), further indicating that microbiota composition, more than differences in260

abundance and richness, is driving the observed HMA-LMA dichotomy.261

We did not find any distance-decay relationship where microbiota similarity among sites decrease with increasing262

geographic distance. However weak, we observed that HMA and LMA hosts had opposite slopes in the model not263

controlling for site effects, indicating that LMA microbiota may be more influenced by local environmental conditions264

(Figures S1,S6). Interestingly, for the NB model, the slope of LMA hosts switched sign in the model adjusted for site265

effects. (Figure S1).266

We generated OTU-to-OTU association networks where links between OTUs represented either positive and nega-267

tive abundance correlations and co-occurrences with at least 95% posterior probability. On one hand, by not adjusting268

for site effects, correlations between OTUs are induced by not only OTU-specific effects, but also by site and host-269
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specific features. We found many more correlations in the model not controlling for site effects (Figures 7A-B, S7A-B)270

compared to the model that did (Figure 7C-D, S7C-D). The site level (Figures 7A-C, S7A-C) generally had more cor-271

relations compared to the host species level (Figure 7B-D, S7B-D). On the site level, correlations were likely induced272

by, in addition to host-specific features, site effects such as geographic distance, coexisting host species and/or similar273

environmental preferences among OTUs, whereas on the host species level, correlations were only induced by host-274

specific features. The probit model detected more correlations on both levels compared to the NB model (S7). This275

is likely due to the difference in the nature of the correlations, i.e., co-occurrences (probit model) versus abundance276

correlations (NB model).277

Discussion278

Discerning amongst the many processes structuring microbiotas is one of the big new challenges facing ecology279

and evolution. However, the complexity of these communities often preclude their understanding, and we currently280

lack a mechanistic view of the processes structuring these systems. Motivated by these challenges, we developed a281

joint species distribution modeling (JSDM) framework to enhance our understanding of how host-specific features282

influence and structure the microbiota, both in terms of the abundance/species richness and composition of microbes.283

The presented framework builds upon and extends existing JSDMs by specifically targeting the hierarchical structure284

typically characterizing microbiota data. For example, our framework can be seen as microbiota adapted phylogenetic285

generalized linear mixed models where we model host species traits and phylogenetic relatedness on the rows of the286

response matrix, as opposed to on the columns as seen in the typical specification of these models ([14]).287

Whether host phylogeny and/or host traits structure the microbiota reveal important information about the under-288

lying processes. We found a strong phylogenetic signal on microbial abundance and species richness among hosts,289

but at the same time, we did not observe a clear clustering by host phylogeny. Instead, the sponge-microbiota always290

showed a strong clustering by host traits (i.e. HMA/LMA), indicating (1) that host traits may be phylogenetically291

conserved within Porifera and/or (2) that the microbiota may be adapted to the different host environments associated292

with the two traits. Traditional ordination methods, such as principal coordinate analysis (PCoA) and non-metric mul-293

tidimensional scaling (NMDS) does not allow for such a systematic dissection of the patterns and the likely processes294

structuring host-microbiotas.295

Other advantages compared to traditional ordination methods are that model-based ordination is implemented and296

developed by directly accommodating the statistical properties of the data at hand ([12]). Failure to account for, e.g.,297
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the mean–variance relationship can lead to misleading results (see [41] for details and discussion). Another advantage298

of our modeling framework is that the constructed ordinations are able to distinguish between microbiota composition299

and structure. For instance, we found that on the host species level, ecotype (HMA/LMA) emerged as the major host-300

specific feature driving microbiota structure and composition, whereas on the site level, structure and composition301

was confounded by numerous factors. Furthermore, calculating total variance and partitioning this into components302

reflecting variation attributable to different host-specific features, such as host traits and phylogenetic relatedness,303

allows researchers to assess the relative importance of possible ecological processes.304

It has become increasingly popular in microbial ecology to visualize OTU-to-OTU association networks from305

correlations (e.g. [8, 43]). A key feature of the presented framework is the use of latent factors as a parsimonious306

approach for modeling correlations between a large number of taxa. Beyond OTU-specific effects, such as e.g.,307

interspecific interactions, correlations amongst OTUs may be induced by site and/or host-specific features. Therefore,308

by modeling the microbiota on multiple levels of biological organization, while simultaneously controlling for site309

effects and its hierarchical structure (i.e. the host-specific features), it is possible to gain a better understanding of the310

possible interaction structures. However, as these associations are of correlative nature, they should not be regarded as311

ecological interactions, but merely as hypotheses of such ([24, 35]).312

Finally, the presented framework can readily be applied to a wide range of microbiota systems spanning multiple313

levels of biological organization, where the main interest lies in teasing apart the relative importance among host-314

specific features in structuring the microbiota. It can further be adapted to accommodate additional information, such315

as e.g., phylogenetic relatedness among microbes, spatial distance between sites, and/or environmental covariates316

directly acting on the hosts. Such a flexible modeling framework offers many exciting avenues for methodological317

advancements that will help to enhance our understanding of the numerous processes structuring host-microbiotas.318
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Figure 1: Overview of the broad spatial scale for which the data is distributed. Each point represents a collection site
and each colour represents a host species. Note that some host species coexist within the same site. See Table S1 for
more detailed information.
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Figure 2: Conceptual figure of the modeling framework. Panel A shows a schematic figure of the response matrix.
While columns correspond to OTUs, rows have a hierarchical structure where sites are nested within host species which
are further nested within host traits (High Microbial Abundance (HMA) and Low Microbial Abundance (LMA)). At
the host species level, the framework also accounts for phylogenetic relatedness. Panel B shows the two different
joint species distribution models (JSDMs) with latent factors for site (S) and host species (H) level, each representing
a different level of biological organization. The g(·) represents the different link function associated to the different
response types. Panel C shows the corresponding output; because model (1) does not include site effects, its resulting
ordination constructed from the latent factors are in terms of microbiota structure (i.e., a composite of abundance
and composition), and because model (2) includes site effects, its resulting ordination constructed from the latent
factors are in terms of microbiota composition only. The OTU-to-OTU association networks constructed from the
corresponding factor loadings also differ for the two JSDM models. Note that ordinations and association networks
are produced both on the site and host species level, respectively. Finally, as the site effects are nested within the host-
specific features, model (2) partition variance in microbiota abundance or species richness into components directly
reflecting the included host-specific features.
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Figure 3: Model-based ordinations on the site level. Panel A and B show the model-based unconstrained ordination
without site effects included. In panel A, sites are colored by host species and ecotype are depicted by different shapes
(HMA=circles, LMA=diamonds), while in panel B sites are colored by ecotype only (HMA=blue, LMA=green). Panel
C and D show the model-based unconstrained ordination with site effects included. In panel C, sites are colored by
host species and ecotype is depicted by different shapes (HMA=circles, LMA=diamonds), while in panel D sites are
colored by ecotype only (HMA=blue, LMA=green).
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green to variance within ecotypes, and finally red corresponds to variance explained by differences among the two
ecotypes.
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Figure 6: Caterpillar plots for differences in total abundance. Panel A shows a caterpillar plot for the parameter
controlling the site effects, i.e., αi . Each row correspond to a sites, colored by host species. The colored shape represent
the posterior mean (± SD). The two ecotype are depicted by different shapes (HMA=circles, LMA=diamonds). Panel
B shows a caterpillar plot for αi’s mean parameter, i.e., the µ(host)s[r]. Rows correspond to host species colored by
ecotype (HMA=blue, LMA=green). The vertical dashed lines correspond to the grand mean of each ecotype. Panel C
shows the posterior probability distribution of µ(host)s[r] for HMA (blue) and LMA (green), respectively.
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Figure 7: OTU-to-OTU association networks. Nodes represent OTUs with assigned taxonomy at the phylum-level,
and links correspond to abundance correlations with at least 95% posterior probability. The top panel (A & B) shows
networks generated from the model without site effects, thus correlations between OTUs are induced by both site and
host-specific features as well as OTU-specific effects. The bottom panel (C & D) shows networks generated from the
model with site effects included, thus correlations between OTUs are only OTU-specific effects. Panel A & C shows
the association network for the site level and panel B & D shows the network for the host species level.
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Supplementary Material430

Table S1: Detailed information about the geographic location for each host species. The table shows each host species
with its corresponding ecotype, sample site, ocean basin, and latitude and longitude.

Host species Ecotype Site Ocean Lat Lon

Aplysina cauliformis HMA Carrie Bow Cay, Belize Caribbean Sea 16.803 -88.082
Aplysina cauliformis HMA Lee Stocking Island, Bahamas North Atlantic Ocean 23.769 -76.099

Aplysina fulva HMA Caboclo Island, Rio de Janeiro, Brazil South Atlantic Ocean -22.755 -41.890
Aplysina fulva HMA Lee Stocking Island, Bahamas North Atlantic Ocean 23.769 -76.099
Aplysina fulva HMA Rio de Janeiro, Brazil South Atlantic Ocean -22.875 -43.278
Aplysina fulva HMA Sweetings Cay, Bahamas North Atlantic Ocean 26.600 -77.900
Aplysina fulva HMA Tartaruga beach, Rio de Janeiro, Brazil South Atlantic Ocean -22.756 -41.904

Axinella corrugata LMA Conch Reef, Key Largo, Florida, USA Caribbean Sea 24.950 -80.454
Axinella corrugata LMA Little San Salvador Island, Bahamas North Atlantic Ocean 24.548 -75.934
Chondrilla nucula HMA Grays Reef, USA North Atlantic Ocean 31.984 -81.019
Chondrilla nucula HMA Limski Canal, Croatia Adriatic Sea 45.131 13.663
Chondrilla nucula HMA Mangrove channel, Florida Keys, USA North Atlantic Ocean 24.863 -80.717

Dysidea avara LMA Limski Canal, Croatia Adriatic Sea 45.131 13.663
Dysidea avara LMA Sanya Island, China South China Sea 18.233 109.489
Geodia barretti HMA Korsfjord, Norway North Atlantic Ocean 60.153 5.148
Geodia barretti HMA Langenuen, Norway North Atlantic Ocean 59.978 5.382

Halichondria okadai LMA Jeju Island, South Korea East China Sea 33.390 126.540
Halichondria okadai LMA Miura peninsula, Japan Pacific Ocean 35.199 139.586
Haliclona simulans LMA Galway, Ireland North Atlantic Ocean 53.316 -9.669
Haliclona simulans LMA Sanya Island, China South China Sea 18.402 109.994
Haliclona tubifera LMA Gulf of Mexico, USA Gulf of Mexico 30.138 -88.002
Haliclona tubifera LMA Sweetings Cay, Bahamas North Atlantic Ocean 26.600 -77.900

Hymeniacidon heliophila LMA Gulf of Mexico, USA Gulf of Mexico 30.138 -88.002
Hymeniacidon heliophila LMA Praia Vermelha, Brazil South Atlantic Ocean -22.955 -43.163
Hymeniacidon perlevis LMA Ballyhenry Island, Ireland North Atlantic Ocean 54.393 -5.575
Hymeniacidon perlevis LMA Dalian City, China Yellow Sea 38.867 121.683
Hymeniacidon perlevis LMA Praia de Monte Clerigo, Portugal North Atlantic Ocean 37.342 -8.852
Hymeniacidon perlevis LMA Yongxing Island, China South China Sea 16.600 112.200

Ircinia felix HMA Exumas, Bahamas North Atlantic Ocean 24.881 -76.792
Ircinia felix HMA Sweetings Cay, Bahamas North Atlantic Ocean 26.560 -77.884
Ircinia oros HMA Blanes, Spain Mediterranean Sea 41.673 2.804
Ircinia oros HMA Tossa de Mar, Spain Mediterranean Sea 41.720 2.941

Ircinia strobilina HMA Conch Reef, Key Largo, Florida USA Caribbean Sea 24.950 -80.454
Ircinia strobilina HMA Exumas, Bahamas North Atlantic Ocean 24.881 -76.792
Ircinia strobilina HMA Sweetings Cay, Bahamas North Atlantic Ocean 26.600 -77.900

Myxilla methanophila LMA Bush Hill, USA Gulf of Mexico 27.783 -91.507
Myxilla methanophila LMA Green Canyon, USA Gulf of Mexico 27.740 -91.222

Oscarella lobularis LMA Limski Canal, Croatia Adriatic Sea 45.131 13.663
Oscarella lobularis LMA Marseille, France Mediterranean Sea 43.197 5.364

Rhopaloeides odorabile HMA Davies Reef, Australia Coral Sea -18.826 147.641
Rhopaloeides odorabile HMA Pelorus island, Australia Coral Sea -18.545 146.488
Rhopaloeides odorabile HMA Rib Reef, Australia Coral Sea -18.492 146.878

Theonella swinhoei HMA Eilat, Israel Red Sea 29.531 34.957
Theonella swinhoei HMA Hachijo-jima Island, Japan Pacific Ocean 33.633 139.800
Theonella swinhoei HMA Western Caroline Islands, Palau Pacific Ocean 6.050 147.083

Xestospongia testudinaria HMA Manado Bay, Indonesia Celebes Sea 1.486 124.835
Xestospongia testudinaria HMA Orpheus Island, Australia Coral Sea -18.560 146.485
Xestospongia testudinaria HMA Yongxing Island, China South China Sea 16.833 112.333
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Figure S1: Distance-decay relationships for the NB models. The y-axis shows community similarity and the x-axis
geographic distance. While panel A shows the relationship for the model without controlling for site effects, panel
B shows the relationship when adjusting for site effects. Sites with HMA hosts are colored blue and sites with LMA
hosts are colored green. In panel A, the slopes are: HMA=0.01113 and LMA=-0.06062. In panel B, the slopes are:
HMA=0.0580 and LMA=0.05392.

Probit model431

Below follows the specification of the probit models, as well as the plots generated from these models.432
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Probit model specification: Let N (µ,σ2) denote a normal distribution with mean µ and variance σ2, and analo-433

gously, letMVN (µ,Σ) denote a multivariate normal distribution with mean vector and covariance matrix Σ.434

To define the model, we denote sites by the index i = 1, . . . ,m and the OTUs by index j = 1, . . . ,n, where m is the

total number of sites and n is the total number of OTUs. The rows of the response matrix have a hierarchical structure

typical for many microbiota data. Specifically, the m = 48 sites are nested within the s = 19 host species, with the

19 host species nested within one of r = 2 ecotypes (Figure 2). We denote the response matrix by yij , so that yij = 1

if OTU j is harbored by individual i and otherwise yij = 0. We model OTU occurrences with a probit regression,

implemented as yij = 1zij>0, where the latent liability zij is defined as

zi = αi + βj +
2∑
q=1

ZSiqλ
S
qj +

2∑
q=1

ZHs[i]qλ
H
qj ; i = 1, . . . ,48; j = 1, . . . ,65; q = 1, . . . ,2 (S1)

βj ∼ Cauchy(0,2.5)

αi ∼N (µi ,σ
2(host))

µi = µ(host)s[r] + τ ∗µ(phylo)s; r = 1,2; s = 1, . . . ,19 (S2)

µ(host)s[r] ∼N (µ(ecotype)r ,σ
2(ecotype))

µ(ecotype)r ∼ Cauchy(0,2.5)

µ(phylo)s ∼MVN (0,Σ(phylo))

For the model without site effects αi included, its associated nested structure were removed from Equation S1,435

such that zi = βj +
2∑
q=1

ZSiqλ
S
qj +

2∑
q=1

ZHs[i]qλ
H
qj . Please see section Joint species distribution models in the main text for436

further information regarding parameter definitions and priors.437
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Figure S2: Model-based ordinations on the site level. Panel A and B show the model-based unconstrained ordination
without site effects included. In panel A, sites are colored by host species and ecotype are depicted by different shapes
(HMA=circles, LMA=diamonds), while in panel B sites are colored by ecotype only (HMA=blue, LMA=green). Panel
C and D show the model-based unconstrained ordination with site effects included. In panel C, sites are colored by
host species and ecotype is depicted by different shapes (HMA=circles, LMA=diamonds), while in panel D sites are
colored by ecotype only (HMA=blue, LMA=green).
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Figure S3: The proportion of variance in terms of total abundance among sites explained by the included host-specific
features. Yellow corresponds to variance explained by host species identity, blue to host phylogenetic relatedness,
green to variance within ecotypes, and finally red corresponds to variance explained by differences among the two
ecotypes.
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Figure S4: Model-based ordinations on the host species level. Panel A shows the model-based unconstrained ordi-
nation without site effects included, while panel B shows the model-based unconstrained ordination with site effects
included. In both panels, host species are colored by ecotype (HMA=blue, LMA=green).

30

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2017. ; https://doi.org/10.1101/137943doi: bioRxiv preprint 

https://doi.org/10.1101/137943
http://creativecommons.org/licenses/by-nc/4.0/


−8 −4 0
Posterior mean

Yongxing Island, China (2)
Orpheus Island Great Barrier Reef, Australia

Manado Bay, Indonesia
Western Caroline Islands, Palau

Hachijo−jima Island, Japan
Eilat, Israel

Rib Reef Great Barrier Reef, Australia
Pelorus island Great Barrier Reef, Australia

Davies Reef Great Barrier Reef, Australia
Marseille, France

Limski Canal, Croatia (3)
Green Canyon, Gulf of Mexico, USA

Bush Hill, Gulf of Mexico, USA
Sweetings Cay, Bahamas (4)

Exumas, Bahamas (2)
Conch Reef Key Largo Florida USA (2)

Tossa de Mar, Spain
Blanes, Spain

Sweetings Cay, Bahamas (3)
Exumas, Bahamas (1)

Yongxing Island, China (1)
Praia do Monte Clérigo, Portugal

Dalian City, China
Ballyhenry Island, Ireland

Praia Vermelha, Brazil
Gulf of Mexico, USA (2)

Sweetings Cay, Bahamas (2)
Gulf of Mexico, USA (1)

Xincun Harbor Lingshui Bay Hainan, China
Kilkieran Bay Gurraig Sound Galway, Ireland

Miura peninsula, Japan
Jeju Island, South Korea

Langenuen, Norway
Korsfjord, Norway

Sanya Island, China
Limski Canal, Croatia (2)

Mangrove channel Florida Keys, USA
Limski Canal Croatia (1)

Grays Reef National Marine Sanctuary, USA
Little San Salvador Island, Bahamas

Conch Reef Key Largo Florida, USA (1)
Tartaruga beach Rio de Janeiro, Brazil

Sweetings Cay Bahamas (1)
Rio de Janeiro, Brazil

Lee Stocking Island, Bahamas (2)
Caboclo Island Rio de Janeiro, Brazil

Lee Stocking Island, Bahamas (1)
Carrie Bow Cay, Belize

HMA
LMA

Aplysina cauliformis
Aplysina fulva
Axinella corrugata
Chondrilla nucula
Dysidea avara
Geodia barretti
Halichondria okadai
Haliclona simulans
Haliclona tubifera
Hymeniacidon heliophila
Hymeniacidon perlevis
Ircinia felix
Ircinia oros
Ircinia strobilina
Myxilla methanophila
Oscarella lobularis
Rhopaloeides odorabile
Theonella swinhoei
Xestospongia testudinaria

−7.5 −5.0 −2.5 0.0 2.5
Posterior mean

Posterior mean

Fr
eq

ue
nc

y

−10 −5 0 5

0
5e

3
10

e3
15

e3
20

e3
25

e3

Oscarella lobularis

Myxilla methanophila

Hymeniacidon perlevis

Hymeniacidon heliophila

Haliclona tubifera

Haliclona simulans

Halichondria okadai

Dysidea avara

Axinella corrugata

Xestospongia testudinaria

Theonella swinhoei

Rhopaloeides odorabile

Ircinia strobilina

Ircinia oros

Ircinia felix

Geodia barretti

Chondrilla nucula

Aplysina fulva

Aplysina cauliformis

HMA LMA

B CA

Figure S5: Caterpillar plots for differences in total abundance. Panel A shows a caterpillar plot for the parameter
controlling the site effects, i.e., αi . Each row correspond to a sites, colored by host species. The colored shape represent
the posterior mean (± SD). The two ecotype are depicted by different shapes (HMA=circles, LMA=diamonds). Panel
B shows a caterpillar plot for αi’s mean parameter, i.e., the µ(host)s[r]. Rows correspond to host species colored by
ecotype (HMA=blue, LMA=green). The vertical dashed lines correspond to the grand mean of each ecotype. Panel C
shows the posterior probability distribution of µ(host)s[r] for HMA (blue) and LMA (green), respectively.
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Figure S6: Distance-decay relationships. The y-axis shows community similarity and the x-axis geographic distance.
While panel A shows the relationship for the model without controlling for site effects, panel B shows the relationship
when adjusting for site effects. Sites with HMA hosts are colored blue and sites with LMA hosts are colored green.
In panel A, the slopes are: HMA=0.02259 and LMA=-0.07438. In panel B, the slopes are: HMA=-0.01198 and
LMA=-0.1038.
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Figure S7: OTU-to-OTU association networks. Nodes represent OTUs with assigned taxonomy at the phylum-level,
and links correspond to co-occurrences with at least 95% posterior probability. The top panel (A & B) shows networks
generated from the model without site effects, thus correlations between OTUs are induced by both site and host-
specific features as well as OTU-specific effects. The bottom panel (C & D) shows networks generated from the
model with site effects included, thus correlations between OTUs are only OTU-specific effects. Panel A & C show
the association network for the site level and panel B & D shows the network for the host species level.

33

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2017. ; https://doi.org/10.1101/137943doi: bioRxiv preprint 

https://doi.org/10.1101/137943
http://creativecommons.org/licenses/by-nc/4.0/

